On the coefficients of schlicht functions.
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Let fQ) =242+ (. +a,2 ~.denotea function which is analytic
and schlicht in the unit circle. There are shll many unsolved questions, regarding
the estimation of the coefficients of such functions, of which the best known -
is the conjecture of BIEBERBACH: |a,| <n. This has been proved in general

only for n=2 (KOEBE) and n=3 (LC’)WNER) but for every n it is proved

only under some additional conditions, among which we mention a theorem
of R. NEVANLINNA: |a,|<n for n=2,3,4,... if the unit circle is mapped

by w=/f(2) on a domain in the w-plane whlch is star—shaped with respect e

to the origin. It follows from this theorem that in case the unit circle is

mapped by w=7(2) on a convex domain, we have |a,|<1; as a matter of .

fact it is easy to see that in this case -the unit circle -is mapped by ther'
function w,=2zf"(2) on a star-shaped domain, and thus [na I=n and there-
fore la<1 for n=2,3,... The theorem of NEVANLINNA has been gene-
ralized by N. G. DE BRUIJ‘\I [3] as follows: the conjecture of Bieberbach is

valid if w=/(z) maps the unit circle on a domain G which has the pro- =~

perty that there exists a point A in the w-plane such that every straight lmer
through A and cutting G has only one segment in common with G. The

theorem of de Bruijn includes ‘the case also when A is a point at infinity,‘-‘ =

‘when his condition means that there exists a direction L such that every

straight line parallel to L and cutting G has only one segment in common
with G.Y)

The object of the present paper is to prove a new theorem on the

coefficients of schlicht functions showing the dependence of the estimation
of the coefficients on certain geometrical data of the domain on which the

unit circle is mapped by the schlicht function in question. We prove first
‘the following 3

~Theorem 1. Let f(z)-ﬁ—I—a2 2—{— .4a,z*4-... be analytic and s
schlicht in the unit circle. Let us put z=re'v and

1) This spec1al case Wthh wnll be applied below, was' proved earlier by M. S
ROBERTSON [8].
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Before proving Theorem I, let us discuss the geometrical meaning of
fhe_ condition (2). Let us suppose, that we have chosen for « the least possible
. value, i e. that « is the least upper bound of U(r) for 0<r< 1. It has been -

‘proved by V. PAATERO [5] that « is equal to the “boundary-rotation” (Rand-
drehung) of the domain on which the unit circle is mapped by .the function: .
w=f(z). The boundary-rotation of a simply connected domain G can be
defined, following PAATERO as follows: If the boundary of G has a conti-
nuous tangent in every of its points,  the “boundary-rotation of G is defined
as the total variation, for a full turn, of the angle of direction 6f the tangent
to G. In the general case let us consider a sequence G, of closed domains,
G, being. contained in. G,., and each G, 'contained in G, further let us
suppose that G s exhausted by “the se ence: G, ie. ‘that if G.is any
closed subdomain of G, G is contained in G, for n sufficiently large. Let
us define e, as the lower bound of the boundary-rotations (as defined above)
- of all closed JORDAN curves with a continuous tangent which lie in G and -
_contain G, in their interior. Evidently the $equence e, is non-desreasing.
The finite or infinite limit of the sequence e, shall be called the bounda_ry,—
rotation of G. It has been proved by PAATERO that the function U(r) defined
by (2), which, according to a general ‘theorem of F. RIEsz on subharmonic °
* functions [6] is an increasing function of r, tends to the boundary-rotation
of the domain G (on which the unit circle is mapped by w=71(z)) for r-1.
Thus our theorem can be announced also in the following equivalent form:

Theorem IL 1If g‘-he’{funcz‘idn‘f(z)='z+a2z?’+4. a2 whi‘c]z_ is
analytic and schlicht in the unit circle, maps the unit circle on a domain G, -
having the boundary-rotation e, we have : S e A :

a-27

: "[a,‘lgn‘;’f bn=2,3,...‘

- Naturally our result is interesting only for e<3n. In the special case -
@=27, we obtain the -well known estimation |a,|<1. As a matter of fact
the condition e=2x is equivalent to the domain G being convex (see
PAATERO 1. ¢.). For @=23x we obtain from Theorem II. exactly the BIEBER-
BACH estimation |a,[<n, but we shall prove that a more precise estimation
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of the coeff1c1ents can be ngen, whlch glves fer a——3n {a
follows from -

“Theorem ll. Under the condifions of Theorem 11, we have

gl : {a|<1](1+““2”) ne—9.8
. : S :
It is evident, using the inequalities Z—;{— <logn and 1+x<e” that
o ‘H(1+ ) e 2=l o
5 : : k=2 w ik 3

; Thus Theoreni I follows from Theorem III. Let us prove now Theorem III. '
‘We start from the following theorem of A. OSTROWSKI [4] :

