
O N  C O M P O S E D  P O I S S O N  D I S T R I B U T I O N S ,  II 

By 
ALFR~2D RENYI (Budapest), corresponding member of the Academy 

Introduction 

The present paper is a continuation of a joint paper of L. J.~aossv, 
J. ACZEL and the author [1]. It consists of four parts. In w 1 the general form 
of inhomogeneous stochastic processes of random events is obtained (Theorem 1). 
This w i s  a generalization of w 2 of the paper [1] cited above. In w 2 of 
the present paper, the following problem is solved : let us suppose-that every 
event in a composed Poisson process is the starting point of a happening, 
which has a definite duration, being also a random variable; it is to be taken 
into consideration that the distribution taw of the duration of a happening 
may depend on the time when the happening started; we ask about the 
probability distribution of the number ~t of happenings going on at some 
time t. We shall prove that this distribution is also a composed Poisson 
distribution (Theorem 2). This problem for the case the underlying process 
of random events is an ordinary Poisson process, has been solved recently by 
the author, in the paper [2], where applications of this problem to several 
physical and technical questions (radioactive disintegration, telephone enginee- 
ring, flight of electrons in a vacuum tube) are also mentioned. Another 
application is mentioned in w 3 of /)he present paper. In w 3 the general 
composed Poisson distribution is obtained as limiting distribution of sums of 
integer-valued independent random variables ; as a matter of fact, it is proved 
(Theorem 3) that if _~,~1, ~,,2,...~,~,, are independent integer-valued random 
variables, which are ,,infinitely small", i. e. if we suppose 

(1) lim max P(~,,~ =[= 0) = 0, 

and if the distributions of the sums 

(2) ~n = ~,1 @ ~'n2 @ ' ' "  @ ~?,1,',, 
are tending to a non-degenerated limiting distribution for n - - - ~ ,  this limiting 
distribution is necessarily a composed Poisson distribution. Necessary and 

6* 
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84 A. R~:NYI 

sufficient conditions for the convergence of the distributions of the sums 
(2) are also found, by applying a theorem of B. V. GNEDENKO and A. N. 
KOLMOGOROFF [3]. This result is closely connected with the fact established 
in {} 4 (Theorem 4) that the class o f  composed Poisson distributions may be. 
characterized as the class of infinitely divisible distributions of integer-valued 
random variables, which assume the value 0 with positive probability. 

The theory of composed Poisson distributions, as developed in [1] and 
the present paper, is now in many respects complete; but the possibilities of 
applications of these distributions are far from being explored. 

I am thankful to A. CsAszAR for his valuable remarks which I utilized 
in preparing the manuscript of the present paper. 

w I. Non-homogeneous composed Poisson processes 

Let the process start at t - -  0, and let us denote by ~ (t > 0) the number 
of events which occur in the time interval (0, r The following assumptions 
are made : 

A) If sl<tI<=s~<t2<=...<=s,.<t,., the random variables ~ - - ~ , ,  
o . . . , ,  ~.~, are independent. 

B) Let W~(s,t) denote the probability of exactly k events occuring in 
the time interval (s, t), i. e. let us put (s < t; k = 0 ,  1, 2 , . . . )  

(1.1) W,~(s, t) = P(r162 = k); 

we suppose, that for a n  arbitrary small e > 0 and any arbitrary large T >  0, 
a positive number d > 0 can be found such that for arbitrary r = 1, 2 , . . .  and 
Sl < tl ~< se < t~ =<... --< s,. < l,. < T for which 

22 (ts-s ) < 
j = l  

we have 

(1.2) 
r 

H Wo(sj, !,) > 1 - - e .  

Condition B) postulates the ,,rarity" of the events forming our process 
in the sense that it is highly probable that no event will take place during a 
sufficiently short time consisting of an arbitrary number of time intervals. In 
[2] a second ,,rarity" condition (Condition C)excluding multiple events, has 
also been postulated; in the present paper this condition is dropped. 

We shall prove the following 

THEOREM 1. Under conditions A) and B), denoting by 

(1.3) t, z )  = t) z 
tc=O 
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ON COMPOSED POISSON DISTRIBUTIONS, .  I I  85  

(1.9) 

and 

the generating function of our process, we have 
t e o  

(1.4) log t, z) = 22(z - 1)jc,.(0 
r ~ l  s 

where the e~,(~) are non-negative integrable functions and ~:~ c~,(~) converge,~ 
,.=1 

almost everywhere. In other words we have 

r---1 , r l + 2 v 2 + . , . + l ~ : r k ~ k  , " ~  " "  

T/ms ~ ~.~ is distributed according to a composed Poisson law for every t > O. 

