On the measure of equidistribution of point sets.

By ALFRED RENYI in Budapest.

Introduction.

Throughout the paper we are concerned with measurable point
sets E lying in the interval (0, 1). The measure of E shall be denoted
by |E| and the characteristic function of E by F(x). We define F(x)
outside the interval (0,1) so as to be periodic with period 1. We
denote by E, (for any real t) the set which has the characteristic
function F(x--t). If we imagine the interval (0, 1) wound on a circle
of circumference unity, we may say that E, is obtained by rotating
the set £ by the angle —#. Let G(f) denote the measure of the set
of points of the interval (0,1) which are common to E and E,. We
have evidently _
~
) G(t)— f F(x) F(x+1)dx.
G(t) is a non-negative function, periodic with perlod 1. We have, in
view of the periodicity of F (x), .

R

thus G(f) is an even function. Further we have
3 - |GE+h—C@i< 0J [P ek — F(o)dx.

Now, it is well known?) that the integral on the right side tends to O
with h, thus G(¢) is continuous. As we have G(0)=|E]|, it follows
from the continuity of G(f) that if |E|> 0, there exists a constant ¢> 0,
for which G(f) >0 for 0<¢<c. This is equivalent to a theorem of

1) Cf, for ex. A. Zyvamuxp, Trigonometrical series (Warszawa, 1935), p. 17.
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H. STEINHAUS?®), who stated it in the form, that the set of the mutual distances
of the points of a set of positive measure contains a whole interval
(0, ¢). In view of this interpretation, we shall call G(¢) the distance
Junction of the set E.

Now let us denote the minimal value of the continuous functlon
G(t) by m(E). As G(t) is non-negative, further as we have

@) f G(1) dt-—:” F(x) F(x+1) dxdt=|EP,
0 00
it follows .
) 0=m(E)=|Ep.

It is easy to see that m(E)=|EJ* if and only if |E|=0 or |E|==1.
Thus if we put ‘

E
©® wE) =", |
we have O<u(E)<1 for O<|E|< 1. In what follows u(E) shall be
called the measure of equidistribution of the set E. Of course the notion
of equidistribution, implied by this definition, is different from (but as
we shall see is closely connected with) the usual definition for sequen-
ces, introduced by H. WEYL?). The difference is made clear by remark-
ing that we are concerned not with the equidistribution of the points
~ of E but with the equidistribution of the set of distances of pairs of

points of E.

The purpose of the present paper is to prove that there exist sets
having any prescribed positive measure, and as “highly equidistributed”
as we please, i. e., having a measure of equidistribution. arbitrarily near
to 1. This shall be proved in §.2 (Theorem 1). § 1 contains prelim-
inary discussions of rather general character, concerning the FOURIER
expansion of the distance function and some lemmas. The proof of

" Theorem 1 is based on a property of quadratic residues, discovered
by LAGRANGE?). In §.3 the problem is generalized. We introduce the
notion of the measure of k-fold equidistribution, and prove a theorem,
analogous to, but somewhat weaker than Theorem 1 (Theorem 2), based

2) H. SteiNHAUS, Sur les distances des points des ensembles de mesure po-
sitive, Fundamenta Math., 1 (1920), pp. 93—104. Cf. also S. Piccarp, Sur les en-
sembles de distances des ensembles de points d’un espace euclidien, Mémoires
Université Neuchatel, 13 (1939), pp. 212,

3) H. WevL, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Annalen,
77 (1916), pp. 313—325.

4) P. BacEMANN, Niedere Zahlentheorie, Vol. I, (Leipzig, 1910), pp.241—245.
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on a generalization of a theorem of THUE®). In §. 4, we point out the
connection with some problems of number theory, and prove a theorem
concerning the sequences of integers, called difference bases, construct-
ed by SINGER®) (Theorem 3). ’ ;

~ § 1. Fourier expansion of the distance function.

Let F(x) denote the characteristic function of a measurable set E
in the interval (0,1). Let us consider the FOURIER expansion of F(x):

- F()eva,+2 3 (a,cos2nnx -+ b, sin2mnx).
n=1

Lemma 1. If G(¢) denotes the distance function of the set E as
defined in the introduction, we have

G{t)=a3+2 2> (a® +8)cos2ant.

n=1
The series on the right converges uniformly.

