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j. Radon, in a paper [5] published in the year 1917, solved the following 
problem : It is to determine a continuous function f(x, y), defined in a bounded 
domain К  of the (x, y) plane, if given the values of the integral of this function 
along every chord of the domain K. From his results it follows, in particular, 
the following

Theorem R. If К is a bounded domain of the (x, y) plane, and the 
integral o f the continuous function /(x, y) vanishes along every chord o f the 
domain K, then f(x,y) is identically equal to zero.

Since that this theorem has been independently re-discovered by many 
authors. Thus, it has been proved by H. Steinhaus in 1941 in a lecture 
held at the conference of the University of Lwow;1 at that time, Prof. H. 
Steinhaus was unaware of the results of J. Radon. Recently he found this 
paper and kindly called my attention to it. My attention was called to the 
present problem by Q. Hajós who raised the same problem in connection 
with a conjecture of S. Tarski [7], which has been proved in the meantime 
by Th. Bang [1], [2]. The theorem of Bang reads as follows: If a convex 
domain К  is covered by n parallel strips Sx, S2, ■ ■ S„, the breadths of which

П
are du di, . . . ,  d„ , respectively, then the sum X  is greater than or equal to

/,■=1
the breadth d of the domain K. Before making clear the connection between 
Theorem R and that of Bang, let us make the following remark: if for some 
domain К  there exists a non-negative integrable function /(x , y) whose integral 
along every chord of К  is equal to 1, the statement of Bang’s theorem follows 
easily for this domain, because if the strips S,,S.,, . . . .  S„ cover K, we have

(1) ^  - X  I I f(x, У) dx dy Ш I j /(x, v) dx dy d.
к-Л k= iJJ  J J

sk К

1 Cf. [в] where a short summán- of the lecture can be found.
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132 A. RÉitYI

Such a function is known only for the circle; if К  is the circle х'М у I, 
the function

( 2 )  / ( a-, y) 1 ,
:r\  1— A — y-

has the required properties. To prove this, it suffices, by reasons of symmetry, 
to consider only chords which are parallel to the y-axis; for the chord a  </, 
for example, we have

4-V 1-n"

* Yucfi
This can be proved also without calculations by means of the well known 
geometrical fact that the surface of a segment of the sphere of radius 1 depends 
only on the height of the segment.

It is easy to see that such a function can exist only for domains К  of 
constant breadth. As a matter of fact, for every position of the coordinate 
system we have

(4) К / ( a, y) dx dy =  I dy  =  | dx,
к к к

i. e. the breadth of the domain in the direction of the coordinate axes is equal
to the constant |J /( a, y )d x d y  which is independent of the direction of the

к
coordinate axes. It is not known whether there exists actually such a function 
for domains of constant breadth other than the circle.

Now we turn to considering the connection of Theorem R with Tarski’s 
conjecture. This consists in that if a function / ( a, y) having the property that 
its integral is constant along every chord of К  exists at all for some domain 
K, one may ask whether it is unique or not. Theorem R shows that (if the 
continuity of / ( a, y) is also required) / ( a, y) is unique.2 Theorem R has been 
independently re-discovered and generalized by 1. Szarski and T. Wazevvski 
in their paper [8], in which a very simple proof of this theorem can be found. 
Further generalizations of Theorem R will be included in a paper of I. Miku- 
sinski and C. Ryi.l-Nardzewski to be published in the Stadia Matheniaticu, 
and in a paper of W. Wolibner under preparation. The purpose of the present 
paper is also to give a new proof and some generalizations (different from 
those already mentioned) of Theorem R.

It will be shown that the whole problem belongs essentially to probability 
theory, and can be attacked by analytical methods of probability theory, namely 
by the application of the theorem of unicity concerning characteristic functions.

2 If continuity is not supposed, f (x ,y )  can be modified on an arbitrary set, the cdnmion 
part of which with evert' straight line has the linear measure 0.

(3) dy 
1 —a~
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We show namely that Theorem R is a consequence of a theorem of H. Cramer 
and H. Wold [4J, which can be formulated as follows:

Theorem CW. Every probability distribution on the plane is uniquely 
determined by the totality o f its linear projections.

Clearly, this theorem can be formulated also for mass distributions instead 
of probability distributions.

