Probability m.ethod.s in number theory.*)
By ALFRED RENYI.

§ 1. During the last years the calculus of probability has developed
into an exact mathematical theory, founded on the theory of additive
set functions in abstract spaces and satisfying the same standards of -
rigour as any other chapter of Analysis. The most simple and at the
same time the most powerfull axiomatic theory of probability has been -
given in 1933 by A. KOLMOGOROFF?) in his fundamental work “Grund-
begriffe der Wahrscheinlichkeitsrechnung”. Since that time the theory
has been developed further by many authors, among whom we mention
(without aiming at completeness) H. CRAMER, W. FELLER, A. KHINTCHIN,
B. GNEDENKO, P. LEvy, M. FRECHET, E. SLuTsKy, M. Kac, H. STEINHAUS
and J. L. DooB, for references we refer to a lecture of H. CRAMER?) held
at the Princeton Bicentennial Conference on “The Problems of Mathe-
matics”, in 1946. As every abstract axiomatic theory, the theory of
probability as given by KOLMOGOROFF admits of infinitely many inter-
pretations, i. e. realizations by different models. This is the reason why
the theory can be applied not only in the usual fields of application
of probability theory (including the most recent physical applications)
but also in some chapters of mathematics, which have, at the first
sight, nothing to do with the everyday concept of probability. We
mention — for instance — the application of probability methods in

the theory of orthogonal functions®), in the ergodic theory*), or the
. proof of the well known theorem of Weierstrass concerning the uniform
approximation of continuous functions as given by S. BERNSTEIN®),
. deducing this theorem by using the elementary inequality of CHEBYSEV.
~ Thus it js by no means surprising that the methods and results of
probability theory can be also applied in number theory. Such appli-
. cations have been given by E. TORNIER®), by P. ERDOs and M. KAC?) and
others. Other authors have used probability arguments in number theory

1«) Inaugural lecture, for attaining venia legend1 at the Umversnty of Budapest, 223

' held January 20, 1949.
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()nly as heuristic méthods, and obtained ffequently results which were -
- definitely false. As an example how probability arguments when they -
are applied freely may lead to incorrect results, we mention the folio-
wing example: According to the prime number theorem we may say
that the probability that an integer chosen at random between N and

. 1 '
2 p . . .

N? should be pr}me, is asymtotically equal to ZiogN’ On the other
hand an integer between N and N2 is prime if it is not divisible by
any prime < N. The probability that a number shall not be divisible

by the prime p is evidently l—’% and as'the events that an integer n

should be divisible by two different‘primes can be considered as inde-

1’<N

pendent, we obtain that the requlred probablhty is’equal to ]](I - —1]7) .
Thus we obtained :

an (=)~

; which is evidently false as by a weH known theorem of MERTENSB)
we have -
5 n ( jend ) e
(1.2) . x b 7 A Lt b vy
where ¢ denotes EULER’s constant. :

§ 2. The mistake in the above sketched argument is contamed in
the assumption that the distributions of integers in residue classes with
respect to two different primes are independent. This assumption is
contained in most examples where a false result in number theory is
~ deduced by probabilistic arguments. Nevertheless this assumption is in
some sense true, but can not be applied as in has been made above.
The situation can be made clear as follows: Let us choose for the set
E of elementary events the set of all positive integers. The field F of
random events shall be chosen -as the set of finite or infinite sequences

~of integers A={n,, n,, ..., .5 for whlch putting
4(@21) A(x)__ b
= n=x
‘the limit
2. 2) i A8 _ pay

“exists. The field F together with the additive function P(A). defined by 1
(2. 2) satisfies the first five axioms of KOLMOGOROFF (l.c.!)) but the ‘
difficulty lies in the fact, that the sixth axiom, the so-called axiom of |
continuity, i$ not satisfied. As a matter of fact, this axiom states that
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if 4,, n=1,2,3,... is a sequence of sets belonging to the field F,
each A, being contained in the preceding set A,_;, and if the product
of all sets A4, is empty, then ,
lim P(A,)=0.
X n->»aw

