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Introduction

Since the beginning of the century many authors, e. g. K Pearson [1],
L v. Bortkiewicz [2], E. L Dodd [3], L H C. Tippet [4], and M. Fre¢-
chet [5] have dealt with particular problems which may be classified as
belonging to the theory of order statistics. A N. Kolmogorov [6], V. 1 Gli-
venko [7], N. V. Smirnov [8], B. V. Gnedenko [9], and other mathematicians
having recognized the great theoretical and practical importance of this set
of problems, developed this subject into a systematical theory.

In the last three years a particularly great number of papers dealt with
such problems; of these we mention those of B. V. Gnedenko and
V. S. Koroluk [10], B. V. Gnedenko and E. L Rvaceva [11], B. V. Gne-
denko and V. S. Mihalevic [12], V. S. Mihalevic [13], J. D. Kvit [14],
G. M. Mania [15], I. 1 Gihman [16], W. Felter [17], J. L Doob [18],
F. J. Massey [19], M. D. Donsker [20], T. W. Anderson and D. A. Darling
[21]. A bibliography up to 1947 is to be found in the paper of S. S. Wilks
[30] enumerating 90 papers.

The purpose of the present paper is to give a new method by means
of which many important results of the theory of order statistics can be
obtained with surprising simplicity; the method also enables us to prove
several new theorems. The essential novelty of this method is that it reduces
the problems connected with order statistics to the study of sums of mutually
independent random variables. 8 1 contains the review of the method, § 2 is
devoted to the proof of some known theorems by means of this method, and
§ 3 contains the formulation of some new results obtained by this method,
concerning the comparison of the sample distribution function to that of the
population. These results are connected with the fundamental results of
A N. Kolmogorov and N. V. Smirnov.

Let Fn(x) denote the distribution function of a sample of size n drawn
from a population having the continuous distribution function F(x), in other
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words, Fn(x) denotes the frequency ratio of sample values not exceeding X.
Kolmogorov determined the limiting distribution of the supremum of
1/1.09—F(X)|, Smirnov did the same for Fn(x)—F(x); in § 4 we shall
determine the limiting distribution of the supremum™ of the relative deviations

Fn(XF)(')S (x) .+ and F”(éz)'(;:(x) , respectively. To do this, besides our method,
the lemmas in § 4, generalizing some results of P. Erdss and M. Kac [22],
are needed. These lemmas are of certain interest in themselves. 8 5 contains
the proof of the results formulated in 8 3, while § 6 contains some remarks on
the numerical computation of the values of the limiting distribution functions
occurring in our theorems; tables for one of these are also given. | have
found the method formulated in § 1 by analysing a theorem of S. Malmquist
[23]; § 1 contains among others a new and simple proof for this theorem
of Malmquist. Together with G. Hajos, we have found another simple proof
of this theorem which will be published in a joint paper of ours [24]. All these
investigations have for their origin in the discussions in a seminary of the
Departments of Probability Theory and of Mathematical Statistics of the In-
stitute for Applied Mathematics of the Hungarian Academy of Sciences.
I lectured on the part of the results contained in this paper in January 1953
on the congress of the Humboldt University in Berlinland in September 1953
on the WVIIth Polish Mathematical Congress in Warsaw. On this last occasion
A. N. Kolmogorov has made certain valuable remarks for which |
express him my most sincere thanks. Further, | express my thanks to
T. LiptA« who participated in the preparation of this paper by elaboration
of some particular calculations, as well as to Miss I. Palasti and Mrs. P.
Varnai for the numerical computations.

8 L A new method in the theory of order statistics

Let us start with the following special case: let a sample of size n be
given concerning the value of a random variable £ of exponential distribution,
I. e. the results of n independent observations for its value, denoted by
£, £2. . in other words, £,,£2,...,£, are mutually independent random
variables with the same distribution function of exponential type. We need
the following well-known property of the exponential distribution: if £ is an
exponentially distributed random variable, then

(1.1) PE<x+y|E =y)= P(£ <X),

*(in an interval 0 < a<;F(x) sa b 1)
1 This lecture will be published in the communications of the Congress under the
following title: “Eine neue Methode in der Theorie der geordneten Stichproben”.
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if x>0 and y LLIO2 This property characterizes uniquely the exponential
distribution. Indeed, let F(x) be the distribution function of £, then

PE< I+ YIS™ y)= FXt"F{y){V)

and it follows that (1. 1) is equivalent to the following relation:
<1.2) P(x -y) PXX)P{y)
where ®(x) = \—F(x). It is known however that, of all functions satisfying
the condition O~® (x)~1, except for the trivial cases &®(x)= 0 and
®d(x) 1, the functions ®(x) = e#x (I > 0) and only these satisfy the func-
tional equation (1.2).

