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On the measure of equidistribution of point sets.

By ALFRED RENYI in Budapest.

Introduction.

. Throughout the paper we are concerned with measurable point
iets E lying in the interval (0,1). The measure of E shall be denoted
oy |E| and the characteristic function of E by F(x). We define F(x)
utside the interval (0,1) so as to be periodic with period 1. We
ienote by E, (for any real #) the set which has the characteristic
unction F(x--¢). If we imagine the interval (0, 1) wound on a circle
f circumference unity, we may say that E, is obtained by rotating
the set E by the angle —f. Let G(¢f) denote the measure of the set
of points of the interval (0,1) which are common to E and E,. We

have evidently
1
(1) G(t) xd[ F(x) F(x--t) dx.

G(t)'is a non-negative function, periodic with period 1. We have, in
view of the periodicity of F(x),

1
@ ’ G(t):J-F(x——?f—)F(x—}——;) dx,
thus G(f) is an even function. Further we have
@) I'G(t+h)—-G(t)léj|F(x+h)—F(x)ldx-
Now, it is well known!) that the integral on the right side tends to O
with A, thus G(t) is continuous, As we have G(0)=|E|, it follows

from the continuity of G(f) that if |E|> 0, there exists a constant ¢ > 0,
for which G(f) >0 for 0xt<¢. This is equivalent to a theorem of

) Cf. for ex. A, Zvamunp, Trigonometrical series (Warszawa, 1935), p. 17.
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78 A. Rényi

H. STEINHAUS?), who stated it in the form, that the set of the mutual distances
of the points of a set of positive measure contains a whole interval
(0, ¢). In view of this interpretation, we shall call G(¢) the distance
function of the set E.

Now let us denote the minimal value of the continuous function
G(f) by m(E). As G(f) is non-negative, further as we have

1 11
) 6[ G(t) dt-—:JJ F(x) F(x-+t) dxdt=|EJ,
it follows
©) 0<m(E)<|EP.

It is easy to see that m(E)==|E[* if and only if |E|=0 or |E|==1.
Thus if we put

©) ME)mc',z,ggz,

we have 0<u(E) <1 for O0<|E|<1. In what follows u(E) shall be
called the measure of equidistribution of the set E. Of course the notion
of equidistribution, implied by this definition, is different from (but as
we shall see is closely connected with) the usual definition for sequen-
ces, introduced by H. WEYL®). The difference is made clear by remark-
ing that we are concerned not with the equidistribution of the points
of E but with the equidistribution of the set of distances of pairs of
points of E.

The purpose of the present paper is to prove that there exist sets
having any prescribed positive measute, and as ‘“highly equidistributed”
as we please, i. e.,, having a measure of equidistribution arbitrarily near
to 1, This shall be proved in § 2 (Theorem 1). §. 1 contains prelim-
inary discussions of rather general character, concerning the FOURIER
expansion of the distance function and some lemmas. The proof of
Theorem 1 is based on a property of quadratic residues, discovered
by LAGRANGE?). In §. 3 the problem is generalized. We introduce the
notion of the measure of k-fold equidistribution, and prove a theorem,
analogoeus to, but somewhat weaker than Theorem 1 (Theorem 2), based

2) H. SteixnAUS, Sur les distances des points des ensembles de mesure po-
sitive, Fundamenta Math., 1 (1920), pp. 93—104. Cf. aiso S. Piccarp, Sur les en-
sembles de distances des ensembles de points d’un espace euclidien, Mémoires
Université Neuchalel, 13 (1939), pp. 212.

8) H. WryL, Uber die Gieichverteilung von Zahlen mod. Eins, Math. Annalen,
77 (1916), pp. 313—325.

4) P, BAonmanN, Niedere Zahlentheorie, Vol. 1l, (Leipzig, 1910), pp. 241—245.
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Measure of equidistribution. 79

on a generalization of a theorem of THUE®). In §. 4, we point out the
connection with some problems of number theory, and prove a theorem
concerning the sequences of integers, called difference bases, construct-
ed by SINGER®) (Theorem 3).

§. 1. Fourier expansion of the distance function.

" Let F(x) denote the characteristic function of a measurable set E
in the interval (0,1). Let us consider the FOURIER expansion of F(x):

F(x)~va,+2 D) (o, cos2znx - b,sin2mn.x),
n=l

Lemma 1. If G(t) denotes the distance function of the sel E as
defined in the introduction, we have

G(t)=a}+2 2 (% + b2) cos2mnt.