If we choose for A, the set of all integers >n (which clearly belongs
to F) we see that this axiom is not satisfied in our case. This diffi-
culty can be settled if we choose for the set E the finite set of integers
1,2,..., N. In this case F can be chosen as the family of all subsets
A={n,ny,...,m} of 1,2,..., N and put _ .

k

(2. 4) | P(A) ="

But in this case the distributions of the sequence 1,2,..., N in residue
classes with respect to two different primes (or with respect to two
relatively prime moduli) are not longer independent except in the special
case if both -moduli are divisors of N. The mistake in the example
mentioned above consits in confusing these two points of view. The
correct method _consists in taking the second point of view described
above (i.e. to confine - ourselves to a finite set of integers) and take
into account the fact that in this case the distributions of integers in
residue classes with respect to two relatively prime integers are only
“almost”” independent in some sense to be precised.

§ 3. In what follows we shall prove a new theorem of probability
theory, which has important applications in number theory. One’of its
applications is a generalization of the “large sieve” of Ju. V. LinnNIk®),
which served as a starting point in my proof of the theorem that every
integer N=3 can be represented in the form N— p-+ P where p is a
prime and the number of prime divisors (counted with their multipli-
city) of P does not exceed a .universal constant K.1%) In what follows
we shall confine ourselves to_proving only the mentioned theorem of
probability theory!!), the applications shall be published elsewhere'?),

§ 4. Let E denote an arbitrary set which shall be called in what
follows the space E, the elements of E shall be called points and de-
noted by the letter & Let F denote an additive class of subsets A of E.
We mean by this that: q) the empty set belongs to F, b) when a set
belongs to ‘F so does its. complement, ¢) the sum of a finite or enu-
merable sequence of sets belonging to F is also contained in F. 1t
follows from a, b, ¢ clearly that the space E itself belongs to F further
that if A and B belong to F so does their product, and their difference.
Let us suppose further that P(4) is an absolutely additive set function
defined for every set A belongig to F, P(A)=0 and P(E)=1. The
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class F of sets and the additive set function P (4) form together a pro-
bability field in the sense of KOLMOGOROFF (I. c.). Let u==u(£) denote

a random .variable defined on E, i. e. a real-valued point-function in E -

for which the set A, of those points & for which #(§) <x belongs for
every real x-to F. Let V(x) denote the distribution (d. f.) of u, defined
by V(x)=P(A,). Let G denote any set belonging to F; P(G)s{:O
We define the d. f. V9(x) of u with respect to G by putting

@. 1) Vo) = i }(fzfa')a’.

~~ “Let U(x) and V(x) denote two distribution functions and let us suppose

- that U(x) is constant in every intetval in which V(x) is constant. We
define the distance of U(x) from V(x) — denoted by (U, V) and suppo--
sed to be non-negative — by putting

’

» N
; : a2(U—Vv
4.2) NCA S —(Tvv_)
- where the integral figuring in ‘(4. 2) is'to be taken in the sense of
HELLINGER'®). The distance (U, V) can be expressed also by a Burkill
integral. Let / denote an interval (a, b) let us put U[/]= U(b)——U(a),

V[I]——V(b)——V(a) and F[fj= (U[’]V[I}’[’D , it follows that

+o0
4:3) W, V= | FlI
“where the integral of the interval fumction F[I] is to be’ taken in the
sense of BURKILL'). As further F[/] is a subadditive function of inter-
val, i.e. F[L4+5L])<F[L]+ F[l] (which follows, by the elementary
s .‘
inequality —@—i—?—;——ki for a, b, ¢, d real, ¢ >0, d>0 from the
" fact that U[/] and V[I] are additive functions of interval) we can define _
(U, V)? also as the least upper bound of sums

4.4 - 1A :
for every decomposition R= L+ 15+...41, of the real axis R. As we :
supposed U[/]=0 if V[/]=0, i. e. the interval function U[/] is ab- |

solutely continuous with respect to V[/], according to the theorem of
» RADON—N!KODYM“') there exists a function f(x) for whxch :

