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Introduction

The present paper consists of four parts. In the first part (8 1) the classical
stochastic process of » oisson IS deduced from assumptions much weaker than
usual. As a matter of fact, the derivability of the functions K{t) (k = 0,1,2,...)
denoting the probability of the occurrence of exactly k events in a time inter-
val of length t, is not supposed, and the »rarity« of the events considered is
introduced through the rather weak condition :

lim o=
) t—o0 \-Wo{t)

(instead of the condition FPYO) + 1PA0) = 0). The proof makes use of functio-
nal equations instead of differential equations, which have been used formerly.1

The second part (8 2) contains the deduction of the most geneial form of
a discontinuous, integer-valued, additive Markoff process (differential process)
of random events. Thus we consider processes as follows :

The process is homogeneous in time, further the numbers of events
in non-overlapping time intervals are independent random variables. Concern-
ing the rarity of the events nothing is supposed. The general form of such
processes is deduced by the same method as in § 1. It is shown that the most
general process of this type is the sum of an enumerable set of independent
processes Pkk = 1,2, 3, ... ), Pk being an ordinary Poisson process, but here
an event means the simultaneous occurrence of a fc-tuple of simple events.
In other words, if

(2) [(».*) = k=0

is the characteristic function of the process, we have

3) () = [ exp (tck @ — 1)

1 A. krHinTcHinge, Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Ergebnisse
d. Math. Il. 4, 1933.
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with ¢, = 0 and > ¢, < co . Such a discrete distribution {Wk(t)}
k=1

[o2]
— in case > ke, is finite — is called throughout this paper a composed
k=1

Poisson distribution.

The third part (§ 3) contains the deduction of these composed Poisson
distributions, in a still more elementary way, without introducing time. It is
shown that if a family of discrete (integer-valued) distributions, depending on
a single parameter p (the mean value of the distribution), is closed under convo-
lution (i. e. if the convolution of two members of the family also belongs to the
family), then it is a family of composed Poisson distributions. It is also shown
that the variance of every member of such a family is not less than its mean
value, equality holding only in the case of the family of ordinary Poisson distri-
butions. In other words, the family of Poisson distributions can be characterized
— instead of making use of the rarity of the events—as a family of integer-
valued distributions, which is closed under convolution, with the further pro-
perty that for a fixed mean value, the variance is minimal. This condition
of the minimality of variance clearly replaces the condition of the rarity of the
events. The fourth part (§ 4) contains some remarks on composed Poisson distri-
butions. It is shown that these distributions are contained in the generalized
Poisson distributions of A. Kmintcuine®, further we show that the class of
composed Poisson distributions contains the contagious distributions of Porya.
Eccenpercer’ (also called »negative-binomial« distributions), the contagious
distributions of I, Nevuan® and the generalizations of the Poisson distribution
given by H. Porraczex-GEIRINGER®.

The method as well as the results of § 1 are due to A, Renvi. Starting
from these, J. Aczer developed the results of § 2. The interpretation of the gene-
ralized Poisson processes considered in § 2, in terms of the superposition of
independent Poisson processes of k-tuples of events, has been kindly suggested

to the above mentioned two authors by A. N. Kormocororr, to whom they are

2 Loc. cit. 1, pp. 21—24, Cf. Also the following papers: F. E. SATHERTHWAITE, Generalized
Poisson distribution, Annals of Math. Stat., 13 (1942), pp. 410—417; W. FELLER, On a general
class of contagious distributions, Annals of Math. Stat., 14(1943),pp. 389—400, and E. Cansapo
" MACEDA, On the composed and generalized Poisson distributions, Annals of Math. Stat., 19
(1948), pp. 414—416.

3 F. EcGENBERGER und G. Porya, Uber die Statistik verketteter Vorginge, Zeitschrift fiir
angewandte Math. u. Mech., 3 (1923), pp. 279—289.

* I. NEYMAN, On a new class of »contagious« distributions applicable in entomology
aud bacteriology, Annals of Math. Stat., 10 (1939), pp. 35—57.