The meaning of (1.1) becomes especially clear, if the random variable
S is interpreted as the duration of a happening having random duration. In
this interpretation the proposition (1. 1) can be formulated as follows: in case
of a happening of exponentially distributed random duration, being in pro-
gress at the moment y, the further duration of the happening does not depend
on y, i. e on its duration until the given moment.

Let us arrange the numbers £1? 2 o m £« in order of magnitude and use
the notation

(1.3) 3 = (i, 5%) (A—1,2.......0)

where the function Rk{X\, X2 ..., x,,) of the n variables xIt x2 ..., x,, denotes
the Jikth of the values x1L X2, ..., x, in order of magnitude (k= 1,2,..., n);
thus e. g. £i= min £k and C-= max £t Then the individual and joint dis-

tributions of the values of the order statistics £1* C's ~N £+ can be most
easily determined. For that purpose we interpret the variables £5 as random
durations of mutually independent happenings; then £* denotes the duration
of the happening finished as k-th of the n happenings. Let us determine,
first of all, the distributions of the differences £3#—SI- If =y, then

(1.4) p<e:t-s >xla=y)- p(&1>x+yjG=y)

where on the right side there stands the probability of the event that none

of the n—k happenings, being in progress at the moment y, finishes until

the moment x-\-y. By virtue of (1. 1), the value of this probability is
(P(E>x))n*= e-0"un'

and thus the conditional distribution function of £<Hi—* with respect to the

condition G= vy is

(1.5) PCH- G<x\G=y)= 1l-e-

2 P(4) denotes the probability of the event A, and P(4jR) denotes the conditional
probability of the event A with respect to the event B.
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As the conditional distribution function (1.5) does not depend on vy, (1.5)
gives also the non-conditional distribution function of £H—£* indeed, by-
virtue of the theorem on total probability,

cD

(I.6) P(5E«-a<*)= g P(Sfi-£2< jdG—y)i/P(SE<y) 1
Therefore the differences £lH— are themselves exponentially distributed

with the mean value Zn";\k)l and thus the variables

(1.7) dM = {n—Kk) (Sfi-1) (k- 0,1,..., n—2>

are also exponentially distributed with the mean value 4:. (In the above rela-

N
tion by definition £5= 0.)
It follows from the abovesaid that the variables dlt d2 ..., dnare mutu-
ally independent random variables. It is namely easy to see that the proba-

bility

(1.8) P(&-1—5 < x|9= yi, M—£l= ¥2,..., S — N-1= yb)
does not depend on the variables y,, ,..., ; this is evident, as the above
conditions mean that £i= yi, 1= %+ ¥, £i= yi-|-y2 F--—--- fy*;, i e

they give the moments of the finishing of k happenings, which finish first of
the n happenings which started simultaneously at the moment t= 0. These
conditions imply that at the moment t= yi+ y2+ e e-hby* there are still
n—kK happenings in progress and the probability of the finishing of at least
one of them before the moment f+ x is equal to 1—g-(>***_ Thus the
probability of the left hand side of (1.8) equals l—e~<+-%Ar] j. e. it does not
depend on the variables yuy2 ..., yk, and this is equivalent to the fact that
the variables £H—C* (and also the variables dk) are mutually independent.
Thus the variables f£ can be expressed in the form

bt _
(1.9) a1 ko k=\,2,..., n)

I. e as linear forms of mutually independent random variables having the
same distribution. (1.9) can be also expressed by saying that the variables
Z*form an (additive) Markov chain. By virtue of (1.9) the distribution of any
£*, further, the joint distribution of any number of the variables A can be
determined in explicit form.

Consider now, how the abovesaid can be applied in general to the
study of order statistics. Let § be any random variable having a continuous
and steadily increasing3 distribution function F(x), let (], £2 e, I») be a.

3 By saying that F(x) is steadilyincreasing, we mean that F(x) is a strictly increas-
ing monotone function in the least interval (a, b) where F(a) = 0 and F(b) 1; it mayr
be happen that a= —o00 or 6= -j-°o.
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sample of size n consisting of n independent observations of the value of
&, that is to say, let &, &, ..., & be mutually independent random variables
with the same (continuous) distribution function F(x). Let us arrange the
sample values &, in order of magnitude, that is to say, let us form the new
variables & — Riu(&1, iy « -, 5i)

The main problem of order statistics is to study the variables &; this,
however, can be reduced to the special case when the variables &, are expo-
nentially distributed (and therefore — by virtue of (1.9) — to the study of
sums of mutually independent random variables), as follows: let us put

(1. 10) m=FE) and §.—= log% k=1,2,....n)
ik
and let us denote by ;- F(§) the k-th of the variables #,,7,,...,7, in
order of magnitude, i. e. let us put 7; = Ri.(#:, 7y, ..., 1,); further, let us put
1
(1.11) G =—=1log — (k=1,2,...,n).