If 2(2)=u(r, gp)—}-w(r @) is analytlc in the unit circle,  (z=re'?):and:.
27

- 4if f|u(r <p)ld(p<a for O<r< 1, there ex1sts a function !/J(tp) of bounded

varxatlon for which we have

; VoA

® - = f§y+zdww»+zvm>
Further we have s
iy d[d¢«¢>—-2n and fldw(¢N<ia

~ This theorem is a generalization of a theorem of F. RIESZ, [7] who proved
it for the special case u(r, ) =0, in whxch case ¢(p) is a monotomc func- _

tion. Applymg this theorem of OSTROWSKI to the function g(2)=1 +zf el

: we. obtain Sl
Zn
E and thus - . S ;
B o F@ [ de@
o - o f(z Mﬁpz :

e ;
further we have

goy - GMW@=%JWNM§¢

Let us differentiate both sides of ;(9) ha? times, n; 2, we obtain that -




= f""”’(Z) f ( dtﬂ(qv)
1: e’L
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Now it we g s
formula

_ Las we hav a4 =
"sequence & m‘ questlon can be found as follows Let- us put
3 : n-2

Solvmg the dxfferential equatlon b4 _7':- s
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: _mq;rked before wthe estlmahon glven by Theorem III is of no
mterest for @ >3x, Using the theorem of ROBERTSON [8] mentloned in § :
- we prove the foilo"'ng theQrem for thxs case : : '




. to me by N G. DE BRUIJN to whom I am thankful also for some vahra?

remarks concemmg the proof. . ;
Theorem lV isa consequence of the followmg sxmple geometrlcal Jemma

= Lem ma I. If the szmply connected domazn G is bonnded by the jordan
A curve C having a contznaous fangent in every of its points and having its
- boundary rotatwn o <4mn, there is at least one direction such that ev traight
_.-line parallel to this direction has at most one segment in common - with
~domain G, i. e. at most two common points with C.. In this case, for the
of brevrty we shall say that G zs convex with respect to this direction. -

Lemma 1.can be proved using the followmg result due to S. BANACH [

: Le mma 2, Let f(x) denote a functzon which is contznuous and of bounded“f
..varzatzon in_the interval (a, b). If N (y) denotes’ the number of roots X of ‘the
‘equatton y= f(x), we have - )

O e Jldf(x)l— j NGYdy

i e.the total varzatzon of f(x) is equal to The Lebesgue mtegral of the functzon
Ny [2] : o
“Let us take for f(x) the angle of direction of the tangent to the curve
.C mentioned in Lemma 1, where x is some suitable parameter, for instance
the arc length. In this case N(p) denotes the number of tangents with the
angle of direction congruent to y modz, 0<y<n. Let us denote by e,
~ k=1,2,... the measure of the set of values of ¢ for which N(y)—k Itis
: ’,easy o see that €,,,i=0,-4,=0,1,2,..., ‘because if the value of N(y) is

odd, at least one of the points - where the tangent has the dxrectlon tis a
- point of mflexmn Thus we have . ,

@iy s voes I Ry 2e2+4et+6e6+

We have further ev1dently - =
(22) : N e2+e4+e6+ 5 . ’ ,
On the other hand, according to the definition- of the boundary rotahon the

total variation of f(x) is equal to the boundary rotation e of C. Thus, accor-
2 dmg to our supposmon a <4mn, and by (20) and (21) ‘we obtam

(23) _ 282—-}—484—}—666—!— <4:rt
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'omparmg (22) and (23) we obtain e,>0 ie. there exists .a drrechon y
such that the curve C has .only. two tangents parallel to the direction y
~ which implies that the domain G is ‘convex w1th respect to this d1rect1on
- Thus Lemma 1 is proved.?)
Now it is easy to. complete the proof of Theorem Iv. Let us consrder

. the function : :

o (z)=——f(rz)—-z+a2r22+ Fa,r! z"+

e ’(O<r< 1), and let us denote by G, the domam on which the unit crrcle is
-+ mapped by f.(2). Evrdently the boundary of G, is an analytical. curve. The
~boundary rotation «(r) of G, is evidently equal to, U(r) defined by (2). Now
it is easy to see, that it follows from our hypothesis <47 that U <4n
for.r < 1. As a‘matter of fact this. is evident if e<4x, and if e—4n it
follows from the fact that log U(r) is a convex function of log r (see F. RIESZ
[7]) and thus is stnctly increasing for those values. of r for which u() <27t
Thus Lemma I can be applied and we obtain that the domain G, is convex
with respect to a certain direction. Usmg the theorem of ROBERTSON mentroned
above we obtain - :
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2) Lemma 1 can also be proved in an elementary way. Elementary proofs have been
communicated to ‘me by VErONICA Sos and N. G. DE BrumN.
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