The series on the right converges uniformly.

Evidently Lemma 1 follows from Parseval’s theorem.

In what follows we shall consider some special sets consisting of
a finite number of intervals of equal length. Let b, b, ..., by_, denote
a sequence of integers, which are all different modulo ¢q. The set
E=E,((b,, by, ..., by_;) shall be defined as the set consisting of the

1 1y
. b—75 bit3| | .
intervals 7T ) (j=0,1,..., N—1). Evidently, the set E
is not changed if one of the b, is replaced by a number congruent

to it modulo g, thus we may suppos¢ 0<b, <q.

Lemma 2. Let G(t) denote the distance function of a set E=
=FE, (by, by, ...,by_,). Let us denote

N-1 omi
0 ¢= ) exp (M)
=0 q
Then we have
N2 2 © sin —75‘;"" 2
(8) G(t)=?2-+—‘i§‘ IC"|2 P cos2nnt.
n=] T

%) A. ScHovz, Elnfiihrung in die Zahlentheorie (Sammlung Goschen, Bd. 1131,
Berlin, 1939, p. 45.

8) 1. Sinaur, A theorem in finite projective geometry and some applications
to number theory, Transactions American Math. Society, 43 (1938), pp. 377 385,
Cf. also: T. Vwayaraauavan and S. Cuowra, Short proof of theorems of Bose
and Singer, Proceedings National Academy Sciences Indla, Section A, 15 (1945), p. 194,
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80 A. Rényi

Lemma 2 is verified easily by calculating explicitly the FOURIER coeffi-
cients of the characteristic function of the set £ and applying Lemma 1.

Lemma 3. Let us have 0< h< 1. We define

) Ry(x) = h*4-202 )

ne=l,

sinnmh \?
nmmmnans | COS TEN X,
nah

"Then we have
Ry(x)==h—|x| for |x|s.h,
R, (x) =0 for |x|>h.

Lenma 3 is easily verified by calculating the FOURIER coefficients
of R,(x). The function R,(x) may be called the “RIEMANN kernel”. As
a matter of fact, f(x) denoting a function, L-integrable in (0, 1), the
summation method of RIEMANN consists in forming the second general-
ized derivative of the function y(x), obtained by integrating f(x) twice,
and it is easy to see that we have

) 1
(10) Wx+2h)+1{14(3;,; 2h) —2y(x) ““—-—“*,;lg"ff(f) R (x—1)dt,
0

i. e. Ry(x) is the kernel function of the RIEMANN summation?).
It can be seen from (7) that ¢,==c,, if n=m mod q. Further, as

sinl’qﬁmo for n=0 mod g, the values of ¢, for n==0 mod ¢ figure

in the expansion (8) only formally, and the FOURIER expansion of G(t)
is completely determined if we know the values of ¢,c¢,,..., ¢, ;.
Lemma 3 shows that G(f) can easily be calculated if the values of
|c.® (n==0) are all equal. The same is true if they show only relatively
small deviations from a common value. This is expressed by the following

Lemma 4. Let E=E,(by, by, ..., by.,) be defined as above. If
the numbers c, defined by (7) s tisfy the relations

llc,,|2_Q|<q331 for n=1,2,...,¢—1,
where Q(1+49) < N2, we have
=1 Q0D
Proof. We have evidently from (8)
2 ]
1) 602+ a(ru0-5)— 2% (Ru0— ]

7) This has been already remarked by M. Scueomrer, Uber die Summation
divergenter Founer-Relhen, Monatsheﬂe Siir Math. und Physik, 25 (1911), pp. 224 —234,
It was Prof. L. Frstr who has kindiy called my attention to this paper:
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Measure of equidistribution, 81

and tHus
(12) n(E)2 N2—(.(212(1+19)

and Lemma 4 follows easily.

Of course the situation is the simplest if, in Lemma 4, 3=0.
Sequences of integers b, for which this holds, are characterized by the
following

Lemma 5. If by, by, b, ..., 0y, denote a sequence of in'egers
with the property that the differences’ b,—b, (r,s=0,1,..., N—1;r=s)
represent every class of residues modulo q (the class O of course excepted)
exac ly k-times, we shall call the sequence b, a difference basis
of order k modulo q. The necéssary and sufficient condition for
the sequence b, being a difference basis of order k modulo q, is that for

any n==0 mod ¢ )
b,n) -
q

(13)
be valid.