Evidently Lemma 1 follows from Parseval’s theorem.

In what follows we shall consider some special sets consisting of
a finite number of intervals of equal length. Let b,, b,,..., by_, denote
a sequence of integers, which are ‘all different modulo q. The set

E=E,(by, by, ..., by_,) shall be defined as the set consi'sting of the

b—5 bt~
intervals THE (j=0,1,..., N—1). Evidently, the set E
is not changed if one of the b, is replaced by a number congruent

to it modulo ¢, thus we may suppose 0< b;<q.

Lemma 2. Let G(f) denote the distance Junction of a set E=
=l bgs O« n oy B ), Let us denote

S 2mind
@) = E exp (~—q—’~)
=0

Then we have

N2 2 =] sin fqﬁ ?
®) 7 G(t)=?+?;2]c,,]2 an— | cos2znt.
; n=|

q

%) A. Scuovrz, Einfiihrung in die Zahlentheorie (Sammlung Goschen, Bd. 1131,
Berlin, 1939), p. 45. { :

6) L. SiNeER, A theorem in finite projective geometry and some applications
to number theory, Transactions American Math. Society, 43 (1938), pp. 377- 385,
Cf. also: T. VavaraeHAVAN and S. Cmowra, Short proof of theorems of Bose
and Singer, Proceedings National Academy Sciences India, Section A, 15 (1945), p. 194,
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 Lemma 2is verified easily by calculating expllcxtly the FOURIER coeffi-
c1ents of the characteristic function of the set E and applying Lemma 1.

Lemma 3. Let us have 0<h<1. We define

© Rh(x) = 2 +2h22 (_51_:11_?1_71_/1_) cos2mnx.
Then we have ,

R,,(x)—h—-}xl for |x|<h,

Ry(x)=0 for |x|>h.
= Lemma 3 is easily verified by calculating the FOURIER coeff1c1ents

of R,(x). The function R,(x) may be called the “RIEMANN kernel”. As

- a matter of fact, f(x) denoting a function, L-integrable in (0, 1), the
summation method of RIEMANN consists in forming the second general-
ized derivative of the function w(x), obtained by integrating f(x) twice,
and it is easy to see that we have

‘(105 w(x+2h>+wf’czz 2h) —2y(x) Jf(t)R;, o

~i.e. R,(x) is the kernel function of the RIEMANN summation”).
It can be seen from (7) that ¢,=c, if n=m mod ¢. Further, as

sin—nqi=0 for n=0 mod g, the values of ¢, for n=0 mod ¢ figure

in the expansion (8) only formally, and the FOURIER expansion of G(f)
is completely determined if we know the values of 56, w6l
. Lemma 3 shows that G(f) can easily be calculated if the values of
lc,)? (n==0) are all equal. The same is true if they show only relatively
small deviations from a common value. This is expressed by the following

Lemma 4. Let E=E, (b, by, ..., by_,) be defined as above. If
the numbers c, defined by (7) sutisfy the relations

e, __Q!<__-(-°2 for- n=172, ...,
where Q(l +9) < N2, we have
14-3)
u(E);1~g(7*v—l‘;—)—

Proof. We have evidently from (8)
(1) G(t);%w[zew(t)- el 6 1

7) This has been already remarked by M. SCHECHTER, Uber die Summation 1
divergenter Fourier-Reihen, Monatshefte fiir Math. und Physik, 25 (1911), pp. 224 —234
It was Prof L. Fesgr who has kindly called my attention to thls paper. _
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aﬁd thusf - s
42 )= LS+ d)

and Lemma 4 follows ‘easily.‘ ;
Of course the situation is the simplest if, in Lemma 4, $=0.

Sequences of integers &, for which this holds, are characterized by the
following

Eemma 5. If 6,0, b,.. by, denote a sequence of in‘egers
with the property that the differences b,—b, (r,;s=0,1,..., N—1;r=5s)
represent every class of residues modulo q (the class O of course excepted)
exac ly k-times, we shall call the sequence b, a difference basis
of order k modulo q. The necessary and sufficient condition for
the sequence b; being a difference basis of order k modulo q, is that for
any n==0 mod g :

N-1 b n 2
(13) Zexp(zm' ;] ) =N—k
=0 7 - =
“be valid. - = T
It is clear that the condition (13) is necessary. Let us prove that
it is also sufficient. Let A, (i=1,2,...,9g—1) denote the ‘number of

representations of / mod ¢ in the form b, — b,. We have

N-1 ; 2 g-1
Zexp('zm' b,n) N > A,exp(Eniiqn—).

r=40 q =1
Let us denote 4,=k, So=gk and put
‘ =
S,,———ZA,exp (Zni%z), n=%42...,9g—-1
=0
Evidently §,=0 for n=1,2,..., g—1. It follows that for v==0 modgqg

= = .ol
T=ZO S, exp (.—-Qm—é—]—_—sozqk.

