ON COMPOSED POISSON DISTRIBUTIONS, II
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ALFRED RENYI (Budapest), corresponding member of the Academy

Introduction

The present paper is a continuation of a joint paper of L. JANoOssy,
J. AczeL and the author [1]. It consists of four parts. In § 1 the general form
of inhomogeneous stochastic processes of random events is obtained (Theorem 1).
This § .is a generalization of § 2 of the paper [1] cited above. In § 2 of
the present paper, the following problem is solved: let us suppose- that every
event in a composed Poisson process is the starting point of a happening,
which has a definite duration, being also a random variable ; it is to be taken
into consideration that the distribution law of the duration of a happening
may depend on the time when the happening started; we ask about the
probability distribution of the number 7, of happenings going on at some
time f£. We shall prove that this distribution is also a composed Poisson
distribution (Theorem 2). This problem for the case the underlying process
of random events is an ordinary Poisson process, has been solved recently by
the author, in the paper [2], where applications of this problem to several
physical and technical questions (radioactive disintegration, telephone enginee-
ring, flight of electrons in a vacuum tube) are also mentioned. Another
application is mentioned in § 3 of the present paper. In § 3 the general
composed Poisson distribution is obtained as limiting distribution of sums of
integer-valued independent random variables; as a matter of fact, it is proved
(Theorem 3) that if &, &w,...6m, are independent integer-valued random
variables, which are ,infinitely small“, i.-e. if we suppose
hH lim max PEn==0)=0,

and if the distributions of the sums

(2) Ty == Eﬂ?l + gﬂ? + e + gn/;,,
are tending to a non-degenerated limiting distribution for n — oo, this limiting
distribution is necessarily a composed Poisson distribution. Necessary and

o
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84 A. RENYL

sufficient conditions for the convergence of the distributions of the sums
(2) are also found, by applying a theorem of B. V. GNEDENKO and A. N.
KoLMOGOROFF [3]. This result is closely connected with the fact established
in § 4 (Theorem 4) that the class of composed Poisson distributions may be.
characterized as the class of infinitely divisible distributions of integer-valued
random variables, which assume the value O with positive probability.

The theory of composed Poisson distributions, as developed in [1] and
the present paper, is now in many respects complete; but the possibilities of
applications of these distributions are far from being explored.

[ am thankful to A. CsAszar for his valuable remarks which I utilized
in preparing the manuscript of the present paper.

§ 1. Non-homogeneous composed Poisson processes

Let the process start at /==0, and let us denote by & (f >0) the number
of events which occur in the time interval (0, f). The following assumptions
are made:

Ay If si<ti=ss<b=...=s.<t, the random variables & —&,,
&,—&,, ..., &,—8&, are independent.

B) Let Wi(s,t) denote the probability of exactly £ events occuring in
the time interval (s, £), i.e. let us put (s<t;k=0,1,2,...)

(1. 1) Wi(s, £y = P(&—E—k);
we suppose, that for an arbitrary small e >0 and any arbitrary large 7> 0,
a positive number d> 0 can be found such that for arbitrary r=1,2,... and

SiI<h=S<h=...=s.<1,<T for which

> (t—s) <9,
Jj=1

we have
(1.2) I Wois;, t) > 1—e.
J=1

Condition B) postulates the ,rarity“ of the events forming our process
in the sense that it is highly probable that no event will take place during a
sufficiently short time consisting of an arbitrary number of time intervals. In
[2] a second ,rarity“ condition (Condition C) excluding multiple events, has
also been postulated; in the present paper this condition is dropped.

We shall prove the following

THEOREM 1. Under conditions A) and B), denoting by

(1. 3) @(s, 1, 2) — O Wi(s, 1) 2
k=0
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the generating function of our process, we have

® t
(1. 4) log (5,1, 2) = > (z'—1) [ e (n) v
r=1 g
where the c¢.(v) are non-negative integrable functions and >, c,(v) converges
r=1

almost everywhere. In other words we have

ﬁ( j'cj(t) dz)r) |

fi!