It is clear that the condition (13) is necessary. Let us prove that
it is also sufficient. Let A, (/=1,2,...,¢—1) denote the number of
representations of l mod ¢ in the form b, b,. We have

= ( H“*N-I—EA,exp(Zm—]

Let us denote Ao—k So=qk and put

N—k

N1
5

q—1

7 )
— > aexpl2ai |, n=1,2,... g1
S. %‘ exp( 7] 7 n 2 q
Evidently S,==0 for n=1,2,...,g—1. It follows that for v==0 modgq

q-1

T= S,,exp( 2m—q——) So=4qk.

=

On the other hand, inverting the order of summations, we obtain

gy (1—_v)n)
o 2ni =0A
T_gﬂﬂZA,exp( ni 7 gA,

Thus it follows A,=k for v=1,2,..., g—1, which was to be proved.

Lemma 6. If by, by,..., by_y is a difference basis of order k
modulo q, and w(E) denotes the measure of equidistribu'ion of the set
E=E,b,,b,, ..., by.,), we have

N—k
(14) w(E)=1——F%5—.

Lemma 6 follows from the proof (not the statement) of Lemma 4
combined with Lemma 5.
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82 A. Rényi

‘Lemma 7. Let E denote a measurable set, E the set complementary

to E. We have
- 1 u(E
(15) i (B) = )

(=)

Proof. Evidently
1
(16) m(E)mmin!(lmF(x))(lmF(x»l—t))dxr:—-:1*—~2|E|+m(E)

and thus Lemma 7 follows.

Lemma 8. If a(x) is integrable in (0, 1), B(x) boiunded and in-
tegrable in the same interval and periodic with period 1, we have
1 .

(17) lim 6[ a(x) B(nx) dx = 6[ a(x) dx p’(x)dx

This lemma is well known“)

Lemma 9. Let E, and E, denote two sels having positive measures
|Ey| and |E,|, chgracteristic Sunctions Fy(x) and Fy(x), distance functions
Gy(x) and G,(x), respectively, and let the minima of the distance functions
be denoted by m(E,) and m(E,) respectzvely Let us define the
set E® by ifs characteristic function being ”’(x) F,(x) Fy(nx)
(n==1,2,...). It follows

() lim |E®| |5 |E}
and
(19) lim m(E™) = m(E;) m(E,),

wherc; )m(E(”’) denotes the mimmal value of the distance function G™(f)
of EV"

Proof. (18) follows clearly from Lemma 8. As regards to (19),
let us suppose the contrary. Thus we suppose that there exists an
infinite -sequence of integers m, (k==1,2,...), and a corresponding
sequence of real numbers £, - (0<t,, < 1), for which

G™ (tu,) < M(Ey) m(E;) —e

holds, for some fixed ¢>0. Let us denote by %, the fractlonal part
of nuts}. Clearly we may choose an infinite subsequence #, (k—l 2, )
of the sequence n,, such that if k-+oo, 4, and 7,, tend to limits ¢* and %,

8) This lemma has been proved for some special cases by L. FrJér, Le-
besguesche Konstanten und divergente Fourierreihen, Journal fiir reine und ange-
wandte Math., 138 (1910), pp. 27—28. In the general form the lemma has been
proved by A. Zvamuxp, 1. c. (1), p. 173, § 8. 34.
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Measure of equidistribution. 83

respectively. Now, putting

1
Gy(t*, o) = | Fi(x) Fy(x-+ %) Fy(r,%) Fy(,x + %) dx,
0
we have

1
|G (t,) — Gult', ¥)| < [ | Fue+ b)) — Fulx+ )| dx+
0

1
+ 6[ Fo(y + 5,) — Fo(y+7) | dy

and thus, applying again the theorem by which we have proved the
continvity of G(f) (see !)), we obtain

@y - lim [G* (t,)— Gy (t", 7)] =0.
k-»+o
Applying Lemma 8 again, we obtain
(22) lim Gy (', 7') = Gy(t*) Ga () 2m(E,) m(E,)
-+ o

and thus owing to (21) it follows
(23) lim G (ty,) = m(E;) m(Ey).