On the other hand, inverting the order of éummations,‘we obtain

L& . (l—v)n
=§§Ale>§p(2m————~( - ) )qu,,.
Thus it follows A,=#k for v=1,2,..., g—1, which was to be proved.

Lemma 6. If by,by,...,0,_, is a difference basis of order k
modulo q, and u(E) denotes the measure of equidistribution of the set
E=E,(by,0b,..., by_,), we have

N—k

(14) F(E)=1—“Nz—-

Lemma 6 follows from the proof (not the statement) of Lemma 4
combined with Lemma 5.

N—k=




Lemma 7. Let E denote a measurable set, E the set complementary
to E. We have

(15) al A

(|E| )

Proof. Evidently

(16)A S m(5)=min J (1—F(x)) (1 —;F(x—}—t))dx= 1—2|E|+m(E)

and thus Lemma 7 foilows.

Lemma 8. If a(x) is mtegrable in (O 1), B(x) bozmded and in-
tegrable in the same interval and pertodzc with pertod 1, we have

| (i7)» . 11m ﬁfa(x)ﬂ(nx)auc—G[a(x)arxG[pz(x)arx

This lemma is well known?).

Lemma 9. Let E, and E, denote two sets having positive measarés
|E\| and |E,|, characterisiic functions Fy(x) and F,(x), distance functions
G,(x) and G,(x), respectively, and let the minima of the distunce functions
be denoted by m(E,) and m(E,) respectively. Let us define the
set E® by its characteristic function being F®(x)= F,(x) Fy(nx)
(n=1,2,...). It follows

(:8) < lim |E®|=|E)||E,|
and s : '
(19) = lim m(E™) = m(E,) m(E,),

wher(i )m (E™) denotes the minimal value of the distance functtorz G™ (1)
of EY
, Proof. (18) follows clearly from Lemma 8. As regards to (19),
let us suppose the contrary. Thus we suppose that there exists an
infinite sequence of integers n, (k=1,2,...), and a corresponding
sequence of real numbers #,, (0=+¢,, <1), for which

G"? (t,) < m(E,) m(E;) —e

- holds, for some fixed e>0. Let us denote by 7, the fractional part
of nit,,. Clearly we may choose an infinite subsequence », (k=1,2,...)
of the sequence n,, such that if k»oo, #,, and 7,, tend to limits #* and %,

8) This lemma has been proved for some special cases by L. FEJER, Le-
besguesche Konstanten und divergente Fourierreihen, Journal fiir reine und ange-
wandte Math.,, 138 (1910), pp. 27 28. In the general form the lemma has beem
proved by A. ZvemunD, L c. (1), p. 173, § 8. 34.
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respectively. Now, putting

1
Gi(t", ©) = [ Fi(%) i (x+1°) Fy (%) Fy(rx + ') dx,
0 > E

we have

1
1G9 (t) — Gult', ¥)| < [ |F(x 1) — Fu(x + £ dx +
; 0

+6ﬂ1~;<y+u,,) Fy(y+7)|dy

and thus, applymg again the theorem by which we have proved the
continuity of G(f) (see 1)), we obtain

1) lim [G*(1,)— Gu(t", )] =0.
Applying Lemma 8 a;ain, we obtain

(22) lim Gy(t*, %) = Gi(t") Ga(s") = m(E,) m(Ey)
and thus owing to (21) it follows

{23 - lim G (t,,) = m(E;) m(E,).

But thls clearly contradmts (20) and thus (19) is proved.
Lemma 10. If the characteristic functions F,(x) and F,(x) of the

measurable sets E, and E, are equal except on a set of measure —26- ‘
(0<d< 1), we have |[m(E,))—m(E;)| < d.