Chapter 1 contains the proof — which is essentially that of H. Cramer 
and H. Wold, and is included in the paper only to make it self-contained — 
of Theorem CW mentioned just now, as well as of a generalization of this 
theorem for spaces of 3 or more dimensions (Theorem CW'), further the proof 
of the theorem (Theorem 1) that, for a broad class of distributions, the knowledge 
of an arbitrary infinite set of different projections already determines the 
distribution uniquely. It follows from this theorem that to ensure that the 
continuous function f{x, y) defined in the bounded domain К  vanishes 
identically, it suffices to suppose (hat its integral vanishes along every chord 
parallel to some line belonging to an arbitrary enumerable infinite set of 
straight lines (Theorem 2). The paper leaves open the question whether or not 
this is true for every distribution.

Chapter II is devoted to the study of finite distributions, i. e. — using 
the terminology of mass distributions — of distributions consisting of a finite 
number of mass points, that is, points in which positive masses are concentrated. 
It has been conjectured by the author and proved by G. Hajós that a distri­
bution consisting of n mass points in the plane is uniquely determined by n - f 1 
arbitrary projections, but n projections are not always sufficient to determine 
the distribution (Theorem 3). The proof of this theorem is included in the 
paper with the kind permission of G. Hajós. We shall show that the 
same is true for n equal mass points in the space (Theorem 4).

The author expresses his sincere thanks to H. Steinhaus, T. Wazewski, 
M. Fisz and G. Hajós for their valuable remarks.

C hapter I

The mentioned theorem of J. Radon can be formulated also in the 
following equivalent form :

T heorem R'. A continuous and non-negative function f(x, y) defined in 
the convex domain K, is uniquely determined if  the value of its integral along 
every chord of К is given.

Let us show that Theorem R' follows from Theorem R, and conversely. 
If the value of the integral of the non-negative and continuous function f(x, y) 
is the same along every chord as the value of the integral of the continuous 
and non-negative function g(x, y), then the integral of f (x ,y)—g(x, y) vanishes
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along everv chord and thus, according to Theorem R, we have
f ix,  у ) Six, y).

Thus Theorem R follows from Theorem R. On the other hand, if the integral 
of the continuous function f(x, y) vanishes along every chord of K. let us put

and

f ( x . v ) ) f (x ,y)  if / (х ,у)Ш 0 
I 0 if f(x,  y) 0

M x , y ) = f ( x ,  y)—f ix,  y);
it follows that f i x ,  y) and f ix ,  y) are continuous and non-negative, and the 
integrals of f i x ,  у ) and f ix ,  у) have the same value for every chord of K. 
Hence from Theorem R' we conclude that /,(x, y) /,(x, y) and therefore we 
have f ix,y)  =  0 ; that is, Theorem R follows from Theorem R'.

Now instead of supposing that the integral of f ix,  y) is known along 
every straight line, we may suppose that the value of the integral

( 1. 2 ) I iH)— \ \ f i x , y ) d x d y
UK

is known for every half-plane H where HK  denotes the common part of the 
domain К  and the half-plane H. In fact, if / ( / / )  is known for every half­
plane, then the value of the integral

(1.3) I{S) -J \ f i x , y ) dx dy
S.IK

is known for every parallel strip S, and thus the value of the integral of 
f ix,  у) along every chord l can be calculated by means of the limit relation

(1.4) /(/) ) fix, y) ds  I h n j I f i x ,  y) dxdy
I sAK

where Nj is a parallel strip whose mid-line is / and whose breadth is J_ 
Conversely, if /( /)  is known for every chord /, / ( / / )  can be calculated for

-f 00
every half-plane as / ( / / ) =  )/(/.,.) dx  where lx denotes a chord which is-

— oo
parallel to the boundary line of H and which cuts the perpendicular to this 
line through the origin at a point having the abscissa x on this line. Thus 
we may suppose, instead of that /( /)  is known for every chord l, that /(//)- 
is known for every half-plane H.