Wi(s,£) = exp (— Zm ch,.(f;) dr) . 3

r=1g riH2egt .tk =k J=1

Thus & is distributed according to a composed Poisson law for every t> 0.
Proof. Let us put

(1.5) —log (s, t, 2) =Y(s, 1, 2);
we have evidently

(1.6) @ (s, 7, 2) (v, t, 2) = @(s, ¢, 2)
and thus

(1.7) W(s, 7, 2)+Y(r, t, 2)=Y(s, 1, 2)
for s<r <t

Taking into account that O0=¢(s, t,2)=1 for all real positive z=1, it
follows that

(1.8) y(s, t, 2)=v.(I)

is an additive function of the interval /=(s, f), which is non-negative for
0=2z=1. We shall prove that for s=t=7T, vy.(I) is absolutely continuous,
uniformly for [z|=1. As a matter of fact, let us suppose that 0=s </ =5<

<t =..=s <t,=Tand Z(z‘j—sj) < d, where d is chosen so that (1. 2) holds
=1
for some &> 0: In what follows we shall always suppose that e<L, which

implies that Woy(s;, ;) > %; it follows that

< 1
(1.9 g0, 6,2)| = Walsy, ) — 3 Wilsy 1) = 2Wa(s, 5)—1> >0

and
. ® 1
1—o(s), 4, 2) = ng(Sj, 1 =2 =20 —Wols;, ) < 5

Thus ¢(s;, t;, z) is different from zero in the closed unit circle [z[=1 and
therefore y,.(I;)) = — log ¢(s;, ;, 2) is analytic in the unit circle. Using the
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86 A. RENYL

inequality log ]<2[ e| valid for any complex e, with |&| < ; , we obtain
1 :

io for 0 <e<1, we obtain, using

and taking into account that « < log
(1. 2), that

(.10 Sl =4 30— y=4tog| L gl ) =sion

j=1

1

As we have remarked above, 1.(f;) is analytic in the unit circle; thus we
may put

ol

(1. 11) v.(h) = ell)— el
where ¢:({) (k==0,1,2,...) are functions of the interval /- (s, f). It follows,

by Caucny’s formula, that
: /
o= | 2

and

(1. 12) a(l)=—— 271 #g]g) dg for k=1,2,...

where the integration is extended over the circle |{|==r< 1. But using (1. 10)

if Z(z‘ —s;) < d and [;=(s;, t;), we have

Slawy=2

and thus ¢, (/) are also absolutely continuous additive functions of interval.

Thus we may put
12

() = yf oYL

where ¢ (7) is L-integrable, k=0, 1,2,.... Now we shall prove that ¢;(1) =0
for k=1,2,... This can be proved by the same method, as used in [1], by
showing the non-negativity of the coefficients ¢, figuring there, as follows.
We shall prove that

o Walt e dt) -
(1. 13) ck,(z‘)—AI:TU — T (k=1,2,..)
for almost every ¢, and thus ¢ (#)=0 for k=1,2,.... As a matter of fact,
we have

WI (t Z‘“|“L11‘)2’ e-w @r)

R

(=1
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ON COMPOSED POISSON DISTRIBUTIONS, IT 87

where o[=(t,t+ 4t). Differentiating both sides & times with respect to z
and substituting 2=0, we obtain

KWt ¢+ ) =

o

~ -1
|y D)+ o T (— 0 1))%] e
Jj=

2,4+ - e =k
where oo, ., are numerical coefficients, ¢; are non-negative integers,
J=12, ., k—1.As W (A1) = —jl¢;(4]), we have for |z|=1 and almost
every £, | (dI)| = o(dt) for j=1,2,...,k—1, i k is fixed, and thus we
obtain, using e a4+ 4 1 =2 for k> 2 that

kY Wi(t, t 4+ At) = [—y§(4T) 4 o(dt)] e @D

and therefore (1. 13) follows. Thus ¢, (f) —y(l) = ¢i(I)2* is a power series
k=1

with non-negative coefficients. Thus taking into account that v, (/)=0 and

consequently lim > ¢.(1)2*=co(I), we obtain that > ¢.(1) converges and
z>1k=1 k=1

its sum equals co(/), and therefore we may write

wz(f)séck(l) (1—2%).

Thus Theorem 1 is proved.