Lemma 10 follows simply by remarking that F(x)F,(x-¢) and
Fy(x) F(x+1) are equal if neithef.x nor x-+# does belong to the ex-
ceptional set, i.e. except for a set the measure of which does not
exceed ¢, and thus |G, (f)— Gy(f)| < J for any f. Let M(e) denote the
least upper bound of u(E) for all sets E for which [E|=a (0O<a<]1).
We prove

Lemma 11
If M(e)=1 and M(8)=1, we have M(af)=1.
Proof. According to the suppositions of our Lemma, for any &> 0 -

there ex1st sets E and E, with |El=g¢, |E|=05, y(E)>1 4,

y(Eg) >1— T' Let us define the sequence of sets E®as in Lemma 9,

by virtue of which we have lim |[E®™|=af and

n—> o

ﬂ—>00

2
lim m(E™)> ap’(l——zi-) -




Thus if we choose n sufficiently large, both inequaliies

= IVE""_];—a;B} <- E‘ﬁ and m(EM)=ap ( = %) ';

 will be satxsfxed According to |[E®|—ap <0 or |E®|—-ap>0 we may "
M'add or take away from E® a set of measure ot exceeding ﬂ S0 as
" to obtain a set & having its measure equal to ef. The characterlsﬁc :
: functlon of .the set & does not differ- from that of E™ buton a set the 4

measure of whxch does not exceed —- ‘8 Thus according to Lemma 10, -

- we have

m(a""’)> m(E"") 238 k—a).
~ As >0 may be chosen arbitrarlly, thlS proves Lemma 11.

Lemma 12. If lim e,=¢ (0<e,<I, 0<a<1) and M(e, )—-l

n->

~ for n=1, 2 , then we have M(a)=1. v E

Proof. For any ¢>0, we choose n sufficiently large $0 as to
obtain '

o,
el <q

= According to our suppositions, there exists a set E, for which Eon |=¢,"

and u(E,) =1 = . We add to or take away from E a set of measure 1

-~ not exceedmg 4 so as to obtam a set &, of measure a. We have,
using Lemma 10, - - :

&

ae aVE
m(8,) =m(E, )—~—2—g a,(l—z—)——é—;a(l —¢)
_ 'whxch proves Lemma 12. :

7 ‘Lemma 13. Every real number e (0<a<1) can be represe
as a finife or infinite product of the form

, = 1
4 _' afcg(x-—ﬁ) (A =m=m).

: Proof Let us suppose that e is not a rational number which
~ is equal to the product of a finite number of factors of the form

. (l—-zL) Let us choose n,>1 sa that we have

: e B
= ger<asi=g
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further, if My, Ny ..., 1y are already found, we choose Mysy SO as to

~ obtain : = '
1 1

(26) L e - =<l ——

7 S (1 “EL) o

=1

Dividing (26) by 1'—-—2—1-”-1‘Aand applying again (26) with k41 instead

- of &, we obtain ' = —

@ w e
= = = , 1__]_ : 2?1;4»1
= - JI;II( , 2?':') -

It follows from (27) that ny,,>m,. Thus the sequence n,, which is

uniquely determined according to the above construction is non-de-
creasing. It is easy to see, that Mmoo, As a matter of fact, in the
opposite case m, would be constant from some index k, onwards. But
it would follow from the construction that in this case we should have

@ =il i o)
s '“:jg( 2"f)('2"?=o

; for'any N, i. e. we should have «=0, contrary tb our hypothesis. Thu\s,f
m,~e0, and it follows from (26) that = =
= ' o

—— |

. B
_which proves our lemma. '
§. 2. Application of the theorem of Lagrange.

The theorem of LAGRANGE is question is the follox’ying: Let ‘p

denote a prime number of the form 4n+3. Let r,, 1,,.... 7, (”=p_2—l)‘

denote a complete system of quadratic residues mod p. Let ¢ denote

_any integer, d==0 mod p. Then there are ” —;3

the sequence r,+d (j=1,2,...,%). According to the terminology
_introduced in Lemma 5, this theorem can be stated also by saying that
the ‘syster\n,of quadratic residues to a prime modulus P=3 mod4 is

quadratic residues in

-a difference basis of order‘p 13 ‘modulo p.r This theorem follows éasiiy -

from Lemma 5 and from the:well known formula for Gaussian sums:

: - Pl s :
c < 2miy? :
@ R

- A6
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for p=3 mod 4. As every class of quadratic residues is represented
twice among the squares ) (1 <y=<p—1), it follows from (29) that

- S Oy i)
(30 gfexp( - )_ >

2nik

p-1
It follows from (30), using ’%’exp =0, that if s,,s,,..., s, de-

note a complete set of quadratic non-residues mod p, we have
” 2nis ¥ —iip—1

31 e = . :

(' ) J;: xp( D ) 2

Now the sequence nr; (j=1,2,. ., #) is congruent to the sequence
of residues or to the sequence of non- resxdues according to the quadratic
~ character of n. Thus it follows from (30) and (31) that for any n==0
~mod p we have_
Pl

: 2mnr‘
32 z
B el

Thus we can apply Lemma‘ 5, and obtain that the differences r,—r;,
i=j represent every class of residues med p exactlyp -"2—1 = 1— b Z -
times, which is equivalent to the theorem of LAGRANGE stated above.
Now everything is ready to prove
v Theorem 1. The least upper bound M(a) of the measure of
equidistribution w(E) of measurable sets E having the measure |E |=a
is identically equal to 1 for 0 <a<1.
Proof of Theorem 1. Let p denote a prime, p=3 mod 4,

and let ry,1,..., 7, (v= p_——_) denote a complete system of quadratic

residues mod p. Let us define the set E,= E{r, CTRRRS ry) as in § 1.
it follows from Lemma 6 that

o ol
(33) BE)=1— T
Let &, denote a set obtamed by adding to E, any interval of length
p As {E, |——~p~l, we have ((?p|=%' and it follows from (33) that |
3 -
31 MEYz1—~..

Since there are an infinity of primes of the form 4n+3, it follows that

M (%)= 1. Applying Lemma 1 1, we obtain M (%) =1fork=1,2,..,




’

further, by Lemma 7, M(l——éli)= 1, (k=1,2,...). Applying Lemma

11 again, we obtain that M(a)=1 if @ is a finite product of the form
(24). Thus it follows, using Lemma 12 and regarding also Lemma 13,
that M(a@)=1 for all ¢, 0 <e<1. Thus Theorem 1 is proved?).

§. 3. The measure of k-fold equidistribution.

Let E, E,, |E| and F(x) have the meaning as in the introduction.
Let G(4, 4,.. ., t,) denote the measure of the set of points common -

to E, Ei, Ey, ..., E,. We have ev1dent1y

@ Ge bt b 0[ F) F6) FG4-4). .. F(x+1)dx.

It is easy to see that G(4, #,..., ) is a continuous function of its
variables. The minimal value of G(¢, £, .. ., t,) shall be denoted by m,(E).
Owing to ' .

11 1
@G0 f[...]Gt b, 0 dbat,.. . dt—|Ep,
: 00 3

= Y=g
we have
B = O=m(E)<|E]"

' The measure of k-fold eqmdxﬂtrxbutlon of the set E shall be defined by
e w(E)=
- Thus we have, owing to (37), 0< u,(E) < 1. The least upper bound of

m(E)
|E 2

m,(E) for all measurable sets E with |E|=« will be denoted by M,().

It seems probable that M,(¢) =1 identically in « for any k. In what

follows we shall prove however only the following
Theorem 2.
1
l‘m Mk(a)_ e

The most surprismg consequence of Theorem 1 is perhaps that
there exist measurable sets with arbitrary small positive measure with

“the property, that if the set is “rotated” in the sense mentioned in the
introduction, the set of points, which are common to the rotating set
and to the original set, is never void, indeed, its measure exceeds always

~ a fixed number during the rotation. Though Theorem 2 is relatively

9 Mr. P. UNgAR, to whom I communicated at an earlier stage of my investi-

gations some of my results, found independently a proof of Theorem 1, running

essentially on the same lines.