Pro@ Let us put 

(1.5)  - -  log ~(s, t, z) = ~p(s, t, z) ; 

we have evidently 

(1.6)  q~(s, *:, z) q~(~, t, z) 9D(s, t, z) 
and thus 

(1.7)  ~(s,  ~, z)-[-~p(~, t, z ) : ~ ( s ,  t, z) 

for s < ~ < t .  
Taking into account that 0--<~(s, t, z ) ~  1 for all real positive z N  1, it 

follows that 

(1.8) ~ (s, t, z) : ~o~ (I) 

is an additive function of the interval I ~ ( s ,  t), which is non-negative for 
0 ~  < z - <  i. We shall prove that for s<--t <<- T, %(1) is absolutely continuous, 
uniformly for [z]-< 1. As a matter of fact, let us suppose that 0 N S l  < ti Nse < 

< te < ' ' '  ~ S,. < t, <<= T and . ~  (# - - s j )  < d, where d is chosen so that (1.2) holds 
j ~ l  

1 
for some ~ > 0; In what follows we shall always suppose that e < ~ - ,  which 

3 
implies that Wo(sj, tj) > ~ ;  it follows that 

1 
]q~(s~, t j, Z)] >= Wo(s~, t j ) - -  ~_,~=i W,,.(sj, t j ) =  2 Wo(sj, t j ) - - I  > 2 -  > 0 

I 1 --9)(sj, ty, z)! <= ~ W~(sj, ti) ll - - z  '~] <= 2(1 - -  Wo(sj, tj)) < 2 "  
k - - - 1  

Thus 9(si,  t i, z) is different from zero in the closed unit circle ]z] ~ 1 and 
therefore ~p,(I : / )=-- logg(s~, t j ,  z ) i s  analytic in the unit circle. Using the 
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86 A. RENYI 

1 1 
2]r valid for any complex r with ]c~ I < 2 '  we obtain inequality log ~ r  

1 f <  
IG-.(Iy)] = log 1 - -  (1 - -  ~ (s#, tj, z)) = 2[ 1 - -  9 (s/, t i, z)] ~ 4 (1 - -  Wo (si, (4)) 

1 
and taking into account that ~ < l o g ~ -  for 0 < ~ < 1, we obtain, using 

(1 .2) ,  t h a t  

Z [%(/~)] -- -<4 " 2 ( U  ' 1 ) 1 (1. 10) (1--Wo(sj,  t;))<=41og\j_~ _--<4log . 
j : l  j : i  Wo(-Sj, td' ) 1 - - ~  

As we have remarked above, %(Iy) is analytic in the unit circle; thus we 
may put 

C . (1. 11) w~( / j )=  o(I/)--~_~ c,~(Iy)z" 
k--'l 

where c7,:(I) ( k = 0 ,  1, 2 , . . . )  are functions of the interval I = ( s ,  t). It follows, 
by CAUCHY'S formula, that 

and 

(1. 12) ci.(1)-- k !  ~ ( I )  d;  for k :  1, 2, 
2~:iJ ~1~+1 "" 

where the integration is extended over the circle [~] = r < 1. But using (1. 10) 

if ~ ( t j - - s j )  < 6 a n d  I j : ( s j ,  t;), we have 
j = I  

j ~ l  14: 

and thus c1,:(I) are also absolutely continuous additive functions of interval. 
Thus  we may put 

8 

where c~,(~) is L-integrable, k = 0 ,  1, 2 , . . . .  Now we shall prove that c~.(~)>0 
for k =  1 , 2 , . . .  This can be proved by the same method, as used in [1], by 
showing the non-negativity of the coefficients ci, f iguring there, as follows. 
We shall prove that 

(1. 13) c~ : ( t )~  lim Wl~(t , t+dt)  A~+(, At ( k - -  1, 2, . . . )  

for almost every t, and thus cT,.(t)>=O for k - - 1 , 2 , . . . .  As a matter of fact, 
we have 

i f ,  W,,:(t, t + At) z '~ : e-~#~ (J~) 
k = O  
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O N  C O M P O S E D  P O I S S O N  D I S T R I B U T I O N S ,  I I  8 7  

where J I : ( t ,  t4-At). Differentiating both sides k times with respect to z 
and substituting z = 0, we obtain 

k! W,,,(t, t + d t ) =  

= -  ~J~l;) (ZJ I)  @ ,,~ CC~, . . . . . . .  k--I ( ~ ) ( J ) ( ~ J I ) )  r e-%bo(Al) 
cq + 2 ccs + . . .  + (/~ - 1) ~k - - i  ~ lc , ' =  

where c~lc,~...~k_ , are numerical coefficients, ~j are non-negative integers, 
j =  1, 2 , . . . ,  k---1. As @h(AI) = - - j !  #(dI), we have for IZl _-< 1 and almost 
every t, I~o~J)(dI)]=o(dt) for j - =  1, 2 , . . . ,  k - - l ,  if k is fixed, and thus we 
obtain, using ~1 @ c~2-t- ... -}- c~k ~ ~ 2  for k > 2 that 

k! Wk(t, t + At) = [--~pf)(AI) + o ( J t ) ]  e-V,0(a~) 

and therefore (1. 13) follows. Thus co(l)--%(1) ~ 2 c~(1) zk is a power series 

with non-negative coefficients. Thus taking into account that ~p~:(I)~-0 and 
c.-J ,9o 

consequently lim~;~c~(I)z~-co(1), we obtain that ~,c~(I) converges and 
z-e- 1 k = l  ? t = l  

its sum equals co(1), and therefore we may write 
oo 

% ( I ) =  ff_,c,,:(I)(1--z":). 