SH. PorLrLACZEK-GEIRINGER, Uber die Poissonsche Verteilung und die Entwicklung willkiir-
licher Verteilungen, Zeitschrift fiir angewandte Math. u. Mech., 8 (1928), pp. 292—309.
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grateful for his valuable remarks.6 The results of 8 3 (including the inter-
pretation of these distiibutions as the convolution of an enumerable set of
Poisson distributions of fc-tuples of events) are due entirely to L..anossy

who found them independently and some months earlier. The authors are
indebted to A . csas-ar for a valuable remark.

8 1. The classical stochastic process of Poisson

Let us consider events occurring in time (for example impacts of particles,
telephone calls, etc.) and let us impose the following conditions :

A) The process is homogeneous in time, i. e., we assume that the proba-
bility of exactly k events occurring in the time interval (tv t2 depends only
on the lenght t = i2— tx of this interval; this probability will be denoted by
WK[t), (k =0, 1, 2, ...). Evidently we have

(1.1) Wk(t)S o and ~ Wk () =1 for any i~O,
0
further
1.2 JFO0) =1 and thus JP*(0) =0 for k=1, 2, 3, ...

B) The process is of Markoff's type, i. e., the number of events occurring
during the time interval (tv t2 is independent of the number of events occurring
during the time interval (i3 t4 provided that < i2" t3< i4.

C) The events are rare. We mean by this that

1.3 lim W X =1
(1.3) t—=0 1- waop

In other words, if t tends to 0, the probability of one event occurring in the time
interval (0, t) is asymptotically equal to the probability of at least one event
occurring in the same time interval.

Clearly (1.3) implies that

2" Wk(t)
(14) im K eeoemeeee _

t—y O

i. e., (1.3) really means that in a short interval the probability of the occurrence
of two or more events becomes arbitrarily small when compared with the proba-
bility of the occurrence of exactly one event in the same time interval. Instead

6Verbal communication at the 1st Hungarian Mathematical Congress in Budapest,
27 August—3 September 1950.
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of (1.3) it would also be sufficient —eas will be seen from the proof — to sup-
pose onlv

. W,®
1.3a lim su ? =1
(1.3) AL VOO
We assert that conditions A, B and C imply that
KO-T1
(15) Wk®- (At)KI

i. e., that the process is that of poisson: here A> 0 is the mean value of the
number of events during a time unit (»density« of events).

Let us prove our assertion. First of all it follows from B that the proba-
bility of no event occurring in the time interval (0, t -f s) is equal to the product
of the probabilities of no event occuiring in the time intervals (0, t) and
(t, i «(-s). Thus, with respect to A, we obtain

(16) WO(t+ s)= W Q()WQs).

According to (1.1) 0 & WQt) = 1, and thus, taking into account that the only
bounded solutions of this functional equation are7 FQt) = <f; in our case we
must have evidently 0 <4 < 1 Consequently, we can put

(L7) WOt =e~A* with A> 0.

Similarly, if in the time interval (O, t -|-s) there occurs exactly one event, this
is possible in two ways: either there occurs an event in the time interval (0, t)
and no event in (i, t s), or there occurs no event in (0, i) and one eventin
(i, i -£s) . Therefore, in view of A and B, we obtain

(1.8) Wjff +s)= WA) T + WAs) WQR).

Substituting the expression (1.7) of !FOs) and WO{t) into (1.8), it follows
(1.9 Wx(t + s) = WAi) B** + IF?s) e-h .

Let us put

(1.10) f(t) =e* LWW1),

then

(1-n) f(t+s)=f(t)+f(s).

It is well known that the only bounded solutions of (1.11) are of the form
(L12) f@=a

7 See J. L. W. V. Jensen, Surles fonctions convexes et les inégalités entre les valeurs
moyennes, Acta Math., 30 (1906), p. 189, where_it is proved that the only one-sidedly bounded
solutions of f{x --y) =f sx) +/(y) are £(X)= a constant. This implies that the
only bounded solutions of / (X -+y) =f (X)f(y) are f (X) = ax .
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hence we find
(1.13) Wj[t) =cxte-~.

