ON A CONJECTURE OF H. STEINHAUS

By ALFRED RENYI (Budapest)

Introduetion. In a lecture [1] in 1937 H. Steinhaus for-
mulated the following conjecture: if a system

(1) {fn(®)} (n=1,2,...)

consisting of a finite or enumerably infinite number of sto-
chastically independent 1) measurable functions defined in a fi-
nite interval (a,b), is saturated with respect to independence,
i. e. if there exists no measurable function g(#), which is not
constant almost everywhere, and which could be added to
the system (1) without violating the independence of the sy-
stem, then the system of functions

(2) {fi'(z) fz%()- ... fn" ()}

where m,,m,,...,m, run independently over all non-negative
integers, and n=1,2,3,..., is complete in the interval (a,b).
He mentioned some suggestive examples, in which the above

1) In what follows the term “stochastically* will be generally omitted;
when we speak of independence we always mean stochastic independence.
The independence of measurable functions was defined first by Stein-
haus [2], the equivalence of his definition with the definition of A. N. Kol-
mogoroft (Uber die Grundlagen der Wahrscheinlichkeilsrechnung, Ergebnisse
d. Math. (1933)), in answer to a question of E. Marczewski, for the case
of Lebesgue measure has recently been proved by S. Hartman (Collo-
quium Math. I, 1948, p. 19-22). In the general case the two definitions
do not agree (see J. L. Doob, ibidem, p. 216-217). By the assertion
that (1) is a system of independent functions, we mean that these functions
are independent in their totality, i. e. not only every pair of these functions,
but also every 3, every 4,...., every n-tuple of functions of the systems
are independent of one another.
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assertion is valid, for instance when (1) is the system of Rade-
macher functions

(3) R (#)=sg sin (2" nz) (n=1,2,3,...)

in which case (2) is the well known Walsh system which is
known to be complete in the interval (0,1). Another example
is as follows: a function which itself forms a system, saturated
with respect to independence, will be called a universal function.
Clearly f,(#)=® is @ universal function; in this case (2) is the
system 1,#,4?%...,2" ... which is known to be complete.

In spite of these suggestive examples, the conjecture is not
true in general. Let us consider for instance the funetion

e if 0<<a<y,
”'(‘”)—{1 if j<o<l.

As h(z) is monotonic in (0,4) and outside this interval
it does not again take on the values which it takes on in (0,4),
according to a theorem of Ottaviani [3], h(x) is a uni-
versal funetion. On the other hand it is easy to see that the
system {"(2)} is not complete, as A"(z) is for every value of n
orthogonal to the funection g(#), which is defined as follows:

0 if 0oy,
glo) =1 1 it j<a<y,
—1 'if j<a<1.

Nevertheless, the conjecture of Steinhaus is valid for a very
general class of saturated systems of independent functions.

The purpose of the present paper is to prove the above
mentioned conjecture of Steinhaus under very general con-
ditions. In a lecture [4] held at the First Hungarian Mathe-
matical Congress in 1950 at Budapest, I proved the same
conjecture under more restrictive conditions; in the meantime
I succeeded in eliminating some of these conditions. In §1
I shall prove a general theorem which makes it possible to
establish the completeness of system (2) under a condition
in which the notion of independence does not figure at all;
this is a theorem of the theory of real functions, nevertheless
it contains all known cases in which the conjecture of Stein-
haus is valid. We introduce the notion of mawimal systems;
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the system (1) of real measurable functions defined in (a,b)
is called maximal, if for different values of 2 the sequences
{fa(w)} are different (except for a set of measure 0 of values
of #). Thus we call the system (1) maximal if there exists a set Z
of measure 0, such that if #, and #, do not belong to Z and
fa(®)=Tfn(®;) for all values of n=1,2,3,..., then #,=ux, The
content of the theorem is that if system (1) is maximal, sy-
stem (2) is complete. All examples of systems (1) of indepen-
dent functions, for which system (2) is complete, are maximal
systems. It is also interesting to note that a maximal system
of independent functions is always saturated with respect to
independence (Lemma 3). An interesting example of a ma-
ximal system in the interval (0,27), is the system consisting
of the two functions sin #, cosx; in this case system (2) —
after omitting those functions which are linearly dependent
on the others —is the system {cos"w, sin®-cos"z; n=0,1,2,...}
which is equivalent 2) to the system {cos nz, sin (n+1)z; n=
=0,1,2,...}, i. e. to the well known trigonometrical system,
which is known to be complete. Further cos # in itself forms
a maximal system in (0,#) and thus the system {cos®z}, —or,
which is the same, the system {cos nz} — is complete in (0,7)
(see [5]).