‘much weaker than Theorem 1, and is not a “best possible” result, never.
 theless it contains the generalization of that interpretation of Theorem 1 -
- which has been emphasised just now. — =

. The proof of Theorem 3 will be based on the following gener-
alization of a theorem of THUE: : , =
7 Lemma 14. If p is a prime, k a positive integer, further the po-

sitive integers e,, e,, ..., e, f satisfy = =

- (39) - = el.ez...e,,.f>p’f, - ‘
-~ then for any k-tuple of integers (r,, Iy, ..., 1) there can be found in-
legers x,,%,,...,x, and y for which l=p<f lxl<e (i=12,..,k

mod p (i—1,2,..., k) are valid,

: Proof. Letus consider all k-tuples of integers of the form (yr, +x,),
- i=1,2 ...,k where I'sx<e (i=1,2,...,k) and 1<y<f The
- number of such k-tuples of integers being ee,...e,f, as there are only
P* k-tuples which are different mod p, owing to (39), there must be at
least two k-tuples of the form considered which are congruent mod p.
~If we denote the two congruent k-tuples by (yr,+x,) and (nr.+8&),
- i=1,2,...,k we have =1 ==

Yyt x=qr+Emodp, i=1,2 . ok

‘ Fromyz'n mod p it would follow x,; =& mod p for all i=1, 2,.... k,

~ thus we have y==¢ mod p, and it follows

_ Fl&E—xl

J,-:'—'-—ﬁ—

: = . ,

As O=slE—x|<e (i=1,2,...,k and 1=|y—n|</f our Lemma is-
proved. : == = . : .
: Now we prove the fellowing

mod p (i=12,...,k.

= i
Lemma 15. If p is a prime, k a positive integer, and’Q:[p"Tl]
- ([x] denotes the infegral part of x), a set of 2Q infegers ¢, q,,.. S Go
can be given, having the property that for any k-tuple of integers
.0 elements ¢;,, ¢, ..., Cy, C; Of the given set can be chosen
So0-as fo obtain '

b=c.—¢; mod (p—1) for r—1,2,... k

= : k *
— Proof Putting ei=f=[p"”]+ 1=0Q41 (i=1,2;...,k), con-
~ dition (39) of lemma 14 is evidently satisfied. Let g denote a primitive
oot modp and let indx denote the index of the residue class x with
respect to g. It is easy to see that if ¢=indi o =ind = g
(i=12,...,0Q), the sequence ¢; (1 <i=2Q) has the required pro-
perties, , : s =




~ Let us now define the set . sting of the intervals:
(40) : ~ F:—;Téx,—s*pel =
where the ¢, (r==1,2,...,2Q) are the elements of the set of mtegers of, :
Lemma 15. Let F(x) denote the characteristic function of the set E, and
let. G(#, b, . .., ;) be defined by (35). If (4, 4%,..., %) is an arbitrary
k-tuple of real numbers, 017, <1, we put :

b+,

L=
where b, denotes the mteger which is nearest to (p———l) and thus
we have : : e =

19, 1=<__3~ 12 D

=0,2...4,

Accordmg to Lemma 15, we can choose i Ciy oo 0y €50 - that
b, =ci,—c; mod(p——l) forr—1 2
It follows accordmg to (40) that if

= S
C,——z- = C‘,-+—2—
e s
: i=i. =7 At o
we have : S
ci,—1 i, -1
ey <x+t =< == forir=—1 2 k
Thus ;
: . : 1 i
F 1t e s
(x+t,),'= or r=1, ,.-e, 1 '"Fl—zxz—pj—.
It follows from (35) that - = :
(41) , mk’(E)é;:‘f-

Owing to lE[;;‘Li (‘Q=[pﬁ—1}), we obtaln

1
k
. e
(42) _ ' A m(E) = “"”Zl.m_"‘ :
If any fixed e> 0 is given, ‘we can choose p sufficiently large so as to
obtain 2 »

(43) ; [E|<e and yk(E)> =t

4k+1 x:
Thus Theorem 2 is proved




'§. 4. Some remarks on the sequences of Singer,

We have seen in §. 1 that the construction of highly equidistri-
buted sets is closely connected with the number-theoretical problem of
constructing difference bases, i. e. finite sequences of integers, the diffe-
rences of which represent every class of residues to a given modulus q
exactly k times, k being the order of the difference basis. In this di-
rection interesting results have been obtained by L SINGER (I. c. ©))
who constructed difference bases of order 1 for any modulus ¢ of the

form ¢=p"+p"+1, p prime. Leta; (j=0,1,...,p) denote such
a sequence of SINGER; we may suppose evidently

