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On the large sieve of Ju V. Linnik

by

Alfred Rényi
Budapest

§ 1. Ju. V. Linnik 1) invented an ingenious method - called
by him the large sieve which enabled him to prove the following
theorem:

Theorem 1. Let us choose Y arbitrary primes pl, P2, ... py
where p,  VN; .i = 1, 2, ... Y, let further f(p) denote a positive
function, f(p)  p, and let us put

If we delete from the sequence 1, 2, ... N every integer belonging
to one of f(pi) fixed classes of residues mod pi, i = 1, 2, ...Y,
the number of integers which remain does not exceed

.

This theorem can be stated also in the following equivalent
form:

Theorem l b. Let us consider an arbitrary sequence
nl  n2  n3  ...  nz  N of positive integers, let us denote
further

For every prime p  ’N with the possible exception of at most

exceptional primes, the integers nl, n2, ... nZ occupy at least

p - f{p) different residue classes mod p.

1) Ju. V. LINNIK, The large sieve, Comptes Rendus (Doklady) de l’Academie
des Sciences de l’URSS, 1941, XXX, No. 4, 292-294 pp.
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This result of Linnik has been generalized by the author in
a previous paper 2). The generalized large sieve has been the
main tool in the proof given by the author of the theorem that
there exists a numerical constant K such that every integer N
can be represented in the form N = p + P, where p is prime and
P has at most K prime factors (multiple factors counted mul-
tiply).
The content of Theorem lb may be characterized as follows.

If the sequence of integers nl, n2, ... nz, n  N is sufficiently
dense (i.e. Z/N is not too small), for almost every prime p  1/N
almost every residue class mod p is representçd among the
numbers ni, i = 1, 2, ... Z. The first step of generalization
consists in proving that the numbers of the sequence ni are
"approximately equally" distributed among the different residue
classes mod p, for almost all primes p  VN. More exactly, it
can be proved 3) that the following theorem holds:

Theorem 2. Let us consider an arbitrary sequence of integers,
nl  n2  n3 ...  nz  N; let f(p) denote a positive function,
f(p)  p and let us put

Let Q (p) denote a positive function and let us denote

If Z(p, r ) denotes the number of integers n, which are con-

gruent to r mod p, we have for every prime p  v’N, except
for at most

,,exceptional" primes

for every residue r mod p with the possible exception of f(p)
,,irregular" residue classes.

2) A. RÉNYI, On the representation of even numbers as the sum of a prime and
an almost prime number, Bulletin (Izvestia) de l’Academie des Sciences de

l’URSS, Ser. math. 12, No. 1, 1948, 57201358 pp.

3) This is a special case of a general theorem, proved in the paper of the author,
cited above, p. 61, Lemma 1.
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The proof of Theorem 2 given in the paper cited above, is a
straightforward generalization of the method of Linnik. However
Theorem 2 makes it clear that the large sieve is essentially a
statistical statement, and suggests, that it can be found a method
of probability theory by which the large sieve can be proved.
As a matter of fact I succeeded in founding such a method, which
furnishes a new proof of the large sieve, completely différent from
the original method of Linnik, the result being even stronger
in some respect. The purpose of the present paper is to present
this new method. Instead of aiming at giving the most general
form of the large sieve, which can be obtained by the new method,
we shall try to give a clear exposition of the fundamental ideas
of this method.

§ 2. There have been made many attempts to apply probabi-
lity methods in number theory. The starting point of all such
investigations is the simple remarks, that the distributions of
the infinite sequence of integers in residue classes with respect
to relatively prime moduli are independent in the sense of pro-
bability theory. The difficulties in making advantage of this
fact may be described most simply in the language of the axio-
matic theory of Kolmogoroff4): The set E of "elementary
events" may be chosen as the set of all positive integers. The
field F of "random events" (i.e. a set of subsets of E satisfying
the Haudorff axioms5)) shall be chosen as the set of finite or
infinite sequences of integers (n1, n2,... nk} = A for which,
putting

the limit

exists. The field F, together with the probability function P( A )
defined by (3), satisfies the first five axioms of Kolmogoroff,
but the difficulty lies in the fact, that the sixth axiom, the socalled
axiom of continuity, is not satisfied. As a matter of fact this

axiom states that if A , n = 1, 2, 3, ... is a sequence of sets

t) A. KOLMOGOROF’F, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse
der Mathematik und ihrer Grenzgebiete, II. 3, Berlin 1933, p. 2.

5) F. HAUSDORFF, Mengenlehre, 1927, p. 78.
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belonging to the field F, each A n being contained in the preceding
set An-l’ and if the product of all sets A n is empty, then

If we choose for A n the set of all integers &#x3E; n, we see that this
axiom is not satisfied in our case. It may be remarked also that
F is not a Borel field of sets. For instance let Bn denote the
set of integers

It is easy to see that the sum of all sets Bn does not belong to
F, because if

we have

These remarks show, that we have to choose an other way.
As a matter of fact, all difficulties vanish if we restrict the set E
to the set of integers 1, 2, ... N with a fixed N, choose F as the
set of all subsets A = {nl, n2, ... nk} of {1, 2, ... N} and put

kP(A) =k-. . But in this case a new difficulty arises: the distri-
n

butions of the sequence 1, 2, ... N in residue classes with respect
to two relatively prime integers P and Q cease to be independent
in general (except if both P and Q are divisors of N); these
distributions however are in some sense "almost" independent,
if P and Q are small with respect to N, and our method can be
characterized by saying that it is based on a systematic use of
this "almost" independence. The method is also connected with
the theory of "quasi-orthogonal" systems of functions 6) but we
shall present the method in a simple direct way, without using
general concepts.