Thus Theorem 1 is proved. 
If the process is homogeneous, cj,(T) does not depend on T, c~(z)~c# 

(k 1, 2 , . . . )  and .we obtain as a special case the results of [11 {} 2. If c7,:=0 
for k = 2 ,  3 , . . .  we obtain the ordinary Poisson process. Let us mention that 
in case of an inhomogeneous Poisson process the inhomogeneity is not 
essential, as it can be eliminated by a change of the scale of time. As a 

matter of fact, we have only to put t'=-fCl(Z)d~. On the other hand, in the 
0 

case of inhomogeneous composed Poisson processes this is not possible, 
because by introducing a new time scale we can make one arbitrarily chosen 
c~,,(~) constant, but in general not all of them at the same time. Thus there 
exist ,,genuinely" inhomogeneous composed Poisson processes. 

w 2. The distribution law of ~ 

The following theorem will be proved: 

THEOREM 2. Let us start from an inhomogeneous Poisson process of 
random events, the characteristic function of which is given by (1.3) and (1.4)~ 

We suppose that 2 kcT~(t) ~ ff(t) converges and is L-integrable, i. e. that the 
1 ~ 1  

mean value of ~ exists for every t > O. Let us suppose that each event of this: 
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88 A. R E N Y I  

process is the starting point oj some happening, the duration of which depends 
also on chance, and let F(,, x) denote the distribution function of the duration 
of a happening starting at time t and let us put q~(,, x) ~ 1 --F(~, x) ; we 
suppose that r is continuous, further that ~(~, x ) > 0  for all ~ and x? 
Let us denote by ~ the number of happenings going on at time t. The law 
of distribution of ~ is a composed Poisson distribution, w#h generating function 

(2. 1) 

where 

(2. 2) k 
0 

and c,~(,) is defined by ( 1 . 4 ) ;  evidently we have dk(t)~O. 

Prooff. Let us divide the interval (0, t) into n equal parts by means of 

the points t,,.~ k t ( k ~ o ,  1,.. . ,  n)and let us denote by J Ik  the interval 
n 

(tt~_~, tt:); let us put further 3tT~tk--t~_l and 

(2 .3 )  M~,:~ Max ao( , , t - -~ ) ;  m~,.~ Min ~ ( T , t - - , ) .  

Let V~(r) denote the probability that there are exactly r such happenings going 
on at time t which started in the t ime  interval zlI~(k~ 1, 2,...., n). First w e  
shall prove the following inequality: 

where W . } a ~  W~.(b~-~, t~:). In fact, if r happenings are going on at time t, all 
of which started in the time interval JL,., there must have been s ~  r events 
in this interval; now if a happening started exactly at time , (tT,. ~--~=t~..), 
the probability that it will continue going on at time t is q ) ( ~ , t - - , ) ;  as we 
do not know the exact value of ,, only that it lies in JL,,, we can state only 
that this probability lies somewhere between mT~ and M~.; similarly the pro- 
bability that the  happening considered is finished before t being equal to 
F(v, t - -~ )  with , in z/L~, lies somewhere between 1--M~,: and 1--m~.. 

Now let us introduce the functions 

(2.5) V (r)z 1, 2 . . . .  , n).  
r ~  

1 If FG, x) does not depend on r, the condition ~(~, x) > 0 can be dropped. 
2 lhe  idea Of the proof of Theorem 2 is the Same as that applied in w 2 of [2] 
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1 
It follows from (2 .5)  and (1.4)  that for 0=<Z=< 7 

A 1--M,~) - -1  = exp e,.( L,) ((m,~zq- '" < 
(2. 6) 

_--<Z(J0(z) _--< exp C,.(AIk) ((Mt~z § 1 ~m~.,)"-- 1) . 

