ON PROJECTIONS OF PROBABILITY DISTRIBUTIONS

By
A. RENYI (Budapest), corresponding member of the Academy

J. RADON, in a paper [5] published in the year 1917, solved the following
problem : It is to determine a continuous function f(x, y), defined in a bounded
domain K of the (x,y) plane, if given the values of the integral of this function
along every chord of the domain K. From his results it follows, in particular,
the following

THEOREM R. If K is a bounded domain of the (x,y) plane, and the
integral of the continuous function f(x,y) vanishes along every chord of the
domain K, then f(x,y) is identically equal to zero.

Since that this theorem has been independently re-discovered by many
authors. Thus, it has been proved by H. STEINHAUS in 1941 in a lecture
held at the conference of the University of Lwow;! at that time, Prof. H.
STEINHAUS was unaware of the results of J. RADON. Recently he found this
paper and kindly called my attention to it. My attention was called to the
present problem by G. HAJ0S who raised the same problem in connection
with a conjecture of S. TARski [7], which has been proved in the meantime
by TH. BANG [1], [2]. The theorem of BANG reads as follows: If a convex
domain K is covered by n parallel strips S,, S,, ..., S,, the breadths of which

are d,,d., ..., d,, respectively, then the sum Zd;.- is greater than or equal to
k=1
the breadth & of the domain K. Before making clear the connection between

Theorem R and that of BANG, let us make the following remark: if for some
domain K there exists a non-negative integrabie function f(x, y) whose integral
along every chord of K is equal to 1, the statement of BANG’s theorem follows

easily for this domain, because if the strips S,,S,, ..., S, cover K, we have
(]) :dk-‘ff :J )]’(X, y) ax d_v %Jlf(x‘ y) ax dJ’ d.
be==1 =14/ M
9. N

1 Cf. [6] where a short summary of the lecture can be found.
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Such a function is known only for the circle; if K is the circle x*+ y* = 1,
the function

(2) J(x, ) 1

af 1—x*—y
has the required properties. To prove this, it suffices, by reasons of symmetry,
to consider only chords which are parallel to the y-axis; for the chord x - a,
for example, we have
S T
T dy
T ’ | v
’ Ve -1

This can be proved also without calculations by means of the well known
geometrical fact that the surface of a segment of the sphere of radius 1 depends
only on the height of the segment.

It is easy to see that such a function can exist only for domains K of
constant breadth. As a matter of fact, for every position of the coordinate
system we have
) |) e yydxdy = |dy— | ax,

e

K N

(3)

i. e. the breadth of the domain in the direction of the coordinate axes is equal
to the constant l|f(,\ y)dxdy which is independent of the direction of the

coordinate axes. It is not known whether there exists actually such a function
for domains of constant breadth other than the circle.

Now we turn to considering the connection of Theorem R with TARrsSkI’s
conjecture. This consists in that if a function f(x,y) having the property that
its integral is constant along every chord of K exists at all for some domain
K, one may ask whether it is unique or not. Theorem R shows that (if the
continuity of f(x, y) is also required) f(x, y) is unique.® Theorem R has been
independently re-discovered and generalized by I. Szarski and T. WAZEWSKI
in their paper [8], in which a very simple proof of this theorem can be found.
Further generalizations of Theorem R will be included in a paper of I. Miku-
siNskl and C. RyLL-NARDZEWSKI to be published in the Studia Mathematica,
and in a paper of W. WOLIBNER under preparation. The purpose of the present
paper is also to give a new proof and some generalizations (different from
those already mentioned) of Theorem R.

It will be shown that the whole problem belongs essentially to probability
theory, and can be attacked by analytical methods of probability theory, namely
by the application of the theorem of unicity concerning characteristic functions.

2 If continuity is not supposed, f(x, y) can be modified on an arbitrary set, the cdmmon
part of which with every straight line has the linear measure 0.
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We show namely that Theorem R is a consequence of a theorem of H. CRAMER
and H. WoLp [4], which can be formulated as follows:

THEOREM CW. Every probability distribution on the plane is uniquely
«etermined by the totality of its linear projections.

Clearly, this theorem can be formulated also for mass distributions instead
of probability distributions.