§ 3. Let N denote a positive integer, which shall be fixed
during this §. Let A denote an other positive integer A  N.

8) R. P. BOAS JR., A general moment problem, American Journal of Math.
63, 1941, 361-370 pp. See also R. BELLMAN, Almost orthogonal series, Bulletin
of the American Math. Soc. 50, 1944, 517-519 pp.
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We define the following system of functions in the interval (0, 1 ) :

(bere [y] denotes the integral part of y), where p runs over all
primes  A, and k takes the values 0, 1, 2 ... p - 1. Let us put

It follows by some simple calculations, that the functions, defined
by (5), satisfie the following three relations:

Clearly the values of ~, Â and ,u in (6), (7) and (8) depend on
the indices p, k, p’, k’, but it will be not necessary to indicate
this explicitly.
Now let us consider an arbitrary sequence of integers,

nl  na  n3  ...  nz  N, and let us denote by E the
set of those points x of the interval (0,1) for which [Nx] ~ nf
for some i  Z. Let E(x) denote the characteristic function of
the set E (i.e. E(x) = 1 if x belongs to E and E(x) = 0 if not),
and let us put

Now we have clearly

Multiplying out in (10) and using (6), (7) and (8), we obtain
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Now we have evidently

For the sake of brevity let us put

Using the inequality of Cauchy-Schwarz, we obtain

Thus we obtain from (11)

3

Let us suppose now, that A  lm. It follows from (15), that12

But it is easy to see, that if Z(p, k ) denotes the number of those
integers of the sequence nj, i - 1, 2, ... Z which are congruent
to k mod p, we have

Thus (16) gives

The fundamental inequality (18) is the source of the following

Theorem 3. Let us consider an arbitrary sequence of integers,
n,  n2  n3  ...  nz  N; let f(p) denote a positive func-
tion, f(p)  p and let us put
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let further Q(p) denote a positive function and let us denote

If Z(p, k ) denotes the number of integers n, which are congruent
3 
_

to k mod p, we have for evéry prime p C N , except for at

12

most

,,exceptional" primes

for every residue k mod p, with the possible exception of f(p)
irregular residue classes.

Proof of Theorem 3. Let us suppose, that there are Y excep-
3 
_

tional primes p  liN/12, , for which (17) is not satisfied for at
’ 12

least f(p) residue classes. For such an exceptional prime we have

Thus we obtain from (18) that

hieh proves Theorem 3.

Clearly Theorem 3 is of exactly the same type as Theorem 2.
It is stronger in that the number of exceptional primes, given by
(19) is less than the number of exceptional primes in Theorem 2.
As regards the range of "sieving primes" it is weaker, but this
does not make any difference in the applications. It may be

mentioned, that by choosing Q(p) ~ 1, we obtain a direct im-
provement of Linnik’s theorem, namely the following

Corrolary 1. Let us consider a sequence of positive integers
n,  n2  n3 C ...  nz  N. Let f(p) denote a positive func-
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tion, f(p)  p, and let us put r = min f(p). For every prime
3 ",3/N P

p 1/N except for at most 
Î2- 

P

fl9 
pV 12

p  except for at most

exceptional primes, the integers ni occupy at least p - f{p)
different residue classes mod p.
As an other special case let us consider the distribution of primes

in arithmetic progressions. Choosing for the sequence ni the

sequence of primes  N, we have the following
Corrolary 2. Let n(N, p, k) denote the number of primes
 N in the progression px + k, x = 1, 2, 3, ... p prime, (p, k) = 1.

3 
_

For every prime p  N, with the possible exception ofy 12
0 (fN . log N) exceptional primes, we have

for every residue k mod p, with the possible exception of at most
P3/4 irregular .residues k.. 

It is well known, that the distribution of zeros of the L-functions
of Dirichlet is closely connected with the distribution of primes
in progressions, and every result regarding the first or the second
problem has its consequences regarding the other problem.
Thus it can be easily understood, that by means of theorems of
the type of Corrolary 2 there can be obtained ,,statistical"
theorems regarding the zeros of the L-functions. Such results
have been given in the paper cited above 7). Using the improved
form of the large sieve as given in the present paper, these results
can also be improved.

Finally it may be mentioned, that (18) can be considered as

a special case of a general theorem of probability theory, which
will be published elsewhere 8).

Mathematical Institute of the University of Budapest (Hongarije).
(Received 15 February 1949).

7) See footnote 2).
8) A. RÉ.Nyi, Un nouveau théorème concernant les fonctions indépendantes

et ses applications à la théorie des nombres, to be published in the Journal de
Mathématique, 1949.