€ s =g o< .0, <0

It follows that for any £ (1 =<k <gq) either k or k—g can be repre-
sented in the form @, — a;, and we may ask which subsetof 1,2,...,g—~1
- is represented “actually”, i.e. for which k we have k=a,—a;. This
~problem, in a somewhat different from, has been raised by L. REDEI
and is discussed in a joint paper of L. REDEI and the author!?) where
~ the following theorem is proved: If 7* denotes the minimal number of
_terms of a finite sequence of integers with the property that their diffe-
- rences represent every number 1,2 5, then — % ' '
e : —— = :
- . e

exists, further we havell) —

(45) = 2+3ing;—%§1/%. ;

Now these problems are also connected with the theory of.equidistri-
bution of point sets. To establish this connection, we have to define
the “asymmetric distance function” g(t) of a set E as follows:

Let f(x) denote the characteristic function of the set E if x is
contained in the interval (0, 1), and let us define f(x)=0 for x outside
of (0, 1). We put :

(46) g)=J ffa+hdx (—1=t=+D.

10) To be published in the Mat. Sbornik. :

11) As BfiLa Sz.-Naecy kindly remarked, the lower estimation in (45) can be
improved, by some numerical refinement, by approximately 0,01. A similar remark
applies to (49). P. Ernés and L S. GAL proved by some modification of the original
proof that (44) and (45) are valid also if the sequence of integers in question is
restricted by the condition that it is contained in the sequence 1, 2,...,1; cf.
Proceedings Koninklijke Nederlandsche Akademie van Wetenschappen, 51 (1948),
pp. 1155—1159. .




It is easy to see that g(t) is an even contmuous funchon further that
g(0)=E, g(1)=0, and we have

= ’ ngdt %}.

- We obtain further by some simple calculations that

(48 Jg(t) cos Mdt=——Uf(x) exp (i4x) dx

i e that the FOURIER cosine transform of g(¢) is non-negative. This is
the idea underlying the proof of the following property of the sequences

~of SINGER:
~ Theorem 3. Let us denote P=p”" (p prime), q=P2+P+1‘
qnd' k'=q—-:1.' If 0<a,<a,<...<a,<q denotes a SINGER sequerce,

2
and if 1= A, <A, <...<A, denote the numbers which are representable
in the form a;—a; with i>j, further if A,=k+D (i. e. D denotes how
many numbers are missing from the sequence 1,2, ..., A,) then we have

(49) D>M =
Proof. We have

(50) Zexp(Zmat) P+1+2ZcosZnA e -

sin (24, +1) L D T
=P} — : ; 2 =23 cos2aBt
sin = —

where B (v=1,2,...,D) denote the numbers < A, which are not
contamed in the sequence A;. 1t follows from (50) that

sin (2Ak+1) 5

(51) > 0<P+ - +2D
— sin—
< 2 >
for all values of #. Let us choose e , using sinx<x forx>0.
We obtain
( : 2(2A.+1)
(52) 2pz ==t _p,

_from which Theorem 3 follows by simple calculation.
It may be remarked that though (49) is not a best possible estim-
ate, it glves a rather good estimation for small values of 15 Thus the



set A; coincides with the set 1,2,..., & only for P—2 and P—3 (the
~ corresponding SINGER sequences are: 0,1,3 for P=2 and 0,1,4,6
 for P=4), further (49) asserts that for P=—4 there must be at least

~ one “gap” in the sequence A;, and really there is exactly one “gap”

if we consider the SINGER sequence 0,2,7,8, 11. For P=25, owing to
~ (49), there must be at least two numbers missing from the sequence A;,
~and there are really two gaps if we take the SINGER sequence 0, 1,4,
10, 12, 17, etc.

Some further progress could be obtamed regardmg the probIems
~ considered in the present paper if some more difference bases could
‘be constructed. A necessary and sufficient condition however for the

~ existence of a difference basw of order k modulo g, for given k and q," 5

~ is not known.

We considered only sets E lying in the interval (0, 1), but it is
clear that the situation is the same for any bounded linear set. The
_problem of unbounded linear sets however is somewhat different, as it
is shown by the remark, that in this case the symmetric and asymmetrxc
dlstance functions G(t) and g(f) coincide. :

My most sincere thanks are due to P ERDﬁs and L REDBI for
n' valuable remarks. : = - - =

' (kecei?’ed August 5, ?948.-):,