Nin+1-k

As log% is a steadily decreasing function, we obtain:

(] 12) ;: Rk(;ly gly ) Cn) (k: 112’ ...,n),

whence (i is the k-th of the variables (,,C,,..., L, in order of magnitude.
As we have assumed the variables &. to be mutually independent, it follows
that the variables &, are also mutually independent.

Let us investigate now the distribution of the single variable &.. F(x)
being a strictly increasing function, the inverse function of x = F(y), denoted

by y — F'(x), is uniquely defined in the interval 0 = x = 1, and thus
P < x)=P|log ?(1“;) < x) =P&>F (%)) =1—F(F '())=1—e",
Sk

if 0 = x = 1. Therefore the variables £, &,,..., L, are mutually independent
and of exponential distribution with the mean value 1. In this way, the ran-

dom variables & themselves can be expressed in the form

(1.13) g;:F"(e-c:+1m-):F“(e"(T*ﬁ bige. e =120, 0705
where the variables 0,, d,, ..., d, are mutually independent and of exponen-
tial distribution with the same distribution function 1—e= (x> 0). It also
follows from this result that the quotients

6, 0y 3 +6,,+1—1.-)‘J

n: _dni1-k
(1. 14) e
i
are mutually independent random variables (here, by definition, 7;.1=1),
since the variables 0,;;, are, as we have seen, mutually independent.

Another consequence of (1.13) is that the variables &, 1,...,& form a

13 Acta Mathematica
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Markov chain (and thus the variables &, &,..., & form also a Markov chain);
this follows from

(‘-+
(1. 15) = g 7€) 0=
which is obtained from (1.13) and from the fact that the variables &, ; and

0,41 are independent, since
()I: L
Jﬁtkﬁ”)-

A. N. KOLMOGOROV [6a] was the first who remarked that the variables
&,8,...,&, i.e. the sequence of order statistics, form a Markov chain.
The new method contained in the present paper starts from this fundamental
observation, but the possibilities implied by it could be developed only after
having transformed the Markov chain {:,*} into an additive Markov chain by

means of the transformation & — In this connection it is in-

log == F(E Frig
teresting to consider the following general problem: for which Markov
processes {&} can such a family of functions G:(x) be found that the variables
5 —=Gy(&) form an additive Markov process? A necessary condition of this
is that the distribution function F(x,s,y, f)=P(& < x|&=y) of the Markov
process should satisfy the following differential equation :

0FOF(0F &' F dFu_“'i) #F \&# F(UF) fﬂF(ﬂ:)zs

ox dy\dy extdy  0xixdy’ ay ay* \ox) \~

We hope to return to the discussion of this problem on another occasion.
The variables 7, are obviously uniformly distributed in the interval

(0, 1), because, if 0 < x < 1, then

(1.16) P <x)=PE < F'(x))=F(F '(x)) = x,

and therefore the variables 72 form an ordered sample of size n drawn from
a population of uniform distribution in the interval (O, 1).
It follows from (1.14) that

Jxéy lox!

,' o S
(k41 0 3
( + ) =e n+1 -k
9 'U‘ y

1
Ah,r_.

and as P(e "+ < x) P((), g = logg’ ©~ —x, therefore the va-

( k
riables (";‘:l) are mutually independent and have the same distribution, namely,
I

they are uniformly distributed in thé interval (O, 1). This is the theorem of
S. MaLmQuisT mentioned in the introduction.
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§ 2. The theory of order statistics built up by means
of the method of § 1

On the basis of what has been said above it is easy to obtain the
results concerning the limiting distribution of order statistics. In order to
show this, we shall prove the following theorems.!

THEOREM 1. If k =1 is a fixed positive integer, then

. k-1 p-t
limP(nii<x)= J e

sl G=nr (c=0),

i.e. nC has in the limit a 1 '—a’istributzon of order k.