.5y Ul =1f F dV(E).
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By. using this function we obtain a-third formula for (U, V).
« : i

(4.6) W, V=] (0= 1rave

where the mtegral is a LEBESGUE-—-STIELTJES integral.*)

~ Now ‘let V(x) denote the d.f. of the random variable u and let
us choose for U(x) the d. f. V¥(x) of u with respect to the set G (or
we may say with respect to the random “event” G). We denote
@.7) D= v 2D
and shall call D;(u) the discrepance of u on the set G, (or with respect
to the event G). To make clear the meaning of D,(uz) we mention some
special cases: let us suppose that the random variable u takes only
a finite number of different values: let us put E=H,+ H,--.. .+ H,
with H;.H;=0 for i</, and let us suppose that u(&)=u, for §€H,,

k=1,2,..., n. In this case it is easy to see that
' 3 (P(G.H,)—P(G) P(H,))
@8 - DG(”)—(g P{H,) PG)(1—P(G)) )

i.e. our Dy(u) is a generalization of the deviation-measure %2 of K.
PEARSON'®). If in the above example n=2, i.e. H,=E —H,=H, we
have
|P(GH)— P(G) P(H)|
Dy(u) =
: VP(G) 1—P(G)) P(H) 1 —P(H))
i. e. Dg(u) is the square of the correlation coefficient of the two events::
E€H and £€G.
" After these preliminary remarks we are in the position to formu-
late our main
Theorem. Let us consider a sequence u,, u,, ..., u,,... of pair-
wise independent random variables defined on E. Let G denote a subset
of E belonging to the class- F and let us suppose 0<P(G)< 1. If
D (u,) denotes the discrepance of u, on the set G, we have

5. 1) ZD(,(u,,)_l——})(—G;

It may be mentioned, that this theorem is in some sense a best pos-
sible result. As a matter of fact, let us choose for u, the characteristic
function of the set G. In this case as a consequence of the indepen-
dence of u, and @, we have D,(u,) =0 forn=2, 3, .. . further evidently
by (4.9) Dy(u,)=1. As P(G) can be made as small as we please, it

*) As regards the expression of a HELLINGER integral by means of a LEBesGUE- ] -
integral vide H. HanN, Monatshefte f, Math. u. Phys. 23 (1912) pp. 161—224. .
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- can be seen that (5 1) can not be true for any 2<1 with

R
1—P(G)

instead of P( T=PG) ‘on the right of (5 1).

- The proof of (5.1) shall be based on the followmg :
, Lemma: Let ¢(&), ¢28),.,-, 9.(), ... denote a sequence of
7 quas:-orthonormal functions, belongmg to the class o0 .E. K €. we -
suppose ) St By ;

(.2) > Crkx,| < c3
1=1 k= k=

with an absolute constant C for any sequence x, of real ‘numbers for 4
- which the right-hand side of (5.2) is fmlte, where ¢;; in (5 2) is de- .
fined by

(6.9 6= [ 9® 7O PEE) "
If g8 is any function belonging to L2 on E, let us put
G4 @)= nOPEE).
It follows : P
G.5) > cm)2<cfg2(§)p(d15>

The content of our Lemma can be charactenzed by saying that
the inequality of Bessel can be generalized for quasi- -orthonormal
sequences of functions. This has been proved first by R. P. Boas, Jr.%)
the ‘proof follows in two lines, from the obvious inequality

(5.6) ﬂf(é)—Z 98-, m] P(dE)=0

- by effecting the multiplication, integrating term by term- and applying =
- (5.2) with x,= (f, ¢,) for k<N, and after that séfecting N~ cc. -~