The example of the system {sin #, cos #} may be generalized
as follows: if u=f(z) and v=g¢g(r) (a<<o<<b) are the para-
© metric equations of a curve in the (u,v)-plane, which does
not intersect itself (or the set of multiple points of which cor-
responds to a set of measure zero of values of x) then the
system {f"(z)-g"(x); n,m=0,1,2,...} is complete (we suppose
f(z) and g(x) to be bounded and measurable). The case in
which system (1) consists only of a single function, is not
completely trivial either: in this case the theorem asserts that
if f(z) is bounded and measurable in (a,b), further if y=flx)
establishes a one-to-one mapping of the interval (a,b) onto
a set on the y-axis, then the system {f"(x)} is complete; this
is Lemma 2 of the present paper; it is stated in the form of
a Lemma, though it is a special case of our theorem, because

2) We call two systems of functions equivalent, if the sets of linear
combinations of the two systems are identical. Clearly if a system is complete,.
any system equivalent to it is also complete.
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the proof of the general case is based on this special case.
A function which forms a maximal system in itself, will be
called a maximal fumction.

The most important step which leads from Lemma 2 to
our theorem is the application of an idea of A. N. Kolmo-
goroff; he used this idea to prove a theorem on conditional
mean values in [6] in which he generalizes an earlier theorem
of mine [7] on the invariance of the central limit theorem
of probability theory, with respect to the change of measure
on the underlying field of probability3).

§ 1. Proof of the theorem on eomplete systems. We begin
by proving the following

Lemma 1. Let f(z) denote a measurable, bounded function,
defined in the interval (0,1)4), with values belonging to the same
wnterval. If g(z) is any bounded Baire funmction in (0,1) and
AZ>1, for any e>0 a polynomial P(xz) can be found such that

1
(1.1) l9(f()) — P(f(x))!4 dar <.
0

Proof. First we prove (1.1) for the case in which g(x)=1
if 0<e<<u<l and g(x)=0 for u<wz<<l. Given £¢>0, we
can find a polynomial P(z) with the following properties:
1. 0<P(2)<1, 2. |g(x)—P(z)|<e if 0<or<u and if v+ <o,

For instance, the polynomial

u—!-l/h

f (L—(z—t)2)"dt

(1.2) P(r) =2
fu—tz;" dt

-1
if » is chosen sufficiently large, has all the required proper-
ties. It follows, that

1
(1.3) [ l9(f(@) —P(f(@))|4 do < A+ | B(e)] - €,
0

®) I am thankful to A. Cs4sz4r for a valuable remark, which helped

me to simplify my proof.
¢) Throughout this paper we consider the interval (0,1), but evidently
all our theorems are valid for any finite interval.
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where E(é) denotes the set of those points for which

w<f(®)<u-+e and |E(¢)| its Lebesgue measure, and C is a po-

sitive constant. As evidently lim E(e)=0, (1) is proved for
>0

the functions mentioned. Applying the well known inequality

of H. Minkowski:

1 1 1 1 1
(1.4) f |a(x)+ b(@)|4 do < [ ([ |a(a)|4 dw)“+( f |b()|4 dw)“]“
0 0 0

it follows that if Lemma 1 holds for g(»)=g,(z), k=1,2,...,m,
it also holds for g(x)=2 ¢,g,(x). Thus Lemma 1 holds for any
=1

step function. Using the same inequality it follows that if
Lemma 1 holds for g(®)=ga(x), n=1,2,..., and

1
(1.5) tim [ |ga(f(2)—g* (f(2)}4 dv=0
n—>oo §
it holds for g*(») also. But as for any continuous function,
and therefore for any bounded Baire function ¢*®), a se-
quence of step-functions gn(#) can be found such that (1.5)
holds, it follows that Lemma 1 holds for any bounded Baire
function g¢(x).
Now we can prove

Lemma 2. If f(#) is a measurable, bounded and maximal
function in the interval (0,1) and 0<f(x)<1, the set of functions
(1.6) {"(@)} (n=0,1,2,...)
is closed in the space L2.

Proof. Let us suppose first that f(#) is a Baire function.
Let G(#) denote any bounded Baire function, in the inter-
val (0,1). Since f(#) is maximal, it follows that f'(y) and thus
G(f 1(y))=g(y) are also bounded Baire functions %), and apply-

ing Lemma 1 with A=2 to g(), since g(f(®)) =@(), it follows
that for any >0 a polynomial P(x) can be found such that

1
(1.7) [ |6(@)—P(f(@)P do<e.
0

5) For those values of y which do not belong to the set of values of f(z),
we define f“‘(y):O.
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As to any measurable funection F(z) of the class L?

a bounded Baire function G(2#) can be found such that
1

f (F(x)—@G(x))2dx<e, Theorem 1 holds if f(«) is a Baire funetion.
0

But as the integral (1.7) is not changed if the value of f(z) is
changed on a set of measure zero, Theorem 1 is proved.