(To ensure the convergence of the series in the exponent at the right of 
(2. 6), we choose n sufficiently large, to obtain a Ml:<=2m~.) Denoting the 
mere1 value of gf~--g,~_~ by ~1:, we have by (1 .4)  

" (Ofj[;(S, t, Z)) Zc~ 
(2. v) ,,,,~= m "  >,(t , ,  ~, t~) = t o~ ~< = , : , , - ~ , ( a : , ~ )  

(the existence of ,,/i: has been postulated 7), we obtain easily 

(2. 8) z('O(z) = exp [ g,(<-l,  t,., m,..z+ 1 --M,~)§ 

with 1Ol = < 2. 
Now let p~v(t) denote the probability of exactly N happenings going on 

at time t. We have evidentIy 

(2. 9) p x ( t ) =  Z VI(FI) V2(r,) . . .  >,(E,,) 
rx + ~ 4 - . . . + r n ~ N  

wtiere the summation is extended over all ordered n-tuples of non-negative 
i~tegers (rl, r2,...,  r,) satisfying r~ @ re -t- ""  -t- r,~ = N. Let us put 

50 

_- 2 ,  p~,.(t)~ ; (2. 10) X(z, t) ~ ~" 

X(z, t ) i s  the  generating function of the random variable ~,. According to 
(2 .9)  we have 

(2. 11) z(~, t) = Hz( '0 (~ )  

and thus, in view of (2. 8) 

(2. 12) 7,(z, t)  = exp - -  ga(h:_~, t~, m~z+ 1--Mk)+O' ~o~(M~--mk) 
k=l k~l 

]@'I~2. Now, if n-~, the second member in the exponent at the right of 
(2. 12) tends to 0, while the limit of the first member is 

t 

(2. t3) ~,<z , t )=~=~fc , (~)[C, ( , , t - - , : ) z§  
0 

Thus we obtain 
z(z, t) =- e ~(~,0. 

a We use here that r  and that &(r,x) is continuous. 
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9 0  A, R E N Y t  

By simple rearrangement we obtain 

(2. 15) 
k = l  

where dj~(t) is defined by (2. 2); thus Theorem 2 is proved. 
Let us mention that if c k ( , ) ~ 0  for k = 2 ,  3 , . . . ,  i. e. if the underlying 

process is an ordinary Poisson process, we have (cf. [2]) 
t 

(2. 16) ~(z, t) = ( z - -1 ) j ' c l (Q  at, (~, t--v) d'r, 
0 

hence *1~ is distributed according to an ordinary Poisson distribution. More 
generally, let us call a composed Poisson distribution to be of degree D if 
c ,~( , )~0  for n > D; it follows that the degree of the distribution of ~, is equal 
to that of ~ (this holds also for D : ~ ! ) .  

{} 3. Convergence to composed Poisson distributions 

In this {} we shall prove the following 

THEOREM 3. L e t  ~,a, ~,,.2, . . ., ~,<, denote non-negative independent integer- 
valued random variables (n ~ 1, 2 , . . . )  which are ,infin#ely small", that is, let 
us suppose 

(3. 1) lim max P(~, , ,~@0)=0.  
~ - ~  oo l ~ l ~  ~ k  n 

Let us put 

(3. 2) 
',:n 

further p,~,,~ = P(~k  = s) and c,.~ ~ ~_,p,,~:'9. The necessary and sufficient 
lc=-O 

condition for the convergence of  the distribution functions of  the sums ~,, is 
the existence o f  a sequence o f  non-negative numbers cl, c . , , . . . ,  c , , . . ,  with the 

ce o o  

following properties: ~ ~ '  c~ convelges, and ~ ,  c'9 > O, further 
8 = i  .9=1 

(3. 3) lim 2 ! c , , , - - c , ]  = 0 .  

I f  .(3. 3) is satisfied, the distribution of % tends fo r n - - ~  to the composed 
Poisson distribution function having the generating function 

(3.4)  9o (z) = exp ~.7 c'9 @'9-- 1 . 
\ s = l  

Proof. We shall deduce Theorem 3 from the following important theorem 
of B. V. ONEDENKO and A.N. KOLMOOOROFF (Theorem 1 of w 25 of [3]): 
The necessary and sufficient conditions for the existence of constants 
A,~(n= 1 , 2 , . . . ) e n s u r i n g  the convergence to a limiting distribution of the 
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distributions of the sums ~,.=~,,~ @.~,., + . . .  q-~,,7,: --A,~ of independent,. 
infinitely small random variables, the distribution function of ~,,,., being denoted 
by F,~,:(x), are as follows: the existence of non-decreasing functions M(u) 
( - -7~< u < 0 ; M ( - - ~ ) = 0 )  and N(u) (0 < u < + ~ ; N ( +  ~ ) = 0  of bounded 
variation and of a constant a such that 

a) in every point of continuity of M(u) resp. of N(u) we have 

lira . ~  F,j.: (u) M(u) for u < 0, 

(3.  5) ,., 

lim ~ (F,j, (u)-- 1) = N(u) for u > 0, 

b) 
\ limlim i [X (f ';] 