PRrROOF. As we have seen,

e ()/

G = +—--> S + Ty
where 0, 0., ..., 0} are mutually independent and exponentially distributed
random variables with the common distribution function 1—e = (x> 0).
Therefore, the variable - —lf)l_,:j has the probability density function

(n+1—j)e D= (x> 0) and thus it follows by simple calculation that
the probability density function of & is

g,(t)*( )ke (el — 1)1

hence n&j has the frequency function

" —n1e (14 )

L (i) i ("_ 1‘) if ,',_ T (e ) / ’
(A e e (er—1) = =1 [
t » k-1 p-t
As lim n(e" —1)=—1, thus the density function of nZ} converges to L 61’)'

as n— oo, i.e. to the density function of the /’-distribution of order k
This result might have been expected by the following consideration.
Obviously

it \1(1 1)()
(2-2) nif=—0,+0,+ .-+ 0 £n TT
k-1 ,-1
the density function of 0,4 0,4 --- 4 9, is, however, Uf—HT" on the other
~ (—1)9

hand, the variable > — ! tends stochastically to 0, as n-

TR

1 We use the notations introduced in § 1.

13*
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To develop this consideration into a precise proof, we need the following-
lemma, due to H. Cramer ([25], p. 254).

Lemma 1. Let us put ya— an-\-gn where aHand sn are random variables
and let F,(x) denote the distribution function of a,, and further let us assume
thatb

limM/?,=0 and ”Iig; D/?,,- O.

n->-30
Furthermore, let us suppose that there exists the limit F(x) of the distribution
functions F,,(x) as n->&, i. e

7Iim Fu(x) = F(x)

holds for all points x of continuity of the distribution function F(x). Further,,
let us denote the distribution function of y,, by G,,(x). Then

lim G,()= F(x).

Proof.6 Without loss of generality we may suppose that M?,= 0.
Then, by virtue of Tchebyshev’s inequality, we have

P(IA[>«)<-"-.
therefore, given any, arbitrarily small «>0 and f) >0, there exists a positive
integer n,,(d) such that

P(/?2t|>«) <d if n>nld).
But then
(2.3) G,x) P(,<x)s P(«,<x+ *+ P(A<—e).

In fact, if an+ Rn< x, then either a”Kx-fs or aH*x + f, but in the latter
case at the same time sn< — s holds and we obtain (2. 3) by means of the
theorem on total probability. Similarly,

(2. 4) G,(x)= P(/,, <x) ™ P(«H<x—s)—P([Bn>s);
in fact, if an<x—e, then either an+ en<x, or an-f”" x, but in the latter
case at the same time R,>s. Consequently, we have

Fn(x—s)—d g G,,(x) * F,(x+ e)+ d.
Passing to the limit n—00 and considering that s and 6 can be chosen
arbitrarily small, it follows that

F(x—0) A lim G,,(x) < lim G,(x) » F(x+ 0),

5 Here and in what follows we shall denote then mean value of the random variable

I by M| and its standard deviation by DE.
0 We give here the proof of this lemma of Cramér because a similar method of
proof is needed in the proof of Lemma 2.
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e., that in all points of continuity of F(x)
lim G, (x) = F(x).

This proves Lemma 1.
Theorem 1 follows immediately from this lemma, as
k . . . D) k
1(j—1)0; ~» j—1 o sU/—1)d e =l
M(\ J ) ~ —— ‘and D? (\ ————— >
Snt1—j ,éyn—l—l—‘j n+1—j) £ (n+1—j)
and thus the conditions of Lemma 1 are satisfied.
By means of Theorem 1 we can easﬂy determine also the limiting

distribution of #i. We have 1.1 —e % and therefore
* £y {
P(n(1 —nnp1-1) < X) = P(’,,,. < log — oy
L
since
lo _L
g e
lim e
n—> o X

n

and the /’-distribution is continuous, it follows that n(1— ;.. ) has in limit
I 1 t

also a ['-distribution of order k£ with the density function el)' (t>0).

Now, the random variables 7, are mutually independent and uniformly dis-

tributed in the interval (O, 1). Because of the symmetry of the uniform distri-

bution, the same holds also for the variables | —u,(k=1,2,..., n) and thus

the variables

nr=—R(n, 4oy ooy n) and 11— =R(1—n, 1—1, ..., 1—1)
have the same distribution. Hence it follows the following

THEOREM 2. The distribution of the variables ny; and n(1—u.1-4) in

case of any fixed k= 1, tends to the I'-distribution of order k with the den-
. : et ’

sity function == (t>0).
By means of Theorem 2 we can determine also the limiting distributions

of & and &1 ; these, however, — contrary to the limiting distributions of
the variables 7 and i — will depend on the distribution function F(x)

(see [8]).

7 The distribution of the variables %} can be also determined exactly for finite n and
after this passing to the limit Theorem 2 can be proved also in this manner by means of
some simple calculations (see H. Cramir [25]). We proved this theorem here by means of
our method to show its application at first in a simple case.
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Now we shall prove the following

Theorem 3.8 The variables rk and /*+ ;are independent in the limit if
M-+>X and at the same time k and j are fixed, namely

) 1 yj-1F (<)
imP ¢, » Dr e K 1) U—1) du dr (x>0,y> 0).