Chapter I contains the proof — which is essentially that of H. CRAMER
and H. WoLbp, and is included in the paper only to make it self-contained —
of Theorem CW mentioned just now, as well as of a generalization of this
theorem for spaces of 3 or more dimensions (Theorem CW’), further the proof
of the theorem (Theorem 1) that, for a broad class of distributions, the knowledge
of an arbitrary infinite set of different projections already determines the
distribution uniquely. It follows from this theorem that to ensure that the
continuous function f(x,y) defined in the bounded domain K vanishes
identically, it suffices to suppose that its integral vanishes along every chord
parallel to some line belonging to an arbitrary enumerable infinite set of
straight lines (Theorem 2). The paper leaves open the question whether or not
this is true for every distribution.

Chapter Il is devoted to the study of finite distributions, i. e. — using
the terminology of mass distributions — of distributions consisting of a finite
number of mass points, that is, points in which positive masses are concentrated.
It has been conjectured by the author and proved by G. HAjos that a distri-
bution consisting of 2 mass points in the plane is uniquely determined by 2 -+ 1
arbitrary projections, but n projections are not always sufficient to determine
the distribution (Theorem 3). The proof of this theorem is included in the
paper with the kind permission of G. Hajos. We shall show that the
same is true for n equal mass points in the space (Theorem 4).

The author expresses his sincere thanks to H. STEINHAUS, T. WAZEWSKI,
M. Fisz and G. HAjos for their valuable remarks.

Chapter |

The mentioned theorem of J. RADON can be formulated also in the
following equivalent form :

THEOREM R’. A continuous and non-negative function f(x, y) defined in
the convex domain K, is uniquely determined if the value of its integral along
every chord of K is given.

Let us show that Theorem R follows from Theorem R, and conversely.
If the value of the integral of the non-negative and continuous function f(x, y)
is the same along every chord as the value of the integral of the continuous
and non-negative function g(x, y), then the integral of f(x, y)—g(x, y) vanishes

P
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along every chord and thus, according to Theorem R, we have

fx p)=g(x,y).
Thus Theorem R’ follows from Theorem R. On the other hand, if the intcgral
of the continuous function f(x, y) vanishes along every chord of K. let us put

: ) fx,y) i f(x, ) =0

41524t Y TR 8 'vg 0
and

[, 3) = /(X 1) —f(x, 9);
it follows that fi(x, y) and f,(x, y) are continuous and non-negative, and the
integrals of fi(x,») and f,(x,y) have the same value for every chord of K.
Hence from Theorem R” we conclude that f,(x, ) =/.(x,y) and thereforc we
have f(x,y)=0; that is, Theorem R follows from Theorem R".
Now instead of supposing that the integral of f(x,y) is known along

every straight line, we may suppose that the value of the integral

(1.2) I(H) = || f(x, y)dxdy
HE
is known for every half-plane / where HK denotes the common part of the
domain A and the half-plane H. In fact, if /(H) is known for every half-
plane, then the value of the integral
(1.3) I(S)~|) f(x, yydxdy
SK
is known for every parallel strip S, and thus the value of the integral of
f(x,y) along every chord / can be calculated by means of the limit relatiom

(1.4) i(l) ‘-f(x. y)ds - lim j, J.l-f(x, y)dxdy
2 10 Je

SA K

where S, is a parallel strip whose mid-line is / and whose breadth is _
Conversely, if 7(/) is known for every chord /, /(H) can be calculated for

every half-plane as /(H) —__l'i(l,,.)d,\' where /. denotes a chord which is

parallel to the boundary line of A/ and which cuts the perpendicular to this.
line through the origin at a point having the abscissa x on this line. Thus
we may suppose, instead of that 7/(/) is known for every chord /, that /(H)
is known for every half-plane H.

Now the first step of generalization consists in that we omit the restrict-
ion of f(x,y) being defined in a bounded domain, and consider functions

{00 4 @

f(x, y) defined on the whole plane, but suppose that the integral _(‘ _!'f(x, y)ydxdy

is finite. Without restricting generality we may suppose that :
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(1.5) | Jrxwdxdy—1.