If the process is homogeneous, ¢ () does not depend on =, ¢(v) =c;
(k=1,2,...) and we obtain as a special case the results of [1] § 2. If ¢,=0
for k=2, 3,... we obtain the ordinary Poisson process. Let us mention that
in case of an inhomogeneous Poisson process the inhomogeneity is not

essential, as it can be eliminated by a change of the scale of time. As a
t

matter of fact, we have only to put z":J ci(r)dr. On the other hand, in the
0
case of inhomogeneous composed Poisson processes this is not possible,

because by introducing a new time scale we can make one arbitrarily chosen
cr(7) constant, but in general not all of them at the same time. Thus there
exist ,genuinely” inhomogeneous composed Poisson processes.

§ 2. The distribution law of 7,

The following theorem will be proved:

THEOREM 2. Let us start from an inhomogeneous Poisson process of
random events, the characteristic function of which is given by (1. 3) and (1. 4).

We suppose that > kei(f) = u(t) converges and is L-integrable, i. e. that the
=1

mean value of C; exists for every t>0. Let us suppose that each event of this
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88 A. RENY!

process is the starting point of some happening, the duration of which depends
also on chance, and let F(z,x) denote the distribution function of the duration
of a happening starting at time t and let us put @(v,x)=1—F(z, Xx); we
suppose that @ (v, x) is continuous, further that ®(v,x) >0 for all v and x.!
Let us denote by n, the number of happenings going on at time {. The law
of distribution of n; is a composed Poisson distribution, with generating function

@.1) %(2, £) = exp (édk(t)(zk—l))

where
13

2.2)  d@) :ﬂé e[} @ 1= —a(, t——z))"—’“] du

0

and c,(7) is defined by (1. 4); evidently we have dy(t)=0.

Proof?. Let us divide the interval (0,¢) into n equal parts by means of
the points z‘,,-:ﬁnf— (k:0, 1,...,n) and let us denote by 4/, the interval
(ti-1,15); let us put further 46, =t —1t,1 and

(2.3) M= Max ®&(7,t—7); mp= Min O(r,t—7).

f1=T=Y PR ES RS
Let Vi(r) denote the probability that there are exactly r such happenings going
on at time ¢ which started in the time interval 44 (k=1,2,..., n). First we
shall prove the following inequality:

2. 4) f{ﬁ) WOm (1 — M) " = Vi(r) = f (ﬁ) WOM (A —my)™

s=y S=r

where W — W,(t, 1, #,). In fact, if r happenings are going on at time ¢, all
of which started in the time interval 47, there must have been s=r events
in this interval; now if a happening started exactly at time = (hii=7=t),
the probability that it will continue going on at time 7 is @(r,{—7); as we
do not know the exact value of =, only that it lies in 47,, we can state only
that this probability lies somewhere between m; and M;; similarly the pro-
bability that the happening considered is finished before # being equal to
F(r,t—7) with ¢ in 41,, lies somewhere between 1—M; and 1—my.

Now let us introduce the functions
(2. 5) 1®(2) = D Vil(r) 2 (k=1,2,...,n).
=\

L if F(s, x) does not depend on z, the condition @(r, x) > 0 can be dropped.
2 The idea of the proof of Theorem 2 is the same as that applied in § 2 of [2]
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ON COMPOSED POISSON DISTRIBUTIONS, II 89

It follows from (2.5) and (1. 4) that for 0;25%.

)

exp {2 e (45) ((mpz +1— M) — 1)] =
(2.6) -

=sW(z)=exp [é e (dh) (Myz +1—my;) — 1)] .

(To ensure the convergence of the series in the exponent at the right of
(2. 6), we choose n sufficiently large, to obtain® M.=2m;.) Denoting the
mean value of &, —U&, , by w;, we have by (1. 4)

2.7 o= 2 nWoltir, b)) = ( ai(—g;*z)j =2 re.(4L)
=1 L =1 =1

(the existence of w; has been postulated!), we obfain easily
(2 8) X(k) (Z) e eXp [—_w(fla—ly tk; ml.'Z‘I_ 1 _Mlc) +3_{ch (MZ;—‘mlc)]
with [9] = 2.