But this clearly contradicts (20) and thus (19) is proved.
Lemma 10. If the characteristic functions F,(x) and Fy(x) of the
)
2

measurable sefs E, and E;, are equal except on a set of measure
:

(O0<d< 1), we have |m(E,)—m{(E,)|<d.

Lemma 10 follows simply by remarking that F(x)F,(x--¢) and
Fy(x) Fy(x+1t) are equal if neither x nor x--¢f does belong to the ex-
ceptional set, i.e. except for a set the measure of which does not
exceed 6, and thus |G, (f)—G,(f)| < ¢ for any f. Let M(a) denote the
least upper bound of u(E) for all sets E for which |E|=a O<a<]1),

We prove
Lemma I1.
If M(e)=1 and M(8) =1, we have M(ap)=1.
Proof. According to the suppositions of our Lemma, for any &> 0

there exist sets E, and E, with |E|=@, |E|=¢, w(E;}>1—

'4_:
p(Ey) > 1 — % Let us define the sequence of sets E®™ as in Lemma 9,
by virtue of which we have lim |E®|= ag and

N> o0

2
lim nz(E"");aﬂ[lm-}).

n—>xo
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84 A. Réuyi

Thus if we choose n sufficiently large, both inequalities
|E®| aﬂ|< 298 and m(E™) = aﬁ.(%—-%)

will be satisfied. According to |E®|~—af <0 or [E®|--af>0 we may

. &
add or take away from E® a set of measure not exceeding ———aﬁ S0 as

to obtain a set & having its measure equal to ag8. The characteristic
function of the set & does not differ from that of E®) but on a set the
eap

measure of which does not exceed 7 . Thus, according to Lemma 10,

we have

aﬂ

m(E™) =z m(E™—-=L = ap(1—9).

As ¢>0 may be chosen arbitrarily, thlS proves Lemma 11,
Lemma 12, If lim e¢,=a (0<e,<1, O<a<]1) and M{a,)==1

fn-> o
for n=1,2,..., then we have M(x)==1.
Proof. For any >0, we choose n sufficiently large so as to
obtain

a"
—

o

<L
I

According to our suppositions, there ‘exists 4 set E, for which |E,|=«,

and u(E,) =1 —-—‘%. We add to or take away from E, a set of measure

not exceedmg so as to obtain a set &, of measure o We have,

using Lemma 10,
e ! & (22
m(é°,.)gm(E,,)—~—2—ga,, (1-——-21—)——2—ga(1—8)

which proves Lemma 12.

Lemma 13. Every real number ¢ (0 < e <1) can be represented

. as a finite or infinite product of the form
o 1
(24) a=ﬂ(1-—”—) (| 1S M),
k=1 2 ¥

Proof. Let us suppose that e is not a rational number which

is equal to the product of a finite number of factors of the form

(1——21—) Let us choose n,>>1 so that we have

1

(25) 1—2”—1_1<a<1—

2™’
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Measure of equidistribution, 85

further, if n,, n,, ..., n,_, are already found, we choose n,,, so as to

obtain ,

] « 1
<1

(26) | — e <y _—.
2" _ b 2"
| 17 (1)

=1

Dividing (26) by 1-# and applying again (26) with k-1 instead

of k, we obtain

. 1 o 1
(27 1~ = < ( 1) <l- e

17—

y=l 2"

It follows from (27) that n,,,=mn,. Thus the sequence n,, which is
uniquely determined according to the above construction is non-de-
creasing, It is easy to see, that n,-cc. As a matter of fact, in the
opposi{e case n, would be constant from some index k, onwards. But
it would follow from the construction that in this case we should have

N To—1 1 N

< - —

(28) «Q ‘;g (1 2n,) ( 2"7'0)
for any N, i, e. we should have « =0, contrary to our hypothesis. Thus

n,~o9, and it follows from (26) that

ll.

lim
k> 0 k-1 (

J=1

\__/

which proves our lemma.

§. 2. Application of the theorem of Lagrange.