Substituting the expressions for WO (t) and W1 (i) from (1.7) and (1.13) into (1.3),
it follows that

(119 Hm =Cc*=1,
N ol —e~h A
i. e, cx= H.
Consequently, (1.5) is proved for kK = Oand 1 Supposing that (1.5) holds for
K=12 ...,n—1 we can show that it holds also for n. Clearly we have
M
(1.15) Wn(t +s) = k>_O Wk(®) W~k (9

and, as we have supposed (1.5) to hold for k LLIn — 1, it follows

Jne-X(t+s)

(1.16) Wit +s) = W,,()e-"> + Wn(s) e~A H-—----r“----((t + a)'—t'—s").

Putting

(1.17) f(t) =e*4Vn()

we obtain

(1.18) f(t +s) =f(t) +f(s).

According to (1.17) f(t) is bounded, hence7/(t) =cnt and
(119

According to (1.19) Vn({t) is derivable and
(1.20) jf;(0) = cn.

But it follows from (1.4) that Wn(0) =0 for n ~ 2 and hence cn=0. Thus
from (1.19) and (1.20) we conclude that (1.5) holds for k= n, provided it holds
for Kk ~ n— 1. Thus our assertion (1.5) is proved by induction.

8 2. The general homogeneous Markoff process of random events

In this § we drop the postulate of rarity of events, i. e., we assume the
validity of A and B only, but do not claim the validity of C. We obtain exactly
as in 8 1, that

(2.1) WOt = e-*
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and
(2.2 Wx{t) = Cjur-K
but now we cannot conclude that ci = A We shall prove by induction, that
(2.3) Wk('[) = et b (CL*)ri. (2 ©r’ mmm (Ck Hrk
w2 e veK= K V-
a0 Gisl2 A
Clearly (2.3) holds for k =1 by virtue of (2.2). For k =2 we have by (1.15)
W2t + s) = IFi)e W2ZS) O X fchveninan
) . @2
Putting /(*) =e;]jlvat) — we obtain f (t s)=/W +/(*)e Thus

(asf(t) is bounded) f (t) =c2t and therefore IP ) = MZI! + c2t\ e~7

Similarly we obtain  WKk(t) for k = 3, 4, etc. To prove (2.3) by induction, let
us suppose that (2.3) holds for k = 0, 1, ..., n— 1. Substituting the formula
(2.3) for IFKi) with k =0,1, ...,n — 1 into (1.15), we obtain

(24) wnt + s) = Wn(te~>s + W,I(s)e~'-1+
4 oA ©OF ... (kiyk +(cx95>... @ sfn k
= 2 rk! e Qn-k '
ni"f2r2+ ..+ =K

Q+ 2«+ see+ (N—K)Q—k = n~k

Putting
25 f(tYy=erWn () - 2 (CLt)yr (c2 )= ... (¢,—1 0)'n
29 () © Al ol i
ri+ 22+ L+ (N--DMg—-1 —n
it follows from (2.4) that
(2-6) f(t+s)=1(t)+f(s)
and thus
(2.7) f® —ct
which proves (2.3) for k =n.
Clearly it follows from (2.3) that
(2.8) k= WK0O) (fesl)
As WKO) = 0 and WKk() s=0for t> 0, we have
(2.9) Wko)= hm Eh® 5o
t— 0
and thus

(2.10, &~ 0.
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We shall prove that the series %1 ck converges and its sum is equal to Xe As a

matter of fact, it follows from (2.3) that

< Gt GRo T - o
if 1> NM2 and therefore for every M IS1 and N = 0 we have
M /AV ief )
(2.12 g S ef
LI
As (2.12) holds for every value of N, it follows that
(2.13) exP (t Ack = &
k—I
and thus
M
(2.19) KY & A

With (2.10) we find thathC:ick converges. Let us put

(2.15) [A= YOk
k=\
It follows that
2.16 1= 2 Whit) =e><1|° (2 {kir — e(/l—,)l’
(216 k=0 ) ||:|1 (r:o{ I'!)
whence
2.7) fi=X =Y ck.

k=1
Substituting this value for Ainto (2.3), we obtain the final formula

i Jri+2rtf A Hak=k rxder2! ... rtc!