Proof. First of all we prove a lemma:

Lemma 2. Let us put y,,= «,+ [ where anand d, are random variables,
and let a random variable yHbe given which is independent of an. Let us
denote the distribution functions of u,, and yn by F,,(X) and H,(x) respecti-
vely. Let us assume that the limitfunctions F(x) -:VIIELnGDF,,(x) and H(x)= it!;r%ﬂ_,(x)

exist and, further, that
limM/i, 0 and IlimD,j, O.

11— X 1n—» X

In case all these conditions are satisfied, we have
dimP(/,, <x;yn<y) - F)H(y),
i. e, the variables vy,, and y,, become independent in the limit.

Proof. Let us choose (as in the proof of Lemma 1) the value of the

integer /2, so large that
P(JA| >r) <06 if n>n,
Similarly to the arguments applied in the proof of Lemma 1, it may be proved
that, if n>na, where n,depends on the choice of the positive numbers s and
<, then
(2.5) P(a,, <x—sy,, <y)—d”" P Y,,<y) BP(ci,,<x+1t,v,<y)+ 0,
and as, by our assumption, a,, and ytl are independent, therefore
P(«, <X+ sV, <y)= Fn(xxs) Hn(y)
and similarly to the proof of Lemma 1, we obtain that in all points of con-
tinuity of F(x)
lim P (yn< x, yH<y)  F{X) H(y)

1-> X

holds. This completes the proof of Lemma 2.
Now

£fc—I°gn i nllj A — —*Sn+ f£f

* See Cramér [25], p. 371. We discuss this well-known theorem here, because our
method throws more light on the real ground of the fact expressed in the theorem, than
its known proof.
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where
0 . 0;

= B —_— J ——
I +n—{-l—j’

B VS0
G =14
and therefore
lim MZ; = lim DL} = 0.
n-r>n g > g

As the sum "Q’;“T e ﬁ'}{'—k— log n is independent of £

*

7 and

: 1
limnlog———=y,
> ® ]_,,

n

further, we know that

1}

lim P(nL; <) — | dt,

f.i -1 3
i A

we have

(2.6) limP (,,,t < % 4 e e %’) — lim P (;7;1 r—0 = log ";1{) i)

n—>w . n-> o

where

. i Sk

On the other hand, by Lemma 1

(2.7) lim P(;,‘,H_,..——;}‘ = log %) — lim P(z;:;.1 oot ]og-»Z—J

n-=r>x >’

and by virtue of Theorem 2

X tl.' le—t

~Je=nr et

. G o n ] Top 1
@8 P(Ctii = log ?J ~ lim P (\,‘,, < 7)

From the relations (2.6), (2.7) and (2.8), Theorem 3 follows.

By means of Theorem 3 we can determine the limiting distribution of
the difference 7;,—»1. This is important, because 2;;,— i, the range of the
sample (7, 7s,..., 7m,), can be used to estimate the standard deviation
of the population. As, for large n, the variable 2 is near to 1 and 7 is
near to O with a probability near to 1, we obviously have to consider the
variable n[1—(;—n7%)] and as, by virtue of Theorem 3, n2; and n(1—u;)
are independent in the limit, the limiting distribution of their sum equals the
composition of their limiting distributions. As e (x > 0) is the density func-
tion of the limiting distribution of both n#7 and n(1—7uy), the density
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function of the limiting distribution of n[l —(y:—n1)] is

' e\ We-tidy—xe™ (x>0);
0
therefore n[1 —(»,—ni)] is in the limit a random variable having a /™-dis-
tribution of order 2.
By means of the limiting distributions of the random variables i, the
limiting distributions of the random variables & can also be determined.
Hitherto we have” considered the limiting distributions of the order
statistics & (resp. those of their transformed values i and &) under the
condition that the index k (resp. j=—n+1—k) is fixed and at the same time
n— oo; this set of problems is called the study of the ‘“extreme values” of
the sample. We now turn to the study of the limiting distributions of the
variables & (resp. of #; and i) under the condition that together with n
k tends also to infinity, namely so that [k—ngq|= o (| n), where ¢ is a con-
stant (0 < ¢ < 1). The variable &, (where k— [nq])" satisfies this condition ;
this variable is called the g-quantile of the sample. In the special case
n=—2m-1 where m is an integer, the variable £, is the median of the sample:
obviously, the g-quantile of the sample is nothing else but the g-quantile of
the sample distribution function and thus the median of the sample is nothing else
but the median of the sample distribution function. Consequently, if n is an even

integer, i.e. n=2m, then %(&I,,—FE,“M) is called the median of the sample.