The theorem of LAGRANGE is question is the following: Let p

denote a prime number of the form 4n+3. Let r, rp,..., 1 (W___p;L)

denote a complete system of quadratic residues mod p. Let d denote

any integer, d==0 mod p, Then there are P :3 quadratic residues in
the sequence r,+4-d (j=1,2,...,7). According to the terminology
introduced in Lemma 5, this theorem can be stated also by saying that

the system of quadratic residues to a prime modulus p=3 mod 4 is

a difference basis .of order £ —3 modulo p. This theorem follows easily

4
from Lemma 5 and from the well known formula for Gaussian sums:
»-1 :
2miy? ,
2 go,‘exp( py )=1VE
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86 A. Réuyi

for p=:3 mod 4. As every class of quadratic residues is representec
twice among the squares »* (1xy<p—1), it follows from (29) thai

30) gr"w exp(zmr,) _ iV};ml .

p
1t follows from (30), using gexp 2mik

note a complete set of quadratic nomresndues mod p, we lave
< 27[[3} ___q"‘""lyi;“-“l
@D ge"p( » )”‘" /R

Now the sequence nr; (/=1,2,..., %) is congruent to the sequence
of residues or to the sequence of non-residues, according to the quadratic
character .of n. Thus it follows from (30) and (31) that for any n=0

modp we have
n (2mine\f p+1
Zexp( P )’"" 4

/=1

==(, that if s, Say..., S» de-

(32

Thus we can apply Lemma 5, and obtain that the differences r;—r;,

i == j represent every class. of residues mod p exactly 4 ; L2 _!; - Z

times, which is equivalent to the theorem of .LAGRANGE stated above,.
Now everything is ready to prove
Theorem 1. The least upper bound M(e) of the measure of
equidistribution u(E) of measurable sets E having the measure |E|=
is identically equal to T for 0 < a1,

Proof of Theorem 1. Let p denote a prime, p=3 mod 4,

and let ryyrey ...yt (y=p ; ?’) denote a complete system of quadratic

residues mod p. Let us define the set £,==E,(r, ry,...,7») as in § 1.
It follows from Lemma 6 that

p+1
3 E)=1— .
(33) u(E,) =07
Let &, denote a set obtained by adding to E, any interval of length
2p As |E,|= _pl we have |8, I——— and it follows from (33) that
3
(34) w(&)=1— rR

Since the  .re an infinity of primes of the form 4n- 3, it follows that

M(%)_—_ 1. Applying Lemma 11, we obtain M‘(%)—Tl fork=1,2,..,
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further, by Lemma 7, M(l—%)= I, (k=1,2,...). Applying Lemma
11 again, we obtain that M(e)=1 if e is .. finite product of the form
(24). Thus 1t follows, using Lemma 12 and regarding also Lemma 13,
that M(a)=1 for all o, 0 < @< 1. Thus Theorem 1 is proved?).

§. 3. The measure of k-fold equidistribution.

Let E, E,, |E| and F(x) have the meaning as in the introduction.
Let Gy, 1y,.. ., 1) denote the measure of the set of points common
to E, Ey,, E,, ..., E,. We have evidently

1
(35) Gty fy-.o b) =-J F(x) F(x-+4,) F(x+41) ... F(x-41) dx.

It is easy to see that G(t,, 1, .+« 1) is a continuous function of its
variables. The minimal value of G(¢,, t,, ..., ;) shall be denoted by m,(E).
Owing to

] 1

1
(36) 0” Gty by, .., t)db dby.. .. db,==|EJF,
0 0

we have

(37) 0<m(E)x|EI*

The measure of k-fold equidistribution of the set E shall be defined by
my(E.

(39) i (E) =T

Thus we have, owing to (37), 0= u,(E)=1. The least upper bound of
m.(E) for all measurable sets E with |£| =« will be denoted by M,(e).
It seems probable that M,(e) =1 identically in « for any k.,In what
follows we shall prove however only the following

Theorem 2.

i My(@) 2~
The most surprising consequence of Theorem 1 is perhaps that
there exist measurable sets with arbitrary small positive measure with
the property, that if the set is “rotated” in the sense mentioned in the
introduction, the set of points, which are common to the rotating set
and to the original set, is never void, indeed, its measure exceeds always
a fixed number during the rotation. Though Theorem 2 is relatively

%) Mr. P. UNaeAR, to whom 1 communicated at an earlier stage of my investi-
gations some of my results, found independently a proof of Theorem 1, running
esseniially on the same lines.
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much weaker than Theorem 1, and is not a “best possible” result, never-
theless it contains the generalization of that interpretation of Theorem 1
which has been emphasised just now.