The second step in the generalization consists in that we omit the restriction
that the non-negative function f(x, y) should be continuous, and suppose only
that it is L-integrable. Thus we may consider f(x, y) as the density function
of a probability distribution, and ask whether the values of the integral of
this density function for every half-plane determine uniquely the density

function, — or what is the same — the corresponding distribution function
Fa 4
(1.6). F(x,3)— | | flu,v)dvdu.

Let / denote an arbitrary straight line through the origin, and let H, denote
the half-plane whose boundary line is perpendicular to / and cuts / in a point
whose coordinate on [ is equal to p. Clearly,

(1.7) Fp)— I(H,) — || f(x, ) dxdy

H

as a function of p is nothing else than the distribution function of the projection
on [ of a random point of the plane whose distribution function is defined by
(1.6). In what follows we shall call the linear distribution on / with the distri-
bution function F(p) the projection on / of the distribution on the plane with
the distribution function F(x, y). The last step of generalization consists in that
we consider also distributions which have no density function and prove the
following

 THeorREM CW. Let F(x,y) denote the distribution function of an arbitrary
probability distribution on the plane, and let us suppose that the projection
of this distribution is known on every straight line | through the origin, i. e. that.

(1.8) F,m= ||  dFxy)

LCOSp+ysing=yp

is known as a function of p for every value of ¢ (0— ¢ < zt) where ¢ denotes
the angle between the straight line l, and the x-axis. Then F(x,y) is uniguely
determined for every value of x and y.*

As it has been remarked in the introduction, this theorem is due to
H. CRAMER and H. WoLD. We reproduce the simple proof of this theorem to
make the paper self-contained.

PrROOF. In what follows we shall denote by M(E) the mean value of a
random variable ¢, and by Pr(A) the probability of the event A.

% The uncertainity of the value of F(x, y) at its points of discontinuity does not come
in, since we suppose (as usual) that F(x,y) is continuous to the left as a function of x
as well as a function of y.
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Let (5 1) denote the coordinates of a random point on the plane having
the distribution function F(x, y). Let us denote by (u,v) the characteristic
function of the point (§ 7)) (or, in other words, of the probability distribution
with the distribution function F(x,y)), i. e. we put

o on

(1.9) (i, v) = M(e' s+t 0) = ‘ ’ et d Bx. ),

The pnojegtion of - the point (& 1) on the line [/, has the wordindte
Ecosg-ysing =1, and thus F (p) is the distribution function of Z,. If
Fi,(p) is known as a function of p, its characteristic function

1. 10) (1) — M(eitsr) — | e"”’a’qu_( »)

is also known. But by (1.9) and (1.10) we have
(1.11) P (t) = M(e'*5p) — M(e*Ccoseiusing)y — o(f cos ¢, ¢ sin ).
Thus it follows that, for every real value of # and », we have

(1. 12) w, v) =y (Vi ).

Hence v (u, v) is known for every real value'of u and v. As it is well known
that a distribution function is uniquely determined by means of its characteristic
function, * Theorem CW is completely proved.

Using the same method, the following theorem. can also be proved.

1rc tg

THEOREM CW'. A probability distribution in the n dimensional space is
uniquely determined by its projections on such a set of subspaces of
1, 2,...,(n—1) dimensions which together cover the whole space.

Thus, for instance, a probability distribution in the space of 3 dimensions
is uniquely determined by its projections on every straight line passing through
the origin, or by its projections on every plane passing through a given line,
or else by its projections on any collection of straight lines and planes which
cover together the whole space. The proof of Theorem CW gives at the same
time a criterion for a set of distribution functions F,q,(p) to be the projections
of a plane distribution. Clearly, the necessary and sufficient condition of this
consists in that W w—”—(l‘ - +7) shall be a characteristic function where

(1.13) () — | evaF, (p).

By the same method we can prove also the following

THEOREM 1. [f the point (&, 1)) is contained with probability 1 in a circle
- =R* and the distribution of the projection of the point (& 1) is given

i See e. g [8], p. 101,
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on an arbitrary infinite set of straight lines through the origin, i. e. the
distribution function F, (p) of the random variable S, — &cos ¢ |-y sing is given
for an infinity of mod sv different values of ¢, then the distribution function
F(x,y)=Pr(E-x,1,<y) of the random point (& 1) is uniquely determined.