(3. 6) . . . .  x2dF~,.:(x)- xdF,,,,.(x =~"-. 
lim lira t7:% 

In case the above conditions are satisfied, the constants A, may be chosen 
so that 

k n  

Ixl<3 
where ~ is an arbitrary positive number such that --~' and ,8 are points of 
continuity of M(u) resp. of N(u). Denoting by f(t) the characteristic function 
of the limiting distribution of ~,, we have (formula of P. LEVY) 

o-'2 te 
logf ( t )  = ir t--  ~ + 

~o 

f (  I f (  eg~*--I 1 iut q-u"-] tdN(u, 
(3. 7) o Jut ~dM(u)§ 

+ e ~r 1 1 ~ ~  
- ~ 0 

where M(u), N(u) and ~ are defined as above and r is a real constant. 
In our case the condition that the variables ~,7,L are "infinitely small" 

is equivalent to the condition lira rain P,J~o= 1. We have further F,,.:(u)~O 
u->-wo l ~ l e ~ t r  n 

for u < 0 ,  (thus the first condition of a ) i s  satisfied with M ( u ) ~ O )  and 
c~ 

F,~(u) : Y~p,,~,:~ for u > 0, and therefore, in view of .~P,7~.~ : 1, 
s < ~g s 0 

to,, 

(3 .8 )  ~ (F,,,, ( u ) - -  1) = - -  v C~,s. 

Hence the second condition of a) is equivalent to the existence of the limits 

(3. 9) lim D,,,, = D,~ with lim D,~ = 0 
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for u =  1, 2, . . .  where D,,,, = ~ c  .... (Clearly the sequence D~,D.,_,..., D, , . . .  

is non-increasing.) Condition b) is in our case automatically satisfied with 
a = O ,  in view of the fact that for 6̀  < 1 all integrals figuring in (3. 6) vanish. 
For similar reasons, i n c a s e  conditions (3. 9) are satisfied we may choose 

A,, = 0 (n = 1, 2 , . . . ) .  Putting C~ = D~,--D,,+I (clearly c,~ ~ 0 and ~ c,~ con- 

verges), it is evident that (3. 9) implies 

(3. 10) lim (c,,,--cs) 0 (s= 1, 2,...). 

Of course the contrary of this is not valid, but if we replace the set of 
conditions (3. 10) by the single one 

oo 

(3. 11) lim ~.TIc~,.~--c,[:0, 

then it is easy to see that (3. 11) is equivalent to the set of conditions (3. 9). 
As a matter of fact, let us show that (3. 9) follows from (3. 11) and vice 
versa. If (3. 11) is satisfied, we have 

(3. 12) ]D,,,--D,,[= ~ (c,,s , c .  0 <= 2[c,,~--c, l, 
.~>_ ,~ 

thus (3.9) is valid for every u =  1, 2 , . . . .  Conversely, from (3. 9) it follows 
oo 

(3. 13) ~:' 

2 (C,*- -c*) - [  - Z (c*--c,,~)<=D, 1--DI@22c.~@2N6`}77 ") 2 ! 

s ~ l  8 ~ N  

where ~ '  is extended only over those values of s for which c~--c,i~ > O, and 

6`!/u max [c.~--c,~,~l ; thus 
s <" N 

(3. 14) 2 !c,,,--cs[ <_ D,, ~-- DI + 2D~v+ 2Na!? ~'). 
s 1 

Clearly lira e ! iv)=0 for every fixed value of IV, according to (3. 10). Now 
-tl >- co 6` 

let us choose N sufficiently large to obtain D u < ~ -  and then no sufficiently 

6' 
large so as to ensure ]D,, , --D~[< 3-  and 6`}f) < ~ for n--> no. It follows that 

the right-hand side of (3. 14) is < e for n > n0, which is equivalent to (3. 11). 
Therefore if and only if (3. 3 ) i s  Valid, the conditions of the theorem of 
B.V. GNEDeNKO and A. N. KOLMOGO~OVF are satisfied with M(u)zO and 

N ( u ) = - - ~ c , ,  a=O and A,~=0  and  thus the distribution function of the 

sum % = ~ , , ,  @_~,,,, ~ - . . .  q-~,~.: converges to a limiting distribution having 
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the characteristic function f ( t ) ,  where 

l o g f ( t ) = i r t 4 -  e~'~--I  14_u~) ~=1 ,=, 
0 

As ~Z,~ assumes only non-negative integes values, and lira P ( r b ~ = 0 ) >  0,4 we 

oo 
~ S Cs 

must have (see w 4) 7 = , ~ ,  ~4_s ~ and thus 
, ~ = 1  - i -  

which is equivalent to (3. 4), owing to f ( t )~-~(e ' :~) .  Thus Theorem 3 is. 
completely proved. 

This limit theorem suggests new applications of composed Poisson 
distribution. For example, let us consider the mixture of two or more grained 
materials having different specific weights. In particular, suppose that there 
are only two materials and the ratio of their specific weights is 1:2. The 
specific weight of the mixture will be evidently a mean value of the specific 
weights of the components, the factors being proportional to the quantities 
(volumes) of the different components. But if we investigate the specifi c weight 
of small parts of the mixture, we sha l l  find that it fluctuates around the 

�9 mentioned value and we may ask about the distribution law of this specific 
weight. Clearly we can construct a simple urn-model which describes adequately 
the mentioned situation, and it follows by Theorem 3 that the distribution of the 
specific weight of a selected small portion of the mixture is approximately a com- 
posed Poisson distribution with generating function exp (c~ (z - -  1) -~ c2(z ~=- 1)). 
The same consideration can be applied to the specific weight�9 of small parts. 
of an alloy of two or more different-metals, etc. 

w 4. Characterization of composed Poisson distributions 

Finally let us prove the following theorem, which throws light on the 
above results. 