Thus the most general homogeneous Markoff process of random events depends

on an enumerable sequence c,, of non-negative numbers, and the corresponding

probability of k events holding in a time interval of lenght t is given by (2.18).
From (2.18) it is easily seen that putting

(218) rl(,)=. xp(X4f. 2 fa*'faf

(2.19) ) = (c'\| e~9d (fc = 0, 1, pon=1,2 ..,
K!
we have

220 wk(f) = 2 "(Ow%\t)° (t)°fW)

A4 Jfa+ oot RFK= R n=k%"1
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This can be interpreted as follows: let () (n = 1,2, ; t> 0) denote
independent Poisson-distributed random variables, the mean value of (f)
being cnt, and let us put

(2.21) fit)y = LW+ 2faf) + ... +nL(t) + ...

Clearly (2.20) expresses the fact that the probability of i(t) = K is given by
(2.18) and thus |(t) is the stochastic process considered in this 8 As n  (t) is
a Poisson process in which an »event« means the simultaneous occurrence of n
simple events, our result may also be expressed by saying that the most general
homogeneous Markoff process of random events is the sum of an infinity of inde-
pendent Poisson processes, the n-th process consisting in the random occurrence

of n-tuples of events with the mean value (density) crt, wherec, 0 and 3 cn
n=1

COnverges.
Alternatively, Wk (f) can be expressed as follows :

(222) inC(t)=eXp

ri+rs+ ... +rn=«k,n" K
i~=l;i=1, 2,.., n

where the summation is extended over all ordered n-tuples of positive integers
(ti, r2 ..., rn) satisfying rx-fr2+ ... + m=«k (n S k).

Let us consider now the characteristic function of the distribution (2.18).
Putting

(2.23) f(u,t) = V WK (t) eik
k=0
we obtain easily
2.24) f(ut=expt VAekc—1j,
hence
(2.25) /I (n,0 = k|£1exP (tcK@ewe— 1)) -

Let us denote by y (n, X) the characteristic function of an ordinary Poisson
process :
co 2.flc p “mpiku

(2.26) < A= > . o-=exp(E“-1)) .
fc=o hi

With this notation (2.25) can be written in the form

2.27 f(u, ©= Jj <pku, 1)

(2.27) kzjl P

which expresses the fact, already emphasized, that (2.8) is the distribution
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of (2.21). In virtue of (2.24) we see that a distribution of the form (2.18) can be
characterized by the following property of its characteristic function : The loga-
rithm of the characteristic function of such a distribution is of the form g(e'u)
where g(z) is an analytic function which is regular in the unit circle and satisfies
the conditions : g~(0) a 0 forn —1,2, ..., and

limg(z) =0.

Z—>1

The mean value of the number of events during a time interval of length
t produced by the process (2.21) is given by

(2.29) M(t) = 12_ ek,

i. e., itis finite or infinite, according as the series * Ikck converges or diverges.

Naturally only the first case is of interest. In this case the distribution (2.18)
will be called a composed Poisson distribution.

8 3. Descriptive characterisation of families of composed Poisson distributions

Let us consider a random variable I which assumes only non-negative
integer values, and let us call the distribution of such a variable an integral-
valued (abbreviated i. v.) distribution. Let us consider a family of i.v. distri-
butions depending on a single parameter p, the mean value of the distribution.
Let us denote by P(k, p) the probability of the value k (k = 0, 1,2, ...) and
by 1P(k,p)j the distribution itself.

Let us suppose that this family is closed under convolution. By this we
mean that if  and |2 are two independent random variables with the distri-
butions (P(k. pj) Yand {P(k, p2 } respectively, then the distribution of  f-f2
also belongs to the family considered, i. e. it is equal to |P(k,p3} . Clearly,
we must have pz = Pi -f-p2 because the mean value of + f2must be equal
to the sum of the mean values of and £2 « The well-known family of Poisson

distributions

(3.1) P(kp)=-2rP (k=01.2,..)

clearly has this property, i. e.

(3.2 Y P(k,Pi) P(n—«k,pd = P(n,pl+p2.
k=0

The question arises as to whether there exist even other families of distri-
butions having the same property? The answer to this question is given by
the following
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Theorem. Let {P(k,p)}be a family ofi.v. distributions, closed under
convolution, where p (denoting the mean value of the distribution) runs over all
non-negative real numbers. Then [P(k, p)} is a composed Poisson distribution, i. e.