Now let px(¢) denote the probability of exactly N happenings going on
at time f. We have evidently
(2. 9) (= > Vi) Vel Vo)

rytret. oy, =N

where the summation is extended over all ordered n-tuples of non-negative
imtegers (r1, re, ..., r,) satisfying ri+ro4--- 4 r,=N. Let us put

(2. 10) 2z 1) zﬁgp;\v(l‘)?“';

x(z, 1) is the generating function of the random variable m. According to
(2. 9) we have

3

@.11) 1z, t) = L 9(2)

k=1
and thus, in view of (2. 8)

(2. 12) x(z,t)==exp [— ;;170(1‘7.--1, by, miz 41— M) ‘|"3/-ZFLls(Mk“‘mk)]

E=1
|9'|=2. Now, if n—oc, the second member in the exponent at the right of
(2. 12) tends to O, while the limit of the first member is

(2.13) 7z, ) :;;‘JC,.(Z) [@(r, {—1)2+1— Dz, f—) dw.

Thus we obfain
1(z, t)y=e"&D,

3 We use here that @(z, x) >0 and that @(z, x) is continuous.
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90 A. RENYL

By simple rearrangement we obtain

(2. 15) (2, i):édk(t)(zk-—n

where dy(t) is defined by (2. 2); thus Theorem 2 is proved.
Let us mention that if ¢,(z)=0 for k=2, 3,..., i. e. if the underlying

process is an ordinary Poisson process, we have (cf. [2])
12

(2. 16) iz, t)=(z—1) |
0

hence #; is distributed according to an ordinary Poisson distribution. More

generally, let us call a composed Poisson distribution to be of degree D if

¢.(r)=0 for n> D; it follows that the degree of the distribution of #; is equal

to that of L, (this holds also for D =ool).

au(v) P(r, t—n) dv,

§ 3. Convergence to composed Poisson distributions

In this § we shall prove the following

THEOREM 3. Let &, §ua, ..., Eu, denote non-negative independent integer-
valued random variables (n=1, 2, . )whzch are infinitely small”, that is, let

us suppose

3.1 lim max P(z?m =£0)=0.
n—>w 1=k=k

Let us put

(3 2) L/ gul -+ gazz +- ‘.tml:“ )

Tin

further puws—=PEuw=35) and cys —Z Pws-  The necessary and sufficient

Ie=0
condition for the convergence of the distribution functions of the sums %, is
the existence of a sequence of non-negative numbers ¢y, ¢s,...,Cs,... With the

following properties : x> 2, ¢s converges, and Zes >0, further

Sk

(3.3) lim Z [€us — 5] =0.

1> ws=1

If (3. 3) is satisfied, the distribution of n, tends for n—oo fo the composed
Poisson distribution function having the generating function

3. 4) @(2)=-exp (é: CS(ZS—I)J .

Proof. We shall deduce Theorem 3 from the following important theorem
of B. V. GNEDENKO and A. N. KOLMOGOROFF (Theorem 1 of § 25 of [3]):
The necessary and sufficient conditions for the existence of constants
A, (n=1,2,...)) ensuring the convergence to a limiting distribution of the
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distributions of the sums #n,=8&u +8&o -+ -+ +8&x,—A, of independent,
infinitely small random variables, the distribution function of §,, being denoted
by Fu(x), are as follows: the existence of non-decreasing functions M(u)
(—oo<u<0; M(—o0)=0) and N(u) (0 < < + o0; N(4 o0) =0 of bounded
variation and of a constant ¢ such that

a) in every point of continuity of M(u) resp. of N(u) we have

lim P F,Z; () =M(u) for u <0,
> wh=1
(3. 5) .
lim > (Fu(z)—1) = N(u) for u >0,
n—>wh=1
b)

lim lim

s> %50 [ W -
(3. 6) L Z[ f X Fu (%) ——-( f XdFy, (x))]
lim lim \=

E> T N> W

lo|<e o] <e

In case the above conditions are satisfied, the constants A, may be chosen
so that

kn

A=) J xd Fy. ()
/n‘:ll g

where § is an arbitrary positive number such that —8 and ¢ are points of
continuity of M(u) resp. of N(u). Denoting by f() the characteristic function
of the limiting distribution of #,, we have (formula of P. LEvy)