Now we prove our

Theorem. Lei {f.(®)} be a finite or enumerably infinite
mazimal system of bounded measurable functions in the interval
(0,1), then the set of functions

(1.8) 11 (2) fz2(x) f?"(W)
(mk;O,l,g,...; k=1 wyMy M=1,2, ..}
ts complete in L2

Proof. We may evidently suppose that 0<f,(x)<1, fur-
ther that all f,(x) are Baire functions. Let us put

(1.9) ¢1(w)=22'2',(f1), where = ' én (@)

on ’
n=1 = n=1

is the dyadic expansion of z, i. e.

xr) =
ea(®) l 0 if 0<(2"
where (2) denotes the fractional part of z.

Further let us define ¢, (z)=¢,_,(¢:(z)) for k=2,3,..., and

o P
(1.10) 45} = Z%(fk‘w))

k—1_4 °
- 2 i
As @,(2) is a Baire function, gx(fi(2)) and thus f(2) is also a Baire
funection. It is easy to see further that f(x) is a maximal func-
tion ). As a matter of fact, if N= 2’_1(23 —1) we have ex(f(2))=
=gs(fr(@)); thus if x,4=w,, there exists (except when x; or z,

%) The introduction of a single function of one real variable, which
is maximal if and only if system (1) is maximal, is the idea of A. N. Kol-
mogoroff referred to in the introduction.
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belongs to a certain set Z of measure 0) at least one value of
for which f(2,)=f/(»,), and thus at least onme value of s
for which en(f(#,)) = &s(fe(®,)) + Ss(fr(mz)) = en(f(w,)), where
N=2r-1(2s—1); thus we obtain f(z,)= f(z,). It follows by
Lemma 2, that for an arbitrary F(z) e L? for any £>0 a po-
lynomial P(x) can be found such that

(1.11) .[I(F(m)—P(f(w),))Zdw<‘s.
Let us put ' .
SN(x)zz%%T.
As we have 0<<f(z)<1, O<kS:,( r)<1 and
(1.12) |f<m>—S~<x>|<§l'7v

for all values of x, it follows, that for any ¢>0 a polynomial
P(x) and an integer N can be found, such that
1
(1.13) f (F(#)— P(Sw(®)))2de< 4e.
. 0
. But again using Lemma 1, we can find for any 4 >0 and 6 >0
polynomials Py(x) (k=1,2,...,m) such that

1
(14)  [lga(fu@) —Pa(f@) Bda<s4  for k=1,2, ., N
0 )
and thus

1
(1.15) [ |gu(fa(@) — Pulfa(@) Fdw <o for r<A (k=1,2,...,N).
0

Choosing for A the degree of P(x), after some calculation by
putting

N
P
(1.16) GN(w):ZEI;(%ﬂ)’

k=1
we obtain:
1

{1.17) f | P(s,(@))— P(oy(@)) Pdz< C8,

0
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where C is a constant which depends only on P(z). Choosing
d=¢fc we obtain ‘

1
(1.18) f |F(6)— P(0,()) Pdw<9s.
0

As P(o,(2)) is of the form
(1.19) 2 2 2 cmlmg mle (@ jmz f (@),

my=0 my=0 mN—
i. e. is a finite linear combination of the functions (1.8) it fol
lows that the system (1.8) is closed, and thus complete in L2

§ 2. Some remarks on independent functions. We first
prove

Lemma 3. If the system of independent functions {fn(2)}
is mawimal, it is saturated with respect to independence.

Proof. We may suppose here also that the functions fu()
are Baire functions. Let us suppose, that there exists a fune-
tion g(x) of the class L2 such that the system {g(x);fa(®)} is
a system of independent funections. Then the function g(z) is
independent of ¢,(f,()) for k=1,2,... (note that ¢,(z) is a mono-
tonic function!) and thus g(z) is independent of

oo

(2.1) fa)= 3 P

9ok—1_4
k=1
also. Thus the functions f*(z) (n=0,1,2,...) are all indepen-

dent of g(x), and we have (see [2]) putting y:fg(w)dw
V]

1 1
(2.2) ffn y)dw= /f"(m)dm-f(g(m)—y)dmzt)
0 0

for n=0,1,2,... Clearly f(») is a maximal function and there-
fore the system {f*(x)} is closed, and thus complete. This im-
plies that g(x)—y is almost everywhere equal to 0, and thus
g(w)=7y almost everywhere. This proves Lemma 3.

Thus we have deduced the completeness of system (2) from
an assumption (that of maximality) regarding system (1),
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which in the case of independent functions is somewhat stron-
ger than the assumption that (1) is saturated whith respect
to independence.

The following problem still remains unsolved:

What are the necessary and sufficient conditions regarding
the system (1) of independent funections, which ensure the
completeness of system (2)?
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