(33) P(k,p)= exp — (P<IYi (pd2)\ - . . pdRrk
V. El sl +kk=k rx!r2l ... rk\
where
@®
3.4 A b= 1
. k=1 a

The family of Poisson distributions may be characterized by the following
property : For every fixed value of p the variance of the distribution is minimal
in comparison with the other distributions of the family (3.3).

Let us denote the generating function of the distribution {P(k, p)} by
M, p), i. e. let us put

(3.5) ner, p) = Q_OP (k,p) zk  (z complex, [z = D

As we have supposed that the family is closed under convolution, i. e. that
(3.2) holds, we conclude

(3.6) n(z,pi) N(r,p2d = N(z,Pl +p2 ,
which implies that

3.7) n(zp) =f(zY m

As we clearly have

(3.8) 5 P (k.P) =1

and

(39) Y kP(kp) =p,

it follows that
(310) ny=r@1) =1

Now we prove that H(z p) can not vanish in the unit circle ifp is < \ . As a
matter of fact, from (3.8) and (3.9) we conclude that
(311 PO,p) =1_p + V (fe-1) P(k,P),

and therefore
(3.12) P(O,p)W1-p
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and by virtue of (3.8)
(3.13) é{’(k,P)"p.

This implies that for \z\*1 we have

(3.19) IU(z,p) I a P(O,p) _ k\élp(k’ p) is 1—2p;

therefore TI(r,p)j> 0 if p < | . But if a regular analytic function does
not vanish in the closed unit circle, its logarithm is also a regular analytic
function in the same circle, consequently

(3.15) g(z) ="logn (*/») = log/(*)

is also an analytic function, and we can put

(3.16) M, p)
with
(3.17) 92 = ni:DOd” n (*1 s 1.

Clearly, if (3.16) holds for p < \, it holds even for all values ofp > 0 .
Now (3.10) implies g(I) =0, that is,

(3.18) X"4. = 0

and we may write
(3.19) g*) =2dn (»-1)

We shall prove that the coefficients dnare real and

(3.20) rf,S0.

This may be done as follows : let us denote M = Max |g (2)\.Clearly we
Hai
have from (3.16)

- o, — pY (2) PKOK(2)  aeqy
B21) nNn@Ep = kZOP{k,p)zk—1+ po(z) + . +.t Kl +

*5 Acta Mathematica
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Let us differentiate both sides n times, and substitute z = 0. Then we obtain

(3.22) ntP(np) = nlpdn+ Y pk?‘”,
k=2 K
where
(3.23) Dk dngk2) \
dzn Lo

By virtue of Cauchy’s inequality for the coefficients of power series we obtain

(3.24) IDkn| £ n! Mk.

Dividing both sides of (3.22) by nl p, it follows that

(3.25) P(rP) U < pM 2eMp,
p
which implies that
(3.26) lim PO*P) _4
p->0 P
400 J

As —-—---- - is clearly non-negative, (3.20) follows at once. Substituting

z=-et into (3.16) and comparing it with (2.21), taking (3.19) and (3.20) into
account, further in view of

(3.27) 21 nd, =g'(l) = 1

it follows that P(k, p) has the form (3.3), i. e. {P(k, p) } is a composed Poisson
distribution, and the characteristic function of the distribution {P (k, p) }is

(3.28) M(zp) =explp "dn@zn—1

with dn WO and® ndn = 1
11—\
Otherwise the coefficients dn are arbitrary, and thus there exists an
pifinity of families satisfying the condition of the theorem of this § and any
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distribution contained in such a family is a composed Poisson distribution.
We note that according to (3.28) we have

P(0,p) —e p

(compare this with the inequality). Let us now calculate (3.12), the variance
of the distribution {P{k, p)}. We evidently have

0o

(3.29) a2=p r;\-l nan,

Thus we have

(3.30) a2=p ~ n2dn LWp ndn —p,
n=1 n—1i

equality standing if and only if d+—1 and thus dk= 0 for k=2, 3, ...
Therefore, the second assertion of the above theorem is also proved, and we
see that the Poisson distribution can be characterized as having the smallest
variance (equal to the mean) among all distributions {P(k, p) } satisfying the
conditions of the above theorem, provided that the value of p is fixed.