242
log f(t) =iyt— 0; +

tut IUt cut 1 ZUt
+f(e )dM(u)+J(e 1 1—}—ng) dN(u)
0

where M(u), N(u) and o are defined as above and y is a real constant.
In our case the condition that the variables &£, are “infinitely small”
is equivalent to the condition lim min p.,o=1. We have further F,.(u#)=—0

o 1=h=Fk,

for u <0, (thus the first condition of a) is satisfied with M(z)=0) and

3.7)

Fo ()= y,),,;s for u >0, and therefore, in view of Zp,,“ =1,

s=0

3. 8) >  (Fa()—1) =— 4 Cus -
Hence the second condltlon of a) is equlvalent to the existence of the limits
3.9 lim Dy, =D, with lmD,=0
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for u=1,2,... where D,, :Zcm. (Clearly the sequence Dy, D, ..., D,,...

is non-increasing.) Condition —6) is in our case automatically satisfied with
6==0,in view of the fact that for ¢ <1 all integrals figuring in (3. 6) vanish.
For similar reasons, in case conditions (3. 9) are satisfied we may choose

A,=0 (n=1,2,...). Puttmg C.=D,—D, 1 (clearly ¢, =0 and Z . con-
=1

verges), it is evident that (3. 9) implies

(3. 10) lim (cis—cs) =0 (s=1,2,..).

Of course the contrary of this is not valid, but if we replace the set of
conditions (3. 10) by the single one

3. 11) hmZ\cm —0,

N ms=1

then it is easy to see that (3. 11) is equivalent fo the set of conditions (3. 9).
As a matter of fact, let us show that (3.9) follows from (3. 11) and vice
versa. If (3. 11) is satisfied, we have

2 (e

? (13

(3.12) |D,y—D, | —

<Z’Cns s 3

thus (3. 9) is valid for every u=1, 2,.... Conversely, from (3. 9) it foilows

o
Z ;Cus_cs[ —
w©

22(6775’ CS)_I_zz (Cs—‘cazs) Du 1"‘D1+2 ZC5+2N€(\)
s=1

(3.13)

where X7 is extended only over those values of s for which ¢;—c.s >0, and
(N)

& = max [cg Cus]; thus
(3 14) Z!Cﬂs"—cs[é nI_DlLZD\ +2N8(\)
s=1
Clearly lim &) —0 for every fixed value of N, according to (3. 10). Now
let us choose N sufficiently large to obtain Dy <+ and then n, sufficiently

6

(N) -

large so as to ensure |D,;— D1|<~—ands for n=n,. It follows that

6N
the right-hand side of (3. 14) is < e for- n > n,, which is equivalent to (3. 11),
Therefore if and only if (3. 3) is valid, the conditions of the theorem of
B. V. GNEDENKO and A. N. KOLMOGOROFF are satisfied with M(z)=0 and

N(@)——2>¢c,, o—0 and A,—0 and thus the distribution function of the

s=u

sum 7, =&, +&s -+ ...+ &y, converges to a limiting distribution having
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ON COMPOSED POISSON DISTRIBUTIONS, II 93

the characteristic function f(f), where

@D

—_7 i sut 1 ___ illt) _ S ist_ . ( _ ﬂ SCs ).
logf(t)—zyt+) (e 1 i dN(u) gcs(e D+it|y 3%1 s
Q .
As 1, assumes only non-negative integes values, and lim P(7, =0) > 0,* we
SCs

must have (see § 4) y:ZI ye
s=—1

(= exp| D)

and thus

which is equivalent to (3. 4), owing to f(f)=¢(e’*). Thus Theorem 3 is
completely proved.

This limit theorem suggests new applications of composed Poisson
distribution. For example, let us consider the mixture of two or more grained
materials having different specific weights. In particular, suppose that there
are only two materials and the ratio of their specific weights is 1:2. The
specific weight of the mixture will be evidently a mean value of the specific
weights of the components, the factors being proportional to the quantities
(volumes) of the different components. But if we investigate the specific weight
of small parts of the mixture, we shall. find that it fluctuates around the

- mentioned value and we may ask about the distribution law of this specific
weight. Clearly we can construct a simple urn-model which describes adequately
the mentioned situation, and it follows by Theorem 3 that the distribution of the
specific weight of a selected small portion of the mixture is approximately a com-
posed Poisson distribution with generating function exp (c;(z—1) - ¢,(2*—1)).
The same consideration can be applied to the specific weight of small parts
of an alloy of two or more different metals, etc.