4 We have P(,~,~.-o)=Ilpn~o=j[Iil-~po~ , a s  by 

s , (3. 1) lira m~x P,~8 ~ 0  we have p,~.~ <~-  for n>=no, 
1 ~ k ~ k n s = l  

1 
and  u s i n g  1 - - x  > e - 2 .  for  0 < x % ~ - ,  it fo l lows  

00 ,~o 

lira P ( % = 0 ) : >  lira e s = l  = e  >0. 
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94 A. RENYI 

THEOREM 4. The class of composed Poisson distributions can be charac- 
terized as the class of infinitely divisible distributions of non-negative, integer- 
valued random variables, which assume the value 0 with a probability > O. 

Proof. We start from the canonical form 

O- o - t '2  

log f ( t )  ~ iy t - -  ~ -  + 

(3. 15) o ? 
+ f (  d ' ' t - 1  1 iUt§ ~ )dM(u)+j(d , ,~  1 ! iut -) 

(where y and a are real numbers, M(u) and N(u) non-'decreasing functions 
of bounded variation in the intervals ( - 7 ~ ,  0) resp. (0, + ~) ,  and M(--r  == 
~ N ( - } - ~ ) = 0 )  of the logarithm of the characteristic function of an infinitely 
divisible distribution. The logarithm of the characteristic function of a composed 
Poisson distribution is of the form 

2 (3.16) log f ( t )=~,c ,~(e""- - l )  with c,>=O and c , < ~ .  

Putting ~ O, M(u)~ 0 in (3. 15) and choosing for N(u) the following function : 
n c , .  N(u) - - ~ . ~ c ,  for u > 0 and putting y =  ~.~ we conclude that every 

composed Poisson distribution is infinitely divisible. As a matter of fact this 
can be seen also by taking into account that any composed Poisson distribution 
is the convolution of a finite or an enumerably infinite number of Poisson 
distributions (see [1]). Conversely, let us suppose that the variable ~ assumes 
only non-negative integer values and its distribution is infinitely divisible, i. e. 
for any n = 2, 3, 4 , . . .  it can be represented in the form ~ = ~") + ~.(;") + . . .  + ~i ') 

~ ( , a )  , ,  t .  . . where the variables ~ t,~ = 1, 2, ., n) are independent and equally distri- 
buted. Denoting by f ( t )  the characteristic function of ~, we know that logf( t )  
can be represented in the form (3. 15). Clearly a ~ 0 ,  because if not, the 
distribution function of ~ would be continuous. As a matter of fact, let us put 

f (  t) : fi( f)A( t) 

where f ( t ) = e  -9-. As f i ( t )  is t he  characteristic function of the normal dis- 
z ~2 

-tribution function F2(x)-- 1 f e~ ] [~a  e du, if F(x) denotes the distribution 

function of ~ and F~(x) the infinitely divisible distribution function whose 
characteristic function is equal to f~(t), we have 

§  

f (x)  = j F., (x--y) dFl(y). 
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O N  C O M P O S E D  P O I S S O N  DT.STR!BUTIONS, I f  9 5  

Taking into account that 

iF(x+h)_F(x)]~ I hl 

this contradicts our assumption that ~ assumes 
values. But since 

oo 

(3. 17) f ( t ) =  ff_,P,.:d '~ 
Ic~l 

we see that f ( 2 ~ ) =  1, and hence the real part 
Therefore we have 

]E,(ag-h)--F~(a) < !hi it follows that 

- - ,  which means that F(x) is a continuous function; 

only non-negative integer 

( p ,  = pC_ = k ) ) ,  

of logf (2~)  must vanish. 

since c,,>--O for n =  +1 .  + 2 ,  if - ~" . . . .  . . . ,  ~_,, ~- 0 for some n > 0, we should obtain 
arbitrary large negatiVe integer powers of e ;~ with positive coefficients at the 
right of (3.20), but not at the left of (3.20), which is a contradiction; thus 
c_,,--O for n =  I, 2 , . . . .  As we have supposed Ao@0,  w e  obtain that at the 
left-hand side of (3.20)  the non-vanishing term containing the lowest power 
of e '~ is Aoe-~*Y. But at the right-hand side of (3.20)  the term of lowest 

oo 

power in e *~ is the constant e ~ &-0;  hence we must have 7'=0.  Accor- 
dingly we obtain 

oo 

(3. 21) logf(t)=~.]c,~(e*'~--l) 

(3 .20)  

22 A,-" e,:~(,,-7') exp c,, (e ~'' ~-- 1 

f -ace 

I~ . . . . .  ~ ,  = u ~ -  k i  exp - -  c,,. 