Now the first step of generalization consists in that we omit the restrict­
ion of f ix,  y) being defined in a bounded domain, and consider functions

+ CD +  CO

f ix,  y) defined on the whole plane, but suppose that the integral I j f(x,  y) d x d y
- oc - Л

is finite. Without restricting generality we may suppose that
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<15) I \ f { x , y )dxdy=^ \ .
CO -  GO

The second step in the generalization consists in that we omit the restriction 
that the non-negative function f(x, y) should be continuous, and suppose only 
that it is L-integrable. Thus we may consider f(x, y) as the density function 
of a probability distribution, and ask whether the values of the integral of 
this density function for every half-plane determine uniquely the density 
function, —- or what is the same — the corresponding distribution function

* У

<1.6). F(x, у) I ) f(u,  /;) dv du.
- CO — ОС

Let / denote an arbitrary straight line through the origin, and let Hp denote 
the half-plane whose boundary line is perpendicular to l and cuts / in a point 
whose coordinate on / is equal to p. Clearly,

( 1 . 7 )  F,(p) l(HP) | ' f  f ( x , y ) dxdy
К

as a function of p is nothing else than the distribution function of the projection 
on / of a random point of the plane whose distribution function is defined by( 1 . 6 ) .  In what follows we shall call the linear distribution on / with the distri­
bution function Fi(p) the projection on / of the distribution on the plane with 
the distribution function F(x, y). The last step of generalization consists in that 
we consider also distributions which have no density function and prove the 
following

T heorem  CW. Let F(x,y) denote the distribution function of an arbitrary 
probability distribution on the plane, and let us suppose that the projection 
of this distribution is known on every straight line l through the origin, i. e. that.

( I S )  F,4(p)..  j j  dF(x,y)
x  cos tp + у sin <p~p

is known as a function of p for every value of ц (0 q < л) where </- denotes 
the angle between the straight line l9 and the x-axis. Then Fix, y) is uniquely 
determined for every value of x and y.

As it has been remarked in the introduction, this theorem is due to
H. C ramér and H. W o l d . We reproduce the simple proof of this theorem to 
make the paper self-contained.

P r o o f . In what follows we shall denote by M f Q )  the mean value of a 
random variable £, and by Pr(A) the probability of the event A.

:i The uncertainity of the value of F ( x ,  y) at its points of discontinuity does not come 
m, since we suppose (as usual) that F(x. y) is continuous to the left as a function of x 
as well as a function of y.
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Let (5 , /,) denote the coordinates of a random point on the plane having 
the distribution function F(x,y). Let us denote by ip(u, v) the characteristic 
function of the point (£, rf (or, in other words, of the probability distribution 
with the distribution function F(x, y)), i. e. we put

+  ce +  cc

(1 .9) M(e‘("!+*•'/)) == I j eil"-K+°ridF(x, y).
-  со — 0 0

The projection of the point (£, if  on the line lv has the coordinate 
5 co scp +  7)sinq> —  and thus F,rf(p) is the distribution function of t v . If 
Fi4(p) is known as a function of p, its characteristic function

+  00 .*

(1.10) <Mt) Af(ei*«v)=J é'i’dFi^p)
-  CO

is also known. But by (1.9) and (1. 10) we have
(1 .11) 1 /^(0  =  M(e:r4) -  M (*>«(!coeiP+vsin<?)) =  ^ ( /  COs </;, t sin y,).
Thus it follows that, for every real value of и and v, we have
(1.12) Ф(и, v) =  f  arc . (Ki/^+V).

Hence Ip(u,v) is known for every real value of и and v. As it is well known 
that a distribution function is uniquely determined by means of its characteristic 
function,4 Theorem CW is completely proved.

Using the same method, the following theorem can also be proved.
Theorem CW'. A probability distribution in the n dimensional space is 

uniquely determined by its projections on such a set of subspaces of 
1,2, . . . , ( / ;  — Г) dimensions which together cover the whole space.