§ 4. Characterization of composed Poisson distributions

Finally let us prove the following theorem, which throws light on the
above results.

Iy kn =]
¢ We have P(nn:O):ﬂp"kozﬂ(l*—zmks), as by

k=1 k=n s=1

1=k=k

@D o]
3.1 Hm m-x ( p”ks)zO we have me < % for n=n,,
n \s—1 s=1

|
and using 1—x > e-2sfor 0 << x < o it follows

’zzcns ‘2265
lim P(7,=0)= lime *=' =¢ *=' >0

N = L > ®
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THEOREM 4. The class of composed Poisson distributions can be charac-
terized as the class of infinitely divisible distributions of non-negative, integer-
valued random variables, which assume the value O with a probability > Q.

Proof. We start from the canonical form

o2 f?

log f(1) = iyt— "5+

@ 15) \ iut y iut
. i [4
+j(e t—1— i UZ)a’M(u)JrJ (e t—1— g )dN(u)

0

{where y and o are real numbers, M{(u) and N(u) non-decreasing functions
of bounded variation in the intervals (—oo, 0) resp. (0,4 o), and M(—oo)==
— N(~ o) —0) of the logarithm of the characteristic function of an infinitely
divisible distribution. The logarithm of the characteristic function of a composed
Poisson distribution is of the form

(3. 16) log f(t)— > c.(e™*—1) with ¢,=0 and ¢, <oo.
n==l n=1

Putting 6 =0, M(z)==0in (3. 15) and choosing for N(z) the following function :

N(u)—— 2c, for u>0 and putting y— > dacl -, we conclude that every

== n=1 1+n
composed Poisson distribution is infinitely divisible. As a matter of fact this
can be seen also by taking into account that any composed Poisson distribution
is the convolution of a finite or an enumerably infinite number of Poisson
distributions (see [1]). Conversely, let us suppose that the variable & assumes
only non-negative integer values and its distribution is infinitely divisible, i. e.
forany n=—2, 3, 4, ... it can be represented in the form &= &" +&” + ... + &
where the variables &”(k—1,2,...,n) are independent and equally distri-
buted. Denoting by f(f) the characteristic function of & we know that log ()
can be represented in the form (3. 15). Clearly 0=0, because if not, the
distribution function of & would be continuous. As a matter of fact, let us put

F) =1 1:(1)

where f(f)=e 2. As fi(f) is the characteristic function of the normal dis-

% 12

tribution function Fg(x):ﬁ—fe du, if F(x) denotes the distribution
o

function of § and F,(x) the infinitely divisible distribution function whose
characteristic function is equal to f(f), we have

F()= | F(x=))dF,(7)
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Taking into account that |F.(a+h)—F,(a) = ]21” , it follows that
o
]F(x+h)—F(x)j§J—, which means that F(x) is a continuous function;
V2o

this contradicts our assumption that & assumes only non-negative integer
values. But since

(3. 17) 7() :épkew (P, = PE=F)),

we see that f{(22x)=1, and hence the real part of logf(27) must vanish.
Therefore we have

(3. 18) .(CODZRLI—1>QM(U}*|(COSA i —1ydN(uy=0.

A K
Using the fact that M(u) and N(u) are non-decreasing and cos 2zuz—1 <0
if u=£0 mod1, we, obtain that M(z) and N(v) can increase only for
negative resp. positive integer values of u. Thus putting ¢, —= M (n + 0)— M(n—0)
for n=-—1,—2,...and ¢,= N{(n+0)—N(n—0) for n=1, 2,..., we obtain

(3. 19) log f(t) =ity + Z en(et—1)

==

(here and in what follows =’ means that the summation is extended. for every

+®

n except for n==0) and we have to put ' =y — > 1:5” But it is easy.to
see that in case ¢.1,C2,...,Cp,... Were not all equal to 0, &€ would assume

also negative integer values; as a matter of fact, we have

ZA,K-E“(“*Wexp( 5’ c, (et — 1))

n=0 n—=-m
3. 20) s k
( ) [ - ( 3 C”eint) } oo
n=-w N,
= e | &X Cn
St e Xe)
since ¢, =0 for n=+1,72,..., if ¢_, -,;O for some n >0, we should obtain

arbitrary large negative integer powers of e’* with positive coefficients at the
right of (3. 20), but not at the left of (3. 20), which is a contradiction; thus
c.,=0 for n=1,2,.... As we have supposed A,==0, we obtain that at the
left-hand side of (3. 20) the non-vanishing term containing the lowest power
of et is Age-*”. But at the right-hand side of (3.20) the term of lowest
_Xe

power in ¢'f is the constant e ! ”#O; hence we must have y'=0. Accor-
dingly we obtain