The proof of Theorem 3 will be based on the following gener-
alization of a theorem of THUE:

Lemma 14. If p is a prime, k a positive integer, further the po-
sitive integers ey, e,, ..., e, f satisfy
(39) 6. .. 8. f>D
then for any k-tuple of integers (r,, ra,...,1;) theré can be found in-
tegers X,,Xa, ..., X, and y for which 1<y <f, |x|<e (i==1,2,...,k)

and I’,-E%E}L mod p (i==1,2,...,k) are valid.

Proof. Let us consider all k-tuples of integers of the form (yr; - x;)
i==1,2,...,k where 1<x<¢ (i==1,2,...,k) and 1<y<f The
number of such k-tuplés of integers being ee,...e.f, as there are only
P* k-tuples which are different mod p, owing to (39), there must be at
least two k-tuples of the form considered which are congruent mod p.
If we denote the two congruent k-tuples by (yr;+x) and (yr;4-&),
i==1,2, ...,k we have

yri4x=qr,.+&modp, i=12...,k

From y== % mod p it would follow x;=§ modp for all i=1,2,..,,k,
thus we have ys=% mod p, and it follows

+16—xi .
r=——"——= mod i=1,2,...,k).
|y—m] P ( )
As 0<|t—xi|<e (i=1,2,...,k) and 1£|y—9|<f, our Lemma is

proved. .
Now we prove the following

k
Lemma 15. If p is a prime, k a positive integer, and Q== [p"T‘
([x] denotes the integral part of x), a set of 2Q integers ¢, cs,..., Csy
can be given, having the property that for any k-tuple of infegers
(by, ba, . . ., by), elements ci,cs, ..., ci, c; of the given set can be chosen
so as to obtain

“b.=ci,—c¢; mod (p—1) for r=12,..., k.

k
Proof. Putting e,-=f=[pm]+ 1=Q+1 (i=1,2,...,k), con-
dition (39) of lemma 14 is evidently satisfied. Let g denote a primitive
root mod » and let ind x denote the index of the residue class x with
respect tc It is easy to see that if ¢,=indi, cqs;=ind(—i)
(i=12,...,Q), the sequence ¢; (1<i<2Q) has the  required pro-
perties.
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Let us now define the set E, consisting of the intervals:

c,—1 ____x:,_C - ’

p—I1 p—1

where the ¢, (r=1,2,...,2Q) are the elements of the set of integers of
Lemma 15. Let F(x) denote the characteristic function of the set E, and
let G(t,%,. .., &) be defined by (35). If (,%,..., ) is an arbitrary

k-tuple of real numbers, 0<% <1, we put

(40)

_b+y
tr—“—p 1 (r—1,2,..,,k),
where b, denotes the integer which is nearest to (p—1)¢, and thus
we have
|19,|g~;~ r=1,2,... k.

According to Lemma 15, we can choose ¢,, ¢y, ..., c;,¢; so that
b,=ci,—c, mod(p—1) for r=1,2,...,k
It follows according to (40) that if

6= <x oty
p—1 == p—1 "
we have
i;’:ll x4t < c;;i_l] for r=1,2,...,k
Thus |
Fx+t)=1 for r==1,2,...,k if “T7 <x< 1
) ’ p—1 =77 p—1

It follows from (35) that
1

41) mk(E)-EE—:‘l‘-

Owing to \E|— Ql (Q=[pm]), we obtain
(1—5)

(42) Mk(E)_Z;WIL’—

If any fixed >0 is given, we can choose p sufficiently large so as to

obtain

(43) |E|<e& and m(E)> 4Hf.

Thus Theorem 2 is proved.
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§. 4. Some remarks on the sequences of Singer.

We have seéen in §. 1 that the construction of highly equidistri-
buted sets is closely connected wilh the number-theoretical problem of
constructing difference bases, i. €. finite sequences of integers, the diffe-
rences of which represent every class of residues to a given modulus ¢
exactly k times, k being the order of the difference basis. In. this di-
rection interesting results have been obtained by 1. SINGER (. c.9))
who constructed difference bases of order 1 for any modulus ¢ of the
form q==p*"4p»-1, p prime. Let a; (J==0,1,...,p) denote such
a sequence of SINGER; we may suppose evidently

0Lp<y<...<a,<q.