Thus, for instance, a probability distribution in the space of 3 dimensions 
is uniquely determined by its projections on every straight line passing through 
the origin, or by its projections on every plane passing through a given line, 
or else by its projections on any collection of straight lines and planes which 
cover together the whole space. The proof of Theorem CW gives at the same 
time a criterion for a set of distribution functions Fir/ (p) to be the projections 
of a plane distribution. Clearly, the necessary and sufficient condition of this 
consists in that Uj Д | + 3 +  T2) shall be a characteristic function where' arctg —ir

+  cc

(1 13) * M 0  Í  P ’dF i^p).
-  00

By the same method we can prove also the following
Theorem 1. If the point (£, i f  is contained with probability 1 in a circle 

L >f /?3 and the distribution of the projection of the point (£, i f  is given

ш

j See e. g . (8), p. 101.
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on an arbitrary infinite set of straight lines through the origin, i. e. the 
distribution function Ft (p) o f the random variable §cos rp-\-r\ sin rp is given 
for an infinity of mod ;r  different values o f cp, then the distribution function 
/ '(x, y) Pr(2 < л:, I, < y) o f the random point (£, tj) is uniquely determined.

Before proving Theorem 1, let us formulate as a theorem a corollary of 
this theorem which is a straightforward generalization of Theorem R.

Theorem 2. Let f(x,  у ) denote a continuous function which is equal to 0 
if x- f - y '^ R -  for some /? >  0. If the integral of f (x , y ) vanishes along every 
line parallel to some line belonging to an arbitrary infinite set o f lines 
passing through the origin, then f(x,y)  0 .5

Proof of Theorem 1. Let us denote by <pi,<p.,, the values of
у for which F, (p) is known. Let cp0 denote a limit point of the sequence 
<P„. According to (1.11) tp ( t  cos cp, f sin cp) is known for every value of t  and 
for every cp </„. As f ( t  cos cp, t  sin cp) is an analytic function of <p for every 
fixed value of t, it follows that cf>(t cos cp, t  sin rp) is known for any fixed 
value of t  for values </ <p„. where lim </■„. Hence we conclude that

к -> go
q>(t cos q>, t sin <p) f<f{t) is known for every value of t and rp, and thus 
Theorem 1 follows in the same way as Theorem CW was proved. The analvticity 
nf Ihrp(f) is clear from the existence of the derivative

(1.15) " it jj (—xs \ntpf -y  cos(p)eitixcosf,+!ls'n,f'idF(x, y)
У1 U I/2 =0 H2

for every (complex) value of cp.

Chapter II

In this chapter we consider discrete distributions. For the sake of 
simplicity we shall use the terminology of mass distributions. Let us consider 
a discrete mass distribution on the plane, consisting of n mass points, i. e. 
a distribution consisting of the masses mk >0  situated in the points (xk, yk) 
(k \ , 2 , . . . ,  n). We shall prove first the following

Theorem 3. A discrete mass distribution consisting of n distinct mass 
points with masses m,, m2, . . . ,  mn situated in the points (x,, yf ,  (x.,, y.,),..

1 It will be seen from the proof of Theorem 1 that Theorem 2 also holds if instead 
of supposing f (x , y) =  0 for x'z g i  we suppose only that f { x ,y )  is sufficiently smalt
for large values of .v- 4- y'\ for example, if for every /. >  0 we have

(1.14) \ f ( x , y ) \ ^ c z ] ^
provided that ^ w h e r e  7?(7.) is an arbitrary positive function of Л. This will 
become clear by taking into account that, in the proof of Theorem 1, the condition that 

is fulfilled with probability 1 serves only to ensure that the characteristic 
function i'/(p cos </, p  sin y) should be, for any value of p, an analytic function of rp, and 
this is ensured by the restriction (1.14).
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(xn,y n), respectively, is completely determined i f  its projections on n +  1 arbitrary 
different straight lines through the origin are given.

I have proved Theorem 3 only for the case of equal masses, in which 
case Theorem 3 is a special case of Theorem 4, and communicated the 
assertion for unequal masses as a conjecture to G. Hajós who succeeded in 
proving it. I am very thankful to him for his kind permission to publish here 
his elegant proof.