§ 6. Let us turn now to the proof of (5.1). According to the
remark made in § 4. with respect to the evaluation of the Burkill |

integrall [ F[n, it suffices to prove the inequality

, P(G) & L (VElLa]— Vol 1
6D TTper&& T VI S 1=PO) |

where V, [1]—— V, (b)— (@) if I=(a,b)and V, (x) denotes the d. f. of u,

*) Here and in what follows the integral f f(E P(E) is to be understood 5-

as the generalized LeBrsGue integial with respect to the measure P(4) in the ab—
stract space E. For particulars see S. SAKS 19) 1, .. ‘



further V"[I]—VG(b)-—-VG(a) and”’ VG(x) “denotes the d k. of u, with
respect to G for every sequence of subdivisions 7. wi bt Al =R
of the real axis R. Evidently we may confine ourselves to subdivisions
{l.;} for which V,[I,.]>0 for ‘every £ and n. To every subdivision

{I.z}--of R there corresponds a subdivision {E,,} of the space E where

E,, is defined as the set of those - points & for which u .(E)€T,,. The
sets E, belong evidently to F. Let us put P{E,)=V,[I ,,]~—p,,k,> 0,
let F,,,,(E) denote the charactenstrc function of the set E,., and let us
define ' ] &

(6.2) goﬂk(&) %}’:)JQ fork._l 2 i Nsand n=1,93 v
- : p R

We have by a srmple calculation :
e PaE)—1-p,
63 'f T0@7u©OPUE)=0 fof nim
f 7O 909 P(dE>=—Vpﬂ,,pﬂk for Kk,

The sequence of functlons gp,,L(E) k—l Py NS n—l 2,3,.

a quasi-orthonormal system as defined in the above Lemma the value o

of the constant C being equal to unity. . v
As a matter of fact, let us. put i A L 8

6 HREE n,,,,1,=Ff 921 9 (5) PAE)
We have by (6. 3) ot A b

(6. 5) ZZg‘Zan”zxnkxmz—Zw Zx

=1 m=1 k=l

As by the inequality of SCHWARZ we obtain -
No ;

6.6) (ankl/pnk) (ank)(zx )i‘xi |

and- thus 1t follaws that the left-haud side of (6.5) does not exceed

fo.n: i TS S

n=1 k=]

| in absolute value and therefore we have C=1. ; ’ -
, Now we can apply our Lemma, with g (#) being the characterrstrc i
| functlon of the set G As in this case.

68 . (g,qo,,k)—P(G) [1/13 l,,kl_




i - We have

" krtrdd Régyt =+

‘further AN . :
@ =T j @) PUE) = P(G) i

\
we obtain from (5 5) the inequality (6. l), which, accordmg to what /
has been said above, proves our theorem.

; § 7. Our theorem can be generalized for the case in whlch the

‘random variables u, are not independent, only “almost-mdependent”

in the following sense: If the sequence of random variables u,, u,,...,

satisfies the condition ;
P(A(n) (m))

7.1
N P(AS)) P(A%)
- for any two pairs of real numbers (a, b) and (c, d), ‘where A("}) resp.

A™ denotes the set of points & of E for which a<u,E) <b resp.-

¢ <u,(§) <d holds, and the positive constants 0, decrease rapidly so
that the series

(Te2) : 2‘ Gr=0
converges, we shall call the sequence u,, Uy, ..., U,,... a patrwnse almost
independent sequence of random variables, and we “shall call J the
coefficient of dependence of the sequence. Using this definition we
obtain by the same method of proof the following generalization of our
theorem: ) / i

If the sequence of vandom variables wu,,u,, ..., u,,... is pazrwzse

almost independent in the sense precised above, having its coefficient of
_dependence 6 <1, and zf Gis any set belonging to F with 0<P(G)<1

—1]<é4

= "n"m

g . 2 el ] V
(1.3) . ZD(U):E = a)(n P(G))

As the idea of the proof is the same, it may be left to the reader. ln
this form our theorem can be immediately- applied to the proof of the
large sieve of LINNIK :

I wish to express my sincere thanks to Prof F. RiEsz for his
valuable remarks,

Budapest, May 26, 1949.
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