(3. 21) logf(z‘)—ZC (eivt—1)

=1
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96 A. RENYL

As we supposed that > 'c,— —N(0) is finite, it follows that (3. 20) is the

. n=0
characteristic function of a composed Poisson distribution; Theorem 4 is
hereby proved. Let us mention the following

COROLLARY. [f a composed Poisson distribution F(x) is the convolution
of two infinitely divisible distributions, F\(x) and F,(x) which have positive
jump at x=0, these must also be composed Poisson distributions of degree
not exceeding that of F(x).

This is a generalization of a well-known fact concerning Poisson-
distributions. (Cf. [3]). The proof is obvious.

It should be pointed out also that the theorem of § 3 of [1] is a simple
consequence of Theorem 4.
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ON COMPOSED POISSON DISTRIBUTIONS, I 97

OBOBLUEHHLIE PACIIPEJIENEHUA TUIIA IIYACCOHA, 11
A. PEHBY (Byaaneinr)

(Peswome)

Patora signsieTcst npopo/nkenuem copmecteol pacotel [1] JI. SIwomn, 5. Auen m arTopa
nacrosueit craten. IIpopo/mKa0TCs HCCACROBAKHS COCTABHBIX paunpepenenuil Ilyaccona, . e.
pacrpenenennii, XapaKTePUCTHIECKAs QYHKUMS KOTOPBIX HMEET B

(D exp (Z c, (et — 1)) ,
n==1

rie c,=0(n=1,2,...) u pan E ¢n cxomutest. B §1 maiimen o6uiufl Bup HecTaMOHAPHBIX
n=1 ’

MapKOBCKMX CTOXACTHYECKMX DNPOLECCOB CHYy4YaiiHBIX - COObITHH, TAK KaK [OKA3LIBAETCS

crenyoIas

Teopema 1. Ilycte ¢§; OsHadaer umMCAO COOBITHH, TPOHCXOASAIINX B HMHTEPBAIE
spesenn (0,7), ({;=0), n IPEINONOKHEM UTO BLITOJHEHBI CICRYIOIIHE YCIOBHS:

aecnn §; < b =<8, < =< --- <8 <, TO Cayvaiineie BennunHbl &, — &s,, G, — oy - -y
Gt — (s, HE3aBUCHMBI,

8) nycte Wi (s, f) 08HAuaeT BEPOSATHOCTb COOMTHA & — ==k (k=0,1,2,..,58<?)
M NpeANOnONmM 9TO g "Beskokr &>0 u T>0 madipercs rtaxas ¢ >0, 410 ecim
s b=l Zs<t<TH

P g

D (t—s) <8, 10 umeen fJ Wo(s;, 1) > 1—e

Jj=1 j=1
Torga XapaxkTepucTHHecKast (ByHKUMS

g5t u)= > Wils f) e
k=0
UMEECT BUJ

» !
o (s, t, 1) =exp (Z (e —1) J ¢, (@ dr),

s o}
rme ¢,.{(r) — Heorpuuatensuas, L-unrerpupyemast Qysxuus, u psj Zc,,(z) CXOARTCS TIOUTH
r=1
BCIOAY, T. €. mpouecc {{;} SIBASIETCS HECTAIMOHAPHBIM COCTaBHpIM mponeccoM Ilyaccosa.