P roof o f  T heorem  3. For n 1 the theorem is trivial. Let us suppose 
n ^ 2 .  Let us mark the two extreme points of each projection and consider 
the projecting lines (i. e. the perpendiculars to the line on which the projection 
is considered) through these points; we shall call these lines, for the sake 
of brevity, extreme projecting lines. Thus if n + 1  projections of the mass 
distribution are known, we have at least 2n-\-\ extreme projecting lines, 
because at least n projections have two extreme points and only one projection 
can eventually shrink to a point (and this can happen only in case all points 
are lying on the same straight line). Each extreme projecting line passes 
through at least one mass point. As there are n mass points, there must be 
at least one mass point through which three or more extreme projecting lines 
are passing. Since all mass points are situated in one of the two closed half­
planes determined by every extreme projecting line, we see that if r 3 
extreme projecting lines pass through a point P  of the plane, these lines 
divide the plane into 2r angular domains, and all mass points must lie in 
the interior or on the boundary of one of these domains. This domain is 
bounded by two extreme projecting lines, therefore all other extreme projecting 
lines, and thus at least one projecting line can have no common point with 
our mass system other than the point P  itself. But since every extreme 
projecting line passes through at least one mass point, we infer that P itself 
must be a mass point. Thus we have proved that there is at least one mass 
point through which three or more projecting lines are passing, and conversely : 
every point of the plane which is common to three or more extreme projecting 
lines is a mass point. Consequently, considering only the extreme projecting 
lines, at least one mass point can be found. The projections of the 
remaining n — 1 points on /г +  l lines being known (by omitting the 
projection of the point already found), we can apply the same procedure again, 
and thus find one-by-one all mass points. Therefore Theorem 3 is proved. 
Clearly, the above proof furnishes an effective method for actually finding 
all mass points, and the corresponding masses.

It is easy to see that Theorem 3 can not be improved: n projections 
do not always determine a discrete mass distribution consisting of n points. 
As a matter of fact, let us consider a regular polygon U  with 2n sides, and 
let the system of n equal mass points, each of mass 1, situated in every 
second vertex of the polygon TT be called system A, and let the system of



n equal mass points, each of mass 1, situated in those n vertices of the 
polygon /7 in which there is no mass point of the system A, be called system 
B. It is easy to see that, denoting by 7 ,4 ,  the perpendiculars to the
pairs of opposite sides of the polygon 11, the projection of the system A is 
the same on each line 4 as the projection of the system B. Analyzing the above 
proof, it is easy to see that all mass distributions which are not completely 
determined by n projections are essentially equivalent to that mentioned just 
now, and can be obtained by replacing the regular polygon of 2n sides by 
some convex polygon of 2 n sides, with vertices Plt P2, . . P2n and having 
the following property: the lines PiPj and PkP, are parallel provided that 

1 (m°d 2) and / -j-j  /r +  /(mod 2/г). Clearly, all polygons obtained
from a regular polygon of 2 n sides by an affine transformation satisfy this 
condition, but not only these; for instance, the hexagon P1P2PiPiP5Pi shown 
by Fig. 1 has the required property, though it cannot be obtained by an affine 
transformation from a regular hexagon.

ON PROJECTIONS!OF PROBABILITY DISTRIBUTIONS 139

S J,

Fig. I

Instead of speaking of projections on some straight line / we can speak 
of projections from the direction perpendicular to / on some fixed straight 
line L.

Projections from a direction can be considered as projections from some 
point at infinity of the projective plane. It is easy to see that the proof, and 
hence the assertion of Theorem 3, remains valid for the more general case 
when projections from finite points to / are also admitted.

Let us consider now projections of discrete mass systems of the 3- 
dimensional space. We prove the following

T heorem  4 . Let us consider a discrete muss distribution M in the 3- 
dimensional (x, y, z)-space, consisting of n equal masses situated in the points 
with the rectangular coordinates (xk,yk, zk) (k 1,2....... n). If  the (orthogonal)
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projection of the muss distribution M is given on n -j- 1 arbitrary planes, no 
two of which are parallel, then M is completely determined.

Before proving Theorem 4, let us mention that the theorem can not be 
improved. As a matter of fact, if the masses are situated in every second 
vertex of a regular polygon of 2n sides in some plane a and the planes on 
which these masses are projected are all orthogonal to a, we obtain the counter­
example, considered in connection with Theorem 3.