We shall now prove the following theorem containing the proposition that
the g-quantiles of the sample in the limit are normally distributed, if the
distribution function F(x) of the population satisfies certain simple conditions.

THEOREM 4. Let us suppose that the density function f(x)-— F’(x) of
the common distribution function F(x) of the mutually independent random
variables &,,§,, ..., &, exists and that f(x) is continuous and positive in the
interval a < x <b; then, if 0 < F(a)<q < F(b)<1 and further, if |k,—nq|-
— o (/n)(and thus, a fortiori, lim %Zq), then & is, in the limit, nor-

mally distributed with the mean value Q—F "'(q), which is the q-quantile of
the distribution function F(x), i.e.

lim P( L
o J_]/ q(1—9)
Q1

7,,;1A 4

9 [x] is the largest integer for which [x] < x.
19 This theorem is contained in a general theorem of N. V. Smirnov [8g].
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Proof. First consider the limiting distribution of

tn-I-i-

n J_(ll_y

<2-9) - ”

where the variables dj are mutually independent and exponentially distributed

1

with the distribution function 1—ex (x > 0), that is to say, Mr)',= Dd,
and
(0% 1 (o
M(ldj—1d=| x—Ipexdx < lerdx+ jx3e Xdx 5.
Then, however,
_ n+l-lcn 1
M,, = mc:+H , = JVk n+\-j’
n+1-k 1
< s;= D%;M, = N
2. 10 M jk "+ 1-yr
«H-"*»
s yon A-lo<s5y
i1 n+1— 4 (n+1l-yr
and thus
Kn 5
(2.11) S = it

Therefore, if n—»0& then K. >0; this means that the central limit theorem

in Liapunov’s form can be applied to the sequence

thus
" B,

2. f2
( ) Y, Sn

lim P
K=>00

Now, it is known that
Fl-}'l- = logm-+C-Tdm

where C is the Euler constant, and an A > 0 constant

of sums (2.9) and

can be found such

A
that 14”|<ﬁ' By means of some simple calculations it can be verified that

2. 13)

ik = A=A nd

Thus we have

<2 14) Mn = |og k)
<2. 15) %,1: \]A|; _ J; 1)/"

(0< #< 1)
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where |¢| < :— and |&/| < éz—, A and B being constants not depending on n.
Therefore
r* n

By M SRR logkv
2.16 = = == T
( ) S'l ]//n—_k;l

o
. i .

where |&/"| <L1/ R and L is a constant not depending on n. But,

if n— o, then /ff—»q and thus & — 0. Hence

[ 8 ;.-,,—log,'(i g g
(2. 17) lim P Sas e ” < X m— — ‘ CV ¥—) dt.
"> n [ E:/& V2:‘[ %
nk, =

For brevity, let us introduce the notation ¢, =%”, then, by virtue of (2. 17)
and taking into account that owing to |k,—nq|=o0(}/n), we have

lo —L——lo J——o(’—l-‘)

et —|,

it follows that

& 1k, — log *‘f 1 N 12
(2. 18) gt Pl e g ::-:J e 2 dt.
> o ]/ 1——(1 ! T
nq (i

As. G, = log F(IE—*) , if follows from (2. 18) that
Sk,

: = 3 3 z 12
(2. 19) lim P(;;”> F"l(qe ; l 1))__ i ‘ T i
N V2 _J
But, in view of the mean value theorem of differential calculus, we have
@2 F’l(‘qe 1 ”"J: Q _[_q(e/_'],)
Q%)
where lim 9, — 1.
It follows that
i Ef s »‘" 42
(2.21) lim P o0 el et
_1_1 9(1—9) Va2
Q) n »

which was to be proved.
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The statement of our theorem can also be characterized by that the
g-quantile of a sample of size n in case of large n is approximately normally
distributed around Q, i.e. around the g-quantile of the population, with the

ek 1 1/q(1—q)
standard deviation Q| s

In this way, by means of the sample median, an interval containing
the median of the population with probability arbitrarily near to 1, can be
given. In the special case of symmetrical, for example, normal distribution,
the median of the distribution coincides with its mean and in this way we
can estimate the mean value of the population.

The theory of order statistics has a widespread applicability in the
statistical quality control of mass production,” which is an important field
of application of probability theory. Let us assume that a certain measurement
of some engine parts produced on an automatic machine displays some
small random fluctuations from specimen to specimen, therefore its value
can be considered as a random variable. Let us suppose that, under standard
manufacturing circumstances, the distribution function of this measurement is
the (continuous) function F(x); to control the process of production, at regular
time intervals we draw a sample of size n — e. g. of size 5.