Before proving Theorem 1, let us formulate as a theorem a coroliary of
this theorem which is a straightforward generalization of Theorem R.

THEOREM 2. Let f(x,y) denote a continuous function which is equal to 0
if X*--y*=R* for some R 0. If the integral of f(x,y) vanishes along every
line parallel to some line belonging to an arbitrary infinite set of lines
passing through the origin, then f(x,y)==0."

PROOF of THEOREM 1. Let us denote by ¢, ¢., ..., @., ... the values of
g for which £ (p) is known. Let ¢, denote a limit point of the sequence
¢.. According {0 (1. 11) (¢ cos ¢, tsin ¢) is known for every value of # and
for every ¢-—¢,. As Y(fcos ¢, tsin¢) is an analytic function of ¢ for every
fixed value of ¢, it follows that (fcos ¢, tsing) is known for any fixed
value of ¢ for values ¢ ¢, where Ilm 1 P, = Po. Hence we conclude that

p(t cos g, tsin @) =, (f) is known for every value of ¢ and ¢, and thus
Theorem 1 follows in the same way as Theorem CW was proved. The analyticity
of () is clear from the existence of the derivative

Ye(t)

(1. 15) £t

it U (—xsing -y cos g)eittcosrrusing)d F(x, y)

EHp=R?

for every (complex) value of ¢.

Chapter 1l

In this chapter we consider discrete distributions. For the sake of
simplicity we shall use the terminology of mass distributions. Let us consider
a discrete ‘mass distribution on the plane, consisting of n mass points, i. e.
a distribution consisting of the masses m. >0 situated in the points (xi, )
(k-—-1,2,...,n). We shall prove first the following

THEOREM 3. A discrete mass distribution consisting of n distinct mass
points with masses m,, m., ..., m, situated in the points (x,, y), (Xs, ¥2), .- .,

5 It will be seen from the proof of Theorem 1 that Theorem 2 also holds if instead
of supposing f(x, y) =0 for x2-}-y2=R> we suppose only that f(x, y) is sufficiently small
for large values of x2 -y for example, if for every Z2>-0 we have

(1.14) [fx, ) e A ey

provided that }x2--y‘_-R(4) where R(Z) is an arbitrary positive function of Z. This will
become clear by taking into account that, in the proof of Theorem 1, the condition that
&--92<R2 is fulfilled with probability 1 serves only to ensure that the characteristic
function (p cos ¢, p sin ¢) should be, for any value of p, an analytic function of ¢, and
this is ensured by the restriction (1. 14).
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(x., ¥u), respectively, is completely determined if its projections on n--1 arbitrary
different straight lines through the origin are given.

[ have proved Theorem 3 only for the case of equal masses, in which
case Theorem 3 is a special case of Theorem 4, and communicated the
assertion for unequal masses as a conjecture to G. HAJ0s who succeeded in
proving it. I am very thankful to him for his kind permission to publish here
his elegant proof.

PROOF OF THEOREM 3. For n — 1 the theorem is trivial. Let us suppose
n=2. Let us mark the two extreme points of each projection and consider
the projecting lines (i. e. the perpendiculars to the line on which the projection
is considered) through these points; we shall call these lines, for the sake
of brevity, extreme projecting lines. Thus if n-}-1 projections of the mass
distribution are known, we have at least 2n-}-1 extreme projecting lines,
because at least n projections have two extreme points and only one projection
can eventually shrink to a point (and this can happen only in case all points
are lying on the same straight line). Each extreme projecting line passes
through at least one mass point. As there are n mass points, there must be
at least one mass point through which three or more extreme projecting lines
are passing. Since all mass points are situated in one of the two closed half-
planes determined by every extreme projecting line, we see that if r -3
extreme projecting lines pass through a point P of the plane, these lines
divide the plane into 2r angular domains, and all mass points must lie in
the interior or on the boundary of one of these domains. This domain is
bounded by two extreme projecting lines, therefore all other extreme projecting
lines, and thus at least one projecting line can have no common point with
our mass system other than the point P itself. But since every extreme
- projecting line passes through at least one mass point, we infer that P itself
must be a mass point. Thus we have proved that there is at least one mass
point through which three or more projecting lines are passing, and conversely :
every point of the plane which is common to three or more extreme projecting
lines is a mass point. Consequently, considering only the extreme projecting
lines, at least one. mass point can be found. The projections of the
remaining n—1 points on n--1 lines being known (by omitting the
projection of the point already found), we can apply the same procedure again,
and thus find one-by-one all mass points. Therefore Theorem 3 is proved.
Clearly, the above proof furnishes an effective method for actually finding
all mass points, and the corresponding masses.