0 

{3. 18) i(cos2Teu--1)dM(zO+ 

Using the fact that M(u) and N(u) are non-decreasing and cos 2 ~ u - - 1  < 0 
if u~-4-0 rood 1, we,, obtain that M(u) and N(u) can increase only for 
negative resp. positive integer values of u. Thus putting c,, ~ M(n + O)--M(n--O) 
for n ~ - -  1, - - 2 , . . .  and c,~ ~ N(tz @ 0 ) - - N ( n  0) for n ~ 1, 2 . . . .  , we obtain 

+.cr 

(3. 19) log f (  0 = it~q- ~_,' c,,(e;"t-- 1) 

(here and in what follows ~ '  means that the summation is extended for every 

n except for n =-0)  and we have to put 7 ' =  ~ ,  nG But it is easy.to 

see that in case c ~, c_,_,,..., c , , , . . .  were not all equal to 0, ~ would assume 
also negative integer values; as a matter of fact, we have 
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96 A. RENYI 

As we supposed that ~.~c~, - - N ( 0 )  is finite, it follows that (3 .20)  is the 
~ , ~ 0  

characterist ic function of a composed Poisson distribution; Theorem 4 is 
hereby proved. Let us mention the following 

COROLLARY. I f  a composed Poisson distribution F(x) is the convolution 
of two infinitely divisible distributions, Fl(x) and F2(x) which have POsitive 
jump at x :  O, these must also be composed Poisson distributions of degree 
not exceeding that of F(x). 

This is a generalization of a well-known fact concerning Poisson-  
distributions. (Cf. [3]). The proof is obvious. 

It should be  pointed out also that the theorem of w  of [1] is a simple 
consequence of Theorem 4. 
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O B O B I _ L [ E H H B I E  P A C F I P E ] I E J I E H H f [  T H F I A  I I Y A C C O H A ,  II 

A. PEHbH (ByaanemT) 

( P e a ~ o ~ e )  

Pa6o~ra ~un~e~c~ npo~o3~<enHe~ c o ~ e c ~ o f i  pa6oTbI [1] JI. fln0mn , ft. Aae~ i~ auTopa 
UaCTO~efl CTaTbH. FIpoAon~<a~Tc~ I4CCJ]e~oBan~ COCTaBnbIX paunpe~eaenu~ Yiyacconfl, T. e. 
pacnpe~eaenu~, xapa~Tep,cT~necKa~ ~yn~<~n~ ~oTop~x u~eeT BuR 

(1) exp c, e i ~ -  1 , 

oo  

rae c, ~ 0 (n = 1, 2, . . .)  u p~;~ ~ '  c,~ CXO;mTC~. B w 1 nafi~en o6mm~ B ~  UeCTalmOHapnblX 
n=l 

Nap~oBC~X CTOXaCTnqec~nx npoKeccoB c.~yqa~iHb~X CO6BITHI~ Ta~ itaK a;o~aabmaexc~ 
cnexym~a~ 

T e o p e m a 1. rlycTB ~'t osHa,-iaeT ,-IncJIo C06bIT!a}i, npoHcxoA~m,~x B HnTepBaae 
Bpe~enH (0,'0, (~'o~0),  . npea;nonox<,M qTO s~,InoaRenbi caeAymIJJ, ae yC0IOBH~[: 

fftr-- fist HegaBHCHMBI, 
B) nycTb W~ (s, t) oanauaeT BepO~TnOCTb C06blT,~ ~ - -  & ~ /C (k = 0, 1, 2, . . . ,  s < t) 

n n p e A n o n o > ~  qTO /3,.rill " BC~NOH .~ > 0 n T ~> 0 Ha.~eTCS:l zal<aTi ~J > 0 ,  HTO ec.rlH 

Tor~a xapa~Tep~cT~uec~a~ ~ y n ~ a ~  
,9O 

~o (s, t, zZ) = Z W,, (s, t) e i~ 
~ 0  

,aMeer BH& 

~(s, t, u) exp (e ~ , ~ -  1) "c,(. 0 d~ , 
~r=l s 

OO 

r~e cr(0 - -  HeoTp,aaTenbna~, L-HnTerp.pyeMa~ cl)yni<a,~ , ri p ~  ~ c,.(0 CXO~:TC~ nO~T~I 

~Ct0/Iy, T. e. npon;ecc {~-~} 9IB019IeTCgI IteCTaaI4oHapHhIM COCTaBHblM npoReccoM Ilyaccona. 