We take the considered measurement of the values of the sample and we
mark them on a perpendicular straight line drawn across the abscissa corres-
ponding to the point of time of sampling on the ,control chart® and we mark
their places with dots; the values of the sample will be placed automatically
in order of magnitude. In order to detect any irregularity in the process of
production (e. g. the displacement of the adjustment of the automatic machine
or the attrition of certain parts of the producing machine etc.), we draw 5
bands determined by parallel straight lines, giving intervals containing the
least, the second, the third, the fourth, and the largest value, respectively, of
the sample of size 5 at the same time with a given probability — e. g. 95"/,
— under standard manufacturing circumstances. The determination of these
intervals is very easy by what has been said above. In fact, if & denotes
the k-th sample value in order of magnitude (k =1, 2, 3,4, 5), then, as we
have seen, we can exactly determine the individual and joint distributions
of the variables

1
0= log —re—r k=—1,2,3,4,5).
ok og F(;ﬁfl;) ( )

The practical application of this method in quality control is dealt with
by the Department of Mathematical Statistics of the Institute for Applied

1t Cf. the work of L. I. Braainsky [26]; by means of the theory of order statistics, the
calculations of Bracinsky which are not quite exact can be put in a precise form; in the
practical application it is suitable to carry out the control charts on the basis of these
precise calculations.
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Mathematics of the Hungarian Academy of Sciences; tables needed for the
use of the method are also prepared.

We shall not continue the enumeration of theorems obtainable by means
of this method, we only emphasize, that our method consists in deducing all
these theorems, by means of (1.9), from the theory of limiting distribution of
sums of mutually independent random variables.

§ 3. Formulation of some new theorems concerning the comparison
of the distribution function of a population and
that of a sample drawn from it

Hitherto we have only shown how our method makes it possible to
prove certain well-known results of order statistics. Now we shall show the
new results which can be obtained by means of the same method.

A. N. KoLmoGOROV [6b] proved a fundamental theorem giving a test
for the hypothesis that a sample has been drawn from a population having
a given distribution. By means of this test we can infer to the unknown distri-
bution of the population from the distribution of sample values.” Let us define

s v x=4,
@3.1) RGl=1 L # Becrsgn

’ 1 ifES e
i. e. F.(x)is the distribution function of the sample, in other words, the frequency
ratio of the values less than x in the sample.

KOLMOGOROV’s theorem is as follows:
e /\" M k 20242 f S

(3.2) lim P(Jn sup |Fu(x)—F(x)|<y)= ) ,‘_:,m( 1)'e ify>0
N —> o e @ <+ o0 0 1f y§0

KoLMoGOROV’s theorem therefore gives the limiting distribution of the sup-
remum of absolute value of the difference between the distribution function
of the sample and that of the population. This limiting distribution does not
depend on the distribution function F(x) of the population which is assumed,
for the validity of theorem, to be continuous. KOLMOGOROV’s theorem con-
siders the difference |F,(x)—F(x)| with the same weight, regardless to the
value of F(x); so e.g. the difference |F,(x)—F(x)|=0-01 has the same
weight in a point x with F(x) =0-5 (where this difference is 2°, of the
value of F(x)) as a point x with F(x) = 0-01 (where this difference is 100°,!
of the value of F(x)). We can avoid this by considering the quotient
| Fu(x)— F(x)|
F(x)

12 ], e. we can give confidence limits for the unknown distribution function.

instead of |F,(x)— F(x)|, that is to say, by considering the
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relative error of F,,(x). In this way, the idea arises, naturally, to consider the
limiting distribution of the supremum of the quotient * which

characterizes the relative deviation of distribution function of the population
and that of the sample.

A theorem similar to that of Koimogorov’s was proved by N. V. Smirnov
concerning the one-sided deviation of the sample and population distribution
functions. Smirnov’s theorem is as follows:

' \1—e'32 if y >0,
3.3) lim P(M GO(fgp*go(Fn(x)- F(x))<y) 10 it y < 0.
We shall consider also the analogous problem for relative deviations.

All these problems can be successfully solved by means of the above

method. In the course of solving these problems a natural limitation is to be

adopted: as F(x) takes on arbitrarily small values, it is not suitable to con-

F,J) F..(x)—F(x)

sider the supremum of I )—F(/X) or respectively taken

in the whole interval —°0<x<-T°0, but to restrict ourselves to an interval
%, X< + 00, where the abscissa xa is defined by the relation F(x,,) = a >0;
the value of a, however, can be an arbitrarily small positive value. In 85
we shall prove the following results:

Theorem 5.