8 4. Special composed Poisson distributions
Let us consider a composed Poisson

function

(4.1) 9@ =exp p
where

4.2 &k =0 (fe=1,2,...) and

t=I

Let us put o &k =d and X, e*, then we obtain

(4.3) 9@ =explpd £ e*(*—1) ]
where
4.4 k=0 (k=12 ...) and e =1

Let f2 ..., £, denote independent random variables, each taking the
values 1, 2, 3, ... with the corresponding probabilities ev €2 €3 .... Let us
denote by ®n(k) the probability of  «(-£2-f-. ee+ £,= Kk for n L1 and letus
5*
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put ®0(0) = 1 and &JkK) =0 for k =1,2, We evidently have
¢r (k) = ek and
(4.5) DK = 2 G- Y»e -
J=o
Putting gQs) = 1 and
(4.6) g — Pn(K)bK forn=1, 2
t=x
we obtain
@.7) bl2) = bl 2)"e

Making use of (4.7) it follows from (4.1) that

4.8) 9@) = e~pd epigi«c = e~pd V. -W  (gi@)n = v N oo e
ifTo re! ff o n!

Comparing the coefficients on both sides of (4.6) we obtain

49) P(kp) = V |§§-"PE|F-@- ii(fe).
ral

Thus we find that the composed Poisson distributions, considered in the prece-
ding 8§, are contained in the generalized Poisson distribution of A. k nintcnine
(loc. cit.?. The formula (4.9) can be used also (instead of (3.3) to calculate expli-
citly the probabilities P(k, p), and especially to obtain an asymptotic formula
for p —00. Let us now consider some special composed Poisson distributions.

a) The limit case of the Pdlya-Eggenberger contagious distribution. (The
»negative-binomial« distribution.) In this case

(4.10) P(k,p) : (L +pb) 6 | fﬁFl,d }’e(- i f (d>0)
and

(4-11) 92) = 2 p(*.p)

with

(4.12)

We note that, if S—0, this distribution tends to the ordinary Poisson
distribution.
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b) The contagious distribution of I. v .y« ... The characteristic function
of the »contagious« distribution introducedsy I. v .yn .. (lOC. Cit.4has the form

(4.13) g2 = exp Y pn(F(|, §)z + 1— F(f, )" dE o) — A)
A =1

where A stands for a domain of the £ 1 plane and at the same time for the
area of this domain ; in this domain 0  F(f, rj) & 1, further p> 0, pn= 0
®

and Pn—1 e
=1

A simple calculation gives

(4.14) o)) =expjp Y dkfzk— 1) j
with
(4.15) dk = r%:kw JT**En@- ra, ok

As clearly dk = 0, these distributions are also contained in the class of composed
Poisson distributions.

c) The generalized Poisson distributions of H. P oltaczek-Geiringer. These
distributions (see loc. cit.5 are simply the composed Poisson distributions for
which ¢, = Ofor n = N, i. e., for which the logarithm of the generating function
is a polynomial.

Finally we mention that the composed Poisson distributions may be
characterized also as those discrete infinitely divisible distributions which
have jumps only at the points = 1,2,... . The well-known general formula
of B.s. r ineeeis (Which is a special case of the formulae of A.nv « cimogororrs
resp. of P.ucvyuo and Ak nintenine)

+0
(4.16) logf (uy=p JEix— 1) dPK
—D
reduces to
(4.17) bg f(u)=P 2 dn(eirn“- 1)
n=1
if (x) is a step function with the discontinuity points n = 1, 2, ... and jumps

dn —(n +0) — p(n — 0).

8 B. DEF inetti, Sulla possibilita di valori eccessionali per una legge di incrementi alea-
tori, Atti d. R. Accademia Naz. dei Lincei, Rendiconti, Cl. sc. fis. mat., 10 (1929), pp. 325—230.

9 A. K o1moGOROFF, Sulla forme generale di un process) stocastico omoseneo (Un probléma
di Bruno de Finetti), Atti d. R. Accademia Naz. dei Lincei, Rendiconti, Cl. sc. fis. mat., 15 (1932),
pp. 805—808.