[t is easy to see that Theorem 3 can not be improved: n projections
do not always determine a discrete mass distribution consisting of n points.
As a matter of fact, let us consider a regular polygon /7 with 2n sides, and
let the system of n equal mass points, each of mass 1, situated in every
second vertex of the polygon 77 be called system A, and let the system of
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n equal mass points, each of mass 1, situated in those »n vertices of the
polygon /7 in which there is no mass point of the system A, be called system
B. It is easy to see that, denoting by /, /4, ...,1, the perpendiculars to the
pairs of opposite sides of the polygon /I, the projection of the system A is
the same on each line /; as the projection of the system B. Analyzing the above
proof, it is easy to see that all mass distributions which are not completely
determined by n projections are essentially equivalent to that mentioned just
now, and can be obtained by replacing the regular polygon of 2n sides by
some convex polygon of 2n sides, with vertices P, P,, ..., P,, and having
the following property: the lines P;P; and PP, are parallel provided that
i+j=1(mod2) and i+ j-—k--I(mod2n). Clearly, all polygons obtained
from a regular polygon of 2n sides by an affine transformation satisfy this
condition, but not only these; for instance, the hexagon P,P,P;P,P;P; shown
by Fig. 1 has the required property, though it cannot be obtained by an affine
transformation from a regular hexagon.

) 4

Fig. 1

Instead of speaking of projections on some straight line / we can speak
of projections from the direction perpendicular to / on some fixed straight
line L.

Projections from a direction can be considered as projections from some
point at infinity of the projective plane. It is easy to see that the proof, and
hence the assertion of Theorem 3, remains valid for the more general case
when projections from finite points to / are also admitted.

Let us consider now projections of discrete mass systems of the 3-
dimensional space. We prove the following

THEOREM 4. Let us consider a discrete mass distribution M in the 3-
dimensional (x, y, z)-space, consisting of n equal masses sttuated in the points
with the rectangular coordinates (xi., yr, z:) (k--1,2,..., n). If the (orthogonal)



140 A. RENY}

projection of the mass distribution M is given on n-+ 1 arbitrary planes, no
two of which are parallel, then M is completely determined.

Before proving Theorem 4, let us mention that the theorem can not be
improved. As a matter of fact, if the masses are situated in every second
vertex of a regular polygon of 2n sides in some plane « and the planes on
which these masses are projected are all orthogonal to ¢, we obtain the counter-
example, considered in connection with Theorem 3.

PROOF OF THEOREM 4. Let us denote by A, A,, ..., A, the planes on
which the mass distribution is projected. We may suppose that all planes
Ay pass through the origin of the rectangular coordinate system (x, y, z) and
that they do not pass through the z-axis, and the line of intersection of two
of them does not lie in the (, z)-plane. Let us choose a rectangular coordinate
system (u;, ) in each plane A, such that its origin coincides with the origin
of the coordinate system (x, y, z) and let us denote by ¢y, 311, 71 the cosines
of direction of the straight line +.--0 and by ey, Sy, 72 the cosines of
direction of the straight line u, - 0. It follows that the projection of the point
(x;,;,,2) on A, has the coordinates

Ui = ey Xi+Pucdi+ywzi | J=1,2,...,n

Dk == QX5 ' p)gy,.y,-%- ;"21;»2,;' \ k= I, 2, IR 7 ‘ 1
in the coordinate system (u;, v;). Therefore, if these projections are given, the
numbers

are known where

: 716C21— 721 (1,
A=t s e re e
M r@— 225 C1 i

As @wiyii— iy and @ Bi—aBa: are two cosines of direction of
the perpendicular to the plane A, which does not pass through the z-axis,
the second is different from zero, and as the line of intersection of two planes
A and Ax (k" k) does not lie in the (y, 2)-plane, their ratio Z; is different
for different values of . Thus the numbers y; -4z, (j- - 1,2,...,n) are known
in their totality for n--1 different values of 2. Consequently, all elementary
symmetric functions of these numbers,

i
-~

Si(4)