It follows that for any &k (1 =k<gq) either k or k—¢q can be repre-
sented in the form a; ~ a;, and we may ask which subset of 1, 2,...,¢g—1
is represented “actually”, i.e. for which k£ we Have k=a,—a,. This
problem, in a somewhat different from, has been raised by L. REDE1
and is discussed in a joint paper of L. REDEI and the duthor'®) where
the following theorem is proved: If 4* denotes the minimal number of
terms of a finite sequence of integers with the property that their diffe-
rences represent every number 1,2,..., n, then

.n*
44). lim e
( ) n—»mvn ¥

exists, further we have'!) ’

(45) /2 +-3‘~‘;;§1}'7;]/f§—-.

Now these problems are also connected with the thecry of equidistri-
bution of point sets. To establish this connection, we have to define
the “asymmetric distance function” g(f) of a set E as follows:

Let f(x) denote the characteristic function -of the set E if x is
contained in tlie interval (0, 1), and let us define f(x) =0 for x outside
of (0, 1). We put

1
“6), . g(t)zoff(x)f(xﬂ)dxx (1St + 1),

10) To be published in the Mat. Sbornik.

1) As BiiLa Sz.-Naay kindly remarked, the lower estimnation in (45) can be
improved, by some numerical refinement, by approximately 0;01. A similar remark
applies to (49). P. Erpds and 1. S. GAL proved by some modification of the original
proof that (44) and (45) are valid also if the sequence of integers in question is
restricted by the condition that it is contained in the sequence 1, 2,...,n; cf.
Proceedings Koninklifke Nederlandsche Akademie van Wetenschappen, 51 (1948),
pp. 1155—1159,
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It is easy to see that g(f) is an even continuous function, further that
g20)=E, g(1)==0, and we have

47 fg(t) dt= L%'—z
0

We obtain further by some simple calculations that

1
(48) f 2(t) cosﬂtdt=%‘ J F(x) exp (1) dx |
0 0

i. e. that the FOURIER cosine transform of g(f) is non-negative. This is
the idea underlying the proof -of the following property of the sequences
of SINGER:

Theorem 3. Let us denote P=p™ (p prime), ¢= P2+ P41

and k= QT If0sa,<a,<...<a,<q denotes a SINGER Sequence,

and if 1 < A, <Ay <...< A, denote the numbers which are representable

in the form a,—a; with i > j, further if A,=Fk+D (i. e. D denotes how

many numbers are missing from the sequence 1,2, ..., A,) then we have
2

(49) p>P+l_ P

3n—2 2
Proof. We have

(50) lj‘ exp (2nia;t) ~—P+1+22 cos 27t A, t =

sin (24 —}—1)- D
=P+ kt 2 ——-chosZnB,,t,

sin 7

where B, (v==1,2,...,D) denote the numbers < A, whicti are not
contained in the sequence A;. It follows from (50) that
sin (24,4 1)

(1) 0<P+ . +2D
sinf

for all values of . Let uschoose t= 57— 2A -I—l , using sin x < x for x>0,

We obtain
24,+1)
(52) 2D_2_———3—n——— P,

from which Theorem 3 follows by simple calculation,
It may be remarked that though (49) is not a best possible estim-
ate, it gives a rather good estimation for small values of P. Thus the
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set A, coincides with the set 1,2,..., k only for P==2 and P==3 (the
corresponding SINGER sequences are: 0,1,3 for P==2 and 0, 1,4,6
fon P==4), further (49) asserts that for P==4 there must be at least
one “gap” in the sequence A,;, and really there is exactly one “gap”
if we consider the SINGER sequence 0, 2,7, 8, 11. For P==5, owing to
(49), there must be at least two ‘numbers missing from the sequence A,,
and there are really two gaps if we take the SINGER sequence O, I, 4,
10, 12, 17, etc. '

' Some further progress could be obtained regarding the problems
considered in the present paper if some ‘more difference bases could
be constructed.” A necessary and sufficient condition however for the
existencg of a difference basis of order ¥ moduld ¢, for given k and g,
is not known.

We considered only sets E lying in the inferval (0, 1), but it is
clear that the situation is the same for ary bounded linear set. The
problem 'of unbounded llnear sets however is somewhat different, as it
'is shown by the remark, that in this case the symmetric and asymmetric
distance functions G(f) and g(f) coincide,

My most sincere thanks are due to P. ERDGs and L. REDEI for
their valuable remarks.

(Received August 5, 1948.)
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