P roof o f  T heorem  4. Let us denote by Au A.,,. . A„H the planes on 
which the mass distribution is projected. We may suppose that all planes 
Ak pass through the origin of the rectangular coordinate system (x,y,z)  and 
that they do not pass through the 2 -axis, and the line of intersection of two 
of them does not lie in the (y,  z)-plane. Let us choose a rectangular coordinate 
system (и,-, c,;) in each plane Ak such that its origin coincides with the origin 
of the coordinate system (x, y, z) and let us denote by aik, l f h, ylk the cosines 
of direction of the straight line rt 0 and by a2k, A>/; , yn, the cosines of 
direction of the straight line ak 0. It follows that the projection of the point 
(x, , V;, z:i) on Аь has the coordinates

in the coordinate system (ak, vh). Therefore, if these projections are given, the 
numbers

As а-2 к‘у\к — «Iк'у-2 к and «atA*—ß i A  are two cosines of direction of 
the perpendicular to the plane Ajc, which does not pass through the 2 -axis, 
the second is different from zero, and as the line of intersection of two planes 
Ak and Ak- (к ' к) does not lie in the (y, z)-plane, their ratio /„,> is different 
for different values of k. Thus the numbers у,- ' Яг,- (J 1 ,2 , . . . ,  n) are known 
in their totality for «4-1 different values of /.. Consequently, all elementary 
symmetric functions of these numbers,

h i  к  =  «1 k X j  +  A  k V j  +  /1 k Z j  I j  1 ,2 , . . . , / !
V j k  == С Г2кХ; -j- ß n - y j  +  y - l h Z j  \ к  1,2, . . ., n  T- 1

are known where
y\klC2k — у -l /,«u
A /.■ «ак—,A> к a, к

А  (Я)

А(л) (А', +  Я2,-)(УЛ +  Я2Л),

n
Sr, (Я) / /  ( y j + Á Z j ) ,
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are known for /г —1 different values of As 5г(Я), S,(/J, . . . ,  Sn(Á) are 
polynomials of degree not greater than n in l ,  it follows that these polynomials 
are completely determined, and therefore their values can be calculated (e. g. 
by N e w t o n ’s interpolation formula) for /  i. Hence we can obtain the values 
of Sj(i), S, ( i ) , . . . ,  Sn(i)> i- e- the values of the elementary symmetric functions 
of the complex numbers uy yr izj. We conclude that the complex numbers 
Wj can be determined as the roots of the equation

w" — S,(/)iv"_1 -f5 2(/)w" 2------ - r (— 1)'S„(/) 0
and hence the pairs of numbers (y,-, zf) can be obtained. Therefore, starting 
with the projection of the mass distribution considered onto the planes A,, 
(k 1 ,2 ,. . . , / i  +  l), we can determine the projection of the same mass 
distribution onto the plane (у , z). As the position of the coordinate system 
(x, y, z) is arbitrary (we have to take care only of that no plane A,, should 
pass through the г-axis and the line of intersection of two planes A , - ,  A k  should 
not lie in the plane (у, г)), it follows that the projection of the considered 
distribution can be determined for every plane except those planes which pass 
through the intersecting line of two planes A:i, A k ; but the projections on such 
planes can also be determined by a limiting process and therefore, according 
to Theorem CW, the distribution itself is completely determined. Theorem 4 is 
herewith proved.

(Received 30 August 1052)
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О ПРОЕКЦИЯХ РАСПРЕДЕЛЕНИЙ ВЕРОЯТНОСТЕЙ
А. РЕНЬИ (Будапешт)

(Резюме)
Глава 1 работы содержит доказательство и обобщение следующей теоремы 

И. Радона: Если интеграл непрерывной функции f (x , у) ровно 0 на каждом хорде не­
которой конечной области К, то f (x , у) =  0 на К .

Эта теорема была открыта многими авторами независимо друг от друга. В работе 
показано, что эта теорема является прямым следствием теоремы X. Крамера и X. Волда 
согласно которому распределение вероятностей в плоскости однозначно определено с 
помощю совокупности его проекциях на всех прямых плоскости. Дальше доказано, что 
для определении этого распределении достаточно знание его проекций на бесконечно 
многих различных прямых, проходящих через данную точку.

В главе II и рассматриваются дискретные распределения вероятностей (или масс) 
и изложено доказательство данное Г. Гаёшом, теоремы, что если известны проекции 
дискретного распределения, состоящего из п точечных масс плоскости на n-f-1 различ­
ных приямых не параллелных между собой, то это распределения однозначно опреде- 
- юно. То же самое имеет место для дискретных распределении в пространстве, если все 
чассы одинаковы; знание п различных проекции для этого вообще не, достаточно.