S®)— -2 (i+42) (it 421,

Su@y = L1 (y;+ 22),
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are known for n--1 different values of 4. As S,(4), S:(4), ..., S.(4) are
polynomials of degree not greater than n in Z, it follows that these polynomials
are completely determined, and therefore their values can be calculated (e. g.
by NEWTON’s interpolation formula) for 2 7. Hence we can obtain the values
of §,(i), Su(i), ..., S.(i), i. e. the values of the elementary symmetric functions
of the complex numbers w; - y;--iz;. We conclude that theé complex numbers
w; can be determined as the roots of the equation

W' —8, (W' LS ()W —- - - (—1)'Su(i) =0

and hence the pairs of numbers (y;, 2;) can be obtained. Therefore, starting
with the projection of the mass distribution considered onto the planes A,
(k-=1,2,...,n-+1), we can determine the projection of the same mass
distribution onto the plane (y,2). As the position of the coordinate system
(x,y,z) is arbitrary (we have to take care only of that no plane A, should
pass through the z-axis and the line of intersection of two planes A;, A, should
not lie in the plane (y, 2)), it follows that the projection of the considered
distribution can be determined for every plane except those planes which pass
through the intersecting line of two planes Aj, A;; but the projections on such
planes can also be determined by a limiting process and therefore, according
to Theorem CW, the distribution itself is completely determined. Theorem 4 is

herewith proved.

(Received 30 August 1952)
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O MMPOEKUMUAX PACIIPEJIEJIEHUN BEPOSITHOCTEN
A. PEHbM (Bypaneurr)

(Peawme)

[naBa | paGoTbi CORECPIKUT JOKABATEAbCTBO M OOOOLIEHHE CHCAYIOLEH TEOpPeMbl
W. Pagona: Ecam murerpan menpepbigHoOii (ynkumu f(x, ) poBHO 0 Ha KaKIOM XOpae ke-
KOTOPONl KOHeYHOH obsacti K, 10 f(x,y)=0 na K.

9ra Teopema ObUIA OTKPHITA MHOTMMH ARTOPAMM HE3aBUCHMO APYT OT aApyra. B pabore
1I0Ka3aHo, YTO 9Ta Teopema siisieTcst npsimbiM caeacTsuem Teopembl X. Kpamepa n X. Boaga
COrJIaCHO KOTOPOMY pachpeeneHue RepOSITHOCTeIl B IUIOCKOCTH OHOBHAYHO OMNPEENIEHO C
MOMOII0 COBOKYIHOCTH €ro NPOEKUMsIX Ha BCeX NPSIMBbIX IUIOCKOCTH. [lajblie A0KasaHo, 4To
UISE ONIPEJIENIEHHH HTOTO  PACNPEENeHNH I0CTATOYHO 3HAHME ero NPOeKUHit Ha GecKOHeuHO
MHOTMX Pas/MYHBIX NMPSAMBIX, IPOXOAAUIMX Yepe3 AaHHYI TO4KY.

B raase Il u paccmMatpuBaoTCSl AMCKPETHbIE PACHPEENeHNsT BEPOSITHOCTEN (MI1H Macc)
# MBJI0KEHO pokasarenscTo AanHoe I. Taémom, Teopemel, 4TO ecin *M3BECTHbI NPOEKLKH
AMCKPETHOrO0 PaCHpese/eHnst, COCTOSILEro U3 1 TOYeYHBbIX MACC MIOCKOCTH HA n-}-1 pasmmy-
HBIX NPUAMBIX HE NapajuIeNHbIX MEXAy co0oil, TO 3TO pacCnpefe]eHHsi OJHO3HAYHO ONpPEeAe-
-1eH0. To ke camoe MMeeT MecTO JUIsi JMCKPETHBIX PaChpefeNeHnn B MPOCTPAHCTBE, eClH BCe
WACCHI OMMHAKOBbBI; SHAHUE N1 PASTUYHBIX NMPOEKLUHHA IS STOrO BOOOILE HE. J0CTATOYHO.



