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Let us consider a sequence of independent random variables 
X x, X 2, X 3, . . X n, . . .  having the same distribution function F(x), with 
the mean value 0,

+ 00

(1) J  xdF(x)  =  0
-  00

and  the finite dispersion a,
+ GO

(2) \ x 2dF(x) =  a*.
-  00

Let us put

(3) , • Sn — X x +  X 2 + . . .  +  X„
and  let Fn(x) denote the distribution function of Sn. It is well know n1) 
that Fn+j(x) is the convolution of Fn(x) and F(x), i. e.

+ oo

(4) F n+1 ( x ) = J  F„(x— v)dF{v).
-  GO

In this case of “equal com ponents” the central limit theorem is valid 
without any further supposition2), i. e. we have

X
_  i r  t2

(5) lim Fn(xoYn)
n - >  g o  M ATE J

-  oo
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e \ d t

for any fixed value of x. But the central limit theorem does not furnish 
any evidence regarding the asymptotic properties of F n( x a f n )  if 
tends to oo together with n. Some information in this direction may 
be obtained from Liapounoff’s theorem8) but only for the range of 
values |X |  =  O ( f lo g n ) .  Considerably stronger results have been ob 
tained by H. C r a m £ r 4). One of his results5) is — under some addi
tional conditions — valid for | x | < c f n , ,  with some constant c. Evi
dently in general this is the maximal order of magnitude for which the
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problem has a sense, because if the random^ variables X„ are bounded, 
we have S„ =  0(n),  and thus F „ ( x o Y n ) = l  for x >  k f n  and 

(x a f n  )  =  0 for x <  — k][n, with some constant value of k. In what 
follows we are concerned instead of the rather deep asymptotic laws 
with the more elementary question of estimating the value of constant k, 
mentioned above, using only some particular data of F(x).

Let § denote a bounded random variable, F(x) its distribution 
function, let B  denote the least number having the property that F(x) =  1 
for x >  B. Similarly let A denote the greatest num ber with the property 
that / r( x ) = 0  for x<, A. Evidently B  (resp. A) can also be defined as 
the least (resp. greatest) number for which the probability of £ >  j 
(resp. of £ < A) is equal to 0. We shall call B  the probable least upper 
bound (PLUB) and A the probable greatest lower bound (PGLB ) of

We start by proving the following
L e m m a .  Let F(x) denote the distribution function of the bounded 

random variable £. Let us denote
+ 00

(6) tnk=  f xkdF(x).
-  CO

W e suppose m1 =  0, further we put
-  * % '  x

(7) ® ( x ) =  j  F{t)dt
-  CO

If B  and A denote the PLUB  and PGLB  of | ,  we have for any 
£ = 1 , 2 , . . .

0  ■ I  " * •  *  •  1 ^

/Q \  o2 fc - l  A 2 k - \ ^  m 2k
(8) B - A

P r o o f :  It follows by partial integration, owing to ^  =  0,
B B

(9) 0(B)  =  f F(x) dx  =  [x f(x)]2  — j  xdF(x)  =  B.
• J  V
A • A

Using (9) and applying partial integration twice, we obtain
y~

R
( 10) m2i=  — ( 2 k — l )B2li- \ -2k(2k— 1 ) j x24- 2© ( x )dx.

A
Owing to the fact, that the function <&(x) is convex from below, we have

<I>(x) < — (X~  A)a  (1)(° )  for 4 ^ x ^ 0

<5(0)
® ( x jg < f ( 0 )  +  x  1------- ¿h H  for 0 < x < B .

Applying the inequalities ( 1 1 ) we obtain from (10) the inequality (8) 
In what follows we shall use this Lemma only in the special case k =  1
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In this case we have evidently 

<12) B — A
o -

A BO w ing to the convexity of ®(x)  we have —— — and thus it
i D  s \

follows:

<13) A B  a-.
As the arithmetic mean is greater than the geometric, we obtain 

the less precise inequality, (which has  the advantage that it contains 
only a),
<14) A ^ 2 g.
T his  is equivalent to a theorem proved first by J. L. W a l s h 6), an other 
proof has been given by A. H a a r 7). Thus our lemma may be regarded 
as  a -sha rpen ing  of the result of W a l s h .  N o w  we prove the following

T h e o r e m .  Let X 1, X 2, . . . , X r........  denote independent random
variables, all having the sam e distribution function F(x),  having the 
mean value 0  and  dispersion o. W e put Sn =  X,  +  Xs - f X„ and 
denote the PLUB  of |S„| by M„. Then it follows

<15)
n o 2

2 0 (0)

T h is  theorem follows without any difficulty from (12), using the fact, 
that if B„ and  An denote the PLUB  and  PGLB  of S,„ we have by (4) 
B„ =  nB  and A„ =  nA, further we have Af„ =  M a x (B,„ |4„ |) .  W e have 
remarked above, that (14) is feebler than (12). Though actually we 
have- deduced (14) from (12), this alone does not prove our assertion*), 
which has  to be proved separately. As a matter of fact we have only 
to show, that

(16) 20(0) .
This can be proved as fo l lo w s: W e have by the inequality of S c h w a r z  
<for S t i e l t j e s  integrals)

o o o o _ i.

(17) 0(0)  =  J’ F ( x )d x  =  — \ x d F ( x ) < (  J  x°-dF(x). |’ dF(x))2
— 00 -OC — CO — CD

+  00 ,

Similarly, owing to I xdF(x)  =  0  we have
-  oc

00 00 oc

(18) <!> (0) =  J' xdF(x)  s  ( I X2d F ( x ) . \ dF(x)\2
0 * 0 0

C (  _

*) As a matter of fact, from a ^ b  and b ^ —  it follows a ^  \ c  but this
_  a 

does not imply b^>]'c  (e. g. in the case a  =  3, b =  J, c =  2).
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Adding (17) and (18) and applying the inequality

(ab +  c d f  <L (a2 +  c2) (b2 +  d 2)
we obtain (16).

Our theorem can be generalized for the case of unequal compo
nents, without any essential difficulty, the formulation of the corre
sponding theorem may be left to the reader. We mention that (15) is- 
a “ best possible” result, as there is equality in (15) for instance in the 
case of the binomial distribution.

An interesting application of our Theorem is the following: Let 
1 , (jc), 9>2(x), . . . ,  ■ ■ ■ denote an orthonormal system of functions
in the interval (0, 1 ). It is an often used evident fact, that

(19) sup |ç>,.(jc) 9 j{x ) \ S > V 2

for any pair of indices /=j=y. L^t us suppose  in addition, that the functions  
<pn(x)  are pairwise (stochastically) independent8), (as for instance the 
functions of the WALSH-system). It follows easily from (15) for n =  2,. 
combined with (16) that in this case w e  have

(20) sup
0 < .t l 9i  M  —  %  (* ) I =  2 -

This inequality is exact, as for instance there is equality in (20) for 
any pair of functions of the WALSH-system.

/ .
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