1 P. LeVY, Theorie de Maddition des variables aléatoires (Paris, 1937).
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The above examples a) —c¢) show that the class of composed Poisson
distributions furnishes a large variety of widely different types of distributions.
Of course it is an intricate problem to find the precise member of the class
which gives the best fit to certain statistical data. If a (theoretically) given
distribution is known to belong to the class of composed Poisson distributions,
the values of the dn may successively be calculated directly from the distri-
bution by using the well-known formulae for the semi-invariants. As a matter
of fact, if we put

(418) ak =k \P(k,p)ep for k =0,1,2,... and Hk = k\ dkp for k = 1, 2,
then it follows

(4.19) = exp Hkzk]
Kl J
and hence we have
#i=«i
H2 =a2—a\
(4.20) H3 =a3— 3ara2 -(- 2a|

= a4— 3a| —4 (- 2af a2—63j

etc.
L 1
Taking into account that p = log --------- the values of the dk can be
5

deteimined.
(Received 27. October 1950.)

OBOBLWEHHBIE PACIPEAENEHUA TUIMA TMYACCOHA, |
N. AHOWW (BypganewrT), A. PEHbW (ByganewT) n 9 AUENT (Muwwkonby)
(Pestome)

B § 1 paetca BbIBOA, 00bIKHOBEHHOrO CiyyaliHOro npotecca lMyaccoHa, T. e. 0gHopog-
HOTO MO BPEMeHY MapKOBCKOro MpOLecca »pefKyx« COBbITUIA, UCXOAA U3 BO3MOXHO Cnabbix
MPEANOOXKEHWIA, N 0COBEHHO W3 CNAaboro OMpefeNieHNs »PEaKOCTU« CobbITUIA (cM. (1. 3)) MeTon
[OKa3aTe/IbCTBa COCTOUT B MPUMEHEHWN (YHKLMOHA/IbHBIX _YPaBHEHMIA BMECTO thepeH-
Upa/ibHbIX ypaBHeHWiA. B § 2 Tem ke MeTofoM Onpedenied 06LMiA Bug (cm. (2. 18)§l o,n.Hopo,u,-
HbIX MO BPEMEHV MAapPKOBCKMX MPOLECCOB C/y4YalHbIX COObITWIA; pacrpefeneHns, NoyyeHHbIe
Mpu 3TOM Ha3blBalOTCA aBTopamy 0606LLEHHbIMX pacnpegeneHnsmMyM Tmna MyaccoHa. Ckasbl-
BaeTCA (Ha 3T0 06paTW/ BHUMaHVE aeyx mus aBTOPOB cTatbuM A. H. KoAMOropoB, komy OHM
BbIPAKAIOT 6/1ar0faPHOCTL 3a 9TO), UTO 3TV PaCTpefesieHV st SBNSAIOTC KOMMO3NLMAMA CUET-
HOro MHOXECTBA O00bIKHOBEHHLIX pacnpegeneHunii lNMyaccoHa. B 8 3 paHa xapakTepucTvka
K/1acCoB 0606LLEHHBIX pacnpedenieHnii Tvna MyaccoHa Kak — OfHOMapaMeTPUHECKMX rpynn
(N0 KOMMNO3ULNM) LINIOUNCTIEHHBIX pacripeseieHnid. JlokasbiBaeTcsi, YUTO cpeay Beex 0606LUeH-
HbIX pacrpegeneHuii Tvna lMyaccoHa 00bIKHOBEHHbIe pacnpefeneHs [yaccoHa oOT/MYaloTcs
MWHVUMa/IbHOW AMCMepcuein Npu AaHHOM CpefHeM 3HadeHWn. B § 4 u3yyaloTcsa HeKoTopble
crieuyanbHble  pacnpefenieHnsl  pacMaTpyvBaeMoro TWMa, Hanmpumep pacnpefeneHus  Ored-
Beprep-ons, »3apasnTenbHble«  pacnpegeneHns Helimana, n T. A O606LLEHHble  pacripe-
feneHnsa Tmna MyaccoHa moryt GbTb 0XapaKTepy3oBaHbl TAKKe KaK AUCKPETHbIE LieNI0YNCIeH-
Hble 6e3rpaHNYHO AeNMMble pacrnpeseieHus.