B w  i4CCZle~yeTc~ c~le~yiotRa~t npo6,~eMa: nyCTb Ka~<~oe CO6bITHe HeKOTOpOro 
HecTaI~I~oHapHOFO COCTaBHOFO rlpoKecca FlyaccoHa ~IBJI~IeTCgI HCXO~HBII'r FIytfltTOM HeROTOpOro 
~pyro ro  C06BITFI~ BTOpOFO Tl/Illa~ I<OTOpOe npo/1o~>~aeTc~ B TeqeHHe ge~<oToporo npoMe~yTKa 
BpeMeHH; npo~oJl~HTe.~bHOCTb C06HTI4~t BTOpOrO po~a, KOTOpOe Ha~a0mcb BO BpeM~ t, 
flBJIfleTCfl cay,a~Ho~i Ben~xuHno}i c aa~OHOM pacnpe;{e:iem~ Y(t ,  T). Ilono~<uM ca(t, T ) =  

l - - F ( t ,  T), H o6oanauuM uepea ~ uncao CO6b~TUfl BTOpOro poxa, KOTOpbm npoucxo~T 
B ~o~eRT t U IWCTb p y ( t )  ounauaeT Bepo~TaOCT~ TOrOnTO ~ ~ N ( N ~  0, 1, . i .) .  Tor~a 
nMeeT MeCTO cne~y~oiila~ 

T e o p e ~ a 2. Ecn.  ~(t, T) 9IBOIgleTCTI nenpep6iBnofi H IIOJIO>I<HTe.~IBHOi~ (10ynuI~,ei~, 
Tor~a nOOlO~HB 

oo  

z ( z ,  t) = 
3~0 

7 Acta Mathematica 
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9 8  A. RI~NYI: ON COMPOSED POISSON DISTRIBUTIONS, II 

~MeeM 

Z(z, t ) ~ - e x p  . ~  d~(t) (z a ' -  1) , 
1; 1 

rRe  
/: 

'in ca 

t} 

T. e. pacnpe/aeaenHe cayqai ino~ Bea~HHH *~, ~Ba~eTC~ C0CTaBHBIM pacnpe•eneuHeM Hyacco~a 
tlacTnsif~ c0~yqaB aTOi~ TeopeM.st ao~aaan  ~ pa6oTe [2]. 

B w  xoKaaana c n e a y m ~ a q  

T e o p e M a 3. I~yCTB ~1, ,g,,2, . . . ,  ~,,7,,, - -  ueaaBucH~s~e cay~a~iu~te Be.~uq~1Ht, i, npHHH- 
Ma~omue ; tomb neoTpfm,aTenbm,ie aeab le  3naqeHH:~, l~i npexuOalO*nM, ttTO BeaHuHHhI ?,,. 
, ,6eci<oseqno M a , ~ " ,  T.e. lira max P(f,,~ ~ O) O. 

HOJIOkKFIM l~:,~ /,'. 

li '=l 1r 

aa~  TOrO '-ITO6BI p a c n e p e x e a ~ n e  OT Z,, CXOA~aOCb 6BI K nemoTopo~y npe~IeaBHoMy pacnpe -  
x e a e H H m  n p n  rt - -+  co,  Heo6xoB,3MO H #OCTaTOqHO cylReCTBOBaHHe TaRRx YIOCTOflHHt~IX 

2 6 ( s  = 1, 2, . . .),  UTO lira 16,, - C ] - 0. Ecan  OTO ycaosne  BBlnOJIH~eTC~, TO pacapeaem~e 
~ ->- c,a =.1. 

OT Z,, ~Ba~eTc~ CocTaBEIB1M pacnpe~eaeRHe~ Flyaccona, xapaRTepHcTHqecKaf~ ~)yHI{l{lelfl 

;<OTOFOpO eCT1, 

(-" ) exp Z c'~(e'~e 1) . 

,~o~aaaren~cT~O aTO~ TeopeM~z onnpaeTc~ Ha OA W Teope~y 13. B. FHeAeH~o n A. H. 
Ko.~Moropona [3]. 

B w  COCTaBHBIe pacnpeAe~enH~ I lyaccoua  xapa~TepHaymTc~ ~ a ~  6 e a r p a n n q ~ o  
aeanluble p a c n p e a e a e H ~  tfeoTpHIJ, aTeflBHBIX ae,~guHcnenHbix cayqa imHx BeJIHqHH, ROTOpble 
npnH.MamT 8HaqenHe 0 c noa0Y~.Te.~bno~i BepoflTHOCTBtO. 

B pa60T e y~aaanBt HeROTOpBle BO3NO~HBIe ~maucmc~n e i4 TeXHuqec~ne n p n M e u e n . g  
Teop~n COCTaBHBIX pacnpeaeaenma  ilyaccoHa, HanpnMep n p .  ~cc~eaoganuH ToRa B o.~eK- 
TpoHnHX nas~nax, B o6aacTn ~Baen~i~ pa~Inoa~T~Bnoro pacnaAa, npu  ~ayqen~n narpyaKn 
Te~e~}OHHB~X CTaHKg~, npn  o~peAeaeunn p a c n p e ~ e a e n . ~  aHaqenm~ y~e:IbnOr0 Beca B 
cn~a~ax ~ T.X. 
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