B §2 wuccmepyercs ciepymumaa mpoaema: NOyCcTh Ka)Kpoe COOBITHE HEKOTOPOro
HECTALUOHAPHOr0 COCTABHOrO mpouecca Ilyaccora ABISETCS MCXONHBIM TMYHKTOM HEKOTOPOro
Apyroro COGBITHST BTOPOrO THIA, KOTOPOE NMPOJO/DKAETCS B TEUEHHE HEKOTOPOTO MPOMEKYTKA
BPEMEHM; NPOLOLKHTEILHOCTE COOBITHST BTOPOFO POAd, KOTOPOE HA4YaIOCh BO Bpems 1,
ABISIETCS  Caydadnol - Bemuumnofl ¢ 3akoHom pacnpepeneuus F(f T). Ionowum @(t, T) =
=1—F( T), n 0603HA4YNM Hepe3 7, YHUCAO COOLITHIl BTOPOro poAa, KOTOpBIE NPOUCXOAST
B MOMEHT f u mycTh py(f) O3HAUAET BEPOSTHOCTH TOrO 4TO 7, =N (N=0,1,...). Tora
UMEeT MECTO CenyroIast

Teopema 2. Eciu @(f, T) sBasiercs] HENPEpPLIBHON H NONOKUTENLHON (yHKUMEH,
TOrfia HONOKHB

€0
1= > py()zy
N=0
7 Acta Mathematica
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08 A.RENYI: ON CCMPOSED POISSON DISTRIBUTIONS, 11

UMeeM

7(z, 1) =exp (Z d, (#) (28 — 1)) ,
Ji 1 y

rue

.
di(?) ;}ﬁ

143

> e[} @Gty (i 0, oy,

=N

T. €. PACHpEIeIeHne CAyYauHON BEIHYMHBL 7; ABASETCS COCTaBHBIM pacnpenencuuem [lyaccona
YacTHeI# CAy4ayl 9TOM TeOpeMbl JOKazaH B padote [2].
B §3 norasana caepyrouwas

Teopema 3. llycte &1, &u2, ..., &nky — HEBABHCUMBIE CYYAHHBIE BEMHUMHLL, TPHHIN-
Mawlue b HeOTPMUATENbHBIS UENbIC 3HAUEHWS, ¥ NPEINOJIONKAM, UTC BEIHUMHLl &
,0eCKkoBeuno manpi®, T.e. lim max P& = 0)=10.

fen

> 1=k
[Monoywmnm ko L
Yn — 2 Sk s Prks = P(gn,l." = S) u C == Z Duks
=1 Fe=0

Bl TOrO 4TOGBI pacnepepenuse OT y, CXOAWAOCH Obl K HEKOTOPOMY IpEeNbHOMY pacnpe-
OENCHHI0 TIPH 71 —> oo, HEOOXOAMMO K JO0CTATOYHO CYIECTBOBAHHE TAKHX MOCTOSHHBIX

x©
¢(s=1,2,..), uro lim E [€.s = €| == 0. Ecam 910 ycnoBue BRUIOHAETCS, TO pacnpejeine
n—>w :1

OT ¥, SBAAETCA COCTABHBIM pachpefeseHuem [lyaccoHa, XapaxTepscTHueckast —fyyHKLIUs
KOTOrOpO ecTh

exp (Z c(ev—1;
so1

HoxasaTeasCcTsO . 9TOR Teopembl ommpaercst Ha opHy Tteopemy D. B. Tmemenxo u Al L
Konmoroposa [3].

B §4 cocrapaeie pacnpzpesesust [lyaccoHa XapaxkTepusyiTCd Kak  Oe3rpaHHuEO
HEIMMBIE PACHPENeICHNs HEOTPHUATENBHBIX LETOUNCACHHBIR CAYYalHBIX BEAHYMH, KOTOPLIE
NPUHUMAIOT 3Hauenne 0 ¢ HONOKUTEILHOUW BEPOSTHOCTHI.

B pa6ote ykasaHel HEKOTOpHIE BOSMOMKHBIE (JHSUUECKHE K TEXHUYECKNE NPUMEHEHHs
TeopuM COCTABHBIX pacupeferenuit IlyaccoHa, manpuMmep npu HCCIEIOBAHMM TOKA B 9k~
TPOHHBIX AMIAX, B O0NACTM SIBJEHMI pajMOAXTHRHOTO pacnaja, TPU N3yYeHud HATPY3KM
TeneOBHKIX  CTaHOMH, - IPH ONpENeseHNH DAaCHpeie/eHnst 3HAUYEHHWH VHETbHOTO Beca B
cnnasax M T. . '
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