. F.(x)-F(X)
(3.4) lim P Vlnaséu o F(x) <y\=

<uU-~ j e -dt if y>0,

0
0 if jiO .
Theorem 6.
. . Fn(x)-F (x)
(3.5 nl.'ymm P U nasu ) F(x) <y =
(2A-+§2n- 1-«
Ke .

-T k=0 2k+] it y>0,

(0 if y=£0.

We may consider the limiting distribution of the supremum of
F..(x)-F(x)
F(x)
respectively, where the abscissae xa and jg are defined by the relations
F(x = a>0 and F(xh= b<l1l (0<a<b< 1. We then arrive at the

following theorems.

, and of its absolute value taken in the interval x,, Xb>
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Theorem 7.

F,,(x)—F(x) I

(3 6) nl-llg( P ”Vh aAFSH(P)“b _____ F&!’)\ < nJ
4 A Jorlb) !
1 f '-I\-] Jf e Tdt du (—oo <y < + oq).
r %n e /
Theorem 8.
. . Fn(x) —F(x)
nI!LnCO P \;/I aASFu(P)A h F(X) <y
<37 (2fe+l)§/(1(z}?5 ) |
\ Ao on+ B Ty>0,
10 if y=£0;
where
E, Td= e -du +
117 | ¢
and
. 2fctl) -5
- b,Jl (
« YD e -by2 sincilu,
T™=2Y 0
These theorems provide tests for verifying the hypothesis that the sample
(£, £,) has been drawn from a population of the distribution function

F(x). The character of these tests consists in that they give a band around
F(x) in which, if the hypothesis is true, the sample distribution function E,,(x)
have to lie with a certain probability and the width of this band in all points
X being proportional to F(x) This band, however, is not a symmetrical one.
To overcome this difficulty, we apply the test twice, first to the sample
(Si, 5n) having the population distribution function F(x) and then to
the sample (— —8 ...,—S§,) having the population distribution function
G(x)= 1—F(—x). In order to illustrate this, let us denote the distribution
function of the sample (—1L, —&£,, ..., —£,) by G,,(x) and let A be the event
that

in su Fn(x)-F (x) <y
£ FX '
and B the event that

- G.,,(x)—G(x) E..(x)—E(X) _
"SR, e Y ke SR iRy <Y



ON THE THEORY OF ORDER STATISTICS 209

finally, let us denote the simultaneous occurrence of A and B by C. Taking
into account that

P(C)=P(AB)=P(A)+P(B)—P(A+B)
and in case of occurrence A--B we have obviously at the same time
Vn sup |F.(x)—F(x)|<y;
F(rn=1

0=F(r)=

and this last event, by KOLMOGOROV’s theorem, has in the limit the probability

(3.8) K(y)= §f -(_]), 2y

Therefore P(A-+B) = K(y) in the limit and in the same case
P(C) = P(A)+P(B)—K(y).

The probabilities P(A) and P(B) are equal and their common value is
given by (3. 5). Thus the probability of the event that the sample distribution
function F,(x) lies in the intersection of bands defined by the above two
conditions corresponding to the sample (§,,&,...,&) and (—§&,—&,...,—&),

respectively, is not less than 2L(y]/—]i—a)~1((y) in the limit, where

(’/+1)1

i -
e %€
L(2)= 1.21'( 1) 2D (2> 0) and K(p) is the function defined by (3.8).

Let us point out a most surprising corollary of Theorem 7. From the
theorem (3. 3) of SMIRNOV, we get
(3.9) llm P( sup (F,,(x)—F(x)) < 0)—0,
i. e. the probability of the event that the sample distribution function does
not exceed the population distribution function all along the interval
— oo < X <+ oo, tends to 0 as n— oo. From Theorem 5 it follows that
(3.10) lim P( sup (F.(x)—F(x)) < 0)=0, ;
n-—>w =r<+®
i. e. the same is true for the interval x, = x <+ oo. On the other hand, by
Theorem 7,
”] a(1=b).
oo b-u

u? 12

@12 ImP( sup (F.()—F() <0) -l[ ]e i ‘e Tdtdu >0,

i. e. the probability of the event that the sample distribution function does
not exceed the population distribution function all along the interval in which
the value of F(x) lies between arbitrarily fixed values @ and b6 (0 <a < b <1),
remains positive also in the limit. This result, obviously, is important also
from the point of view of statistical practice.
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T h result th t th lim it th left d f (3.11a) is positive, w
| p d by G hm [16], moreover, h bt d that
- _ =1 in a(l—Db)
(3.11b) imP( sup (F,(x)—F(x))<0)= arcsin - P (\-a) »
s na.n. Mmentioned further that the result (3. lib) has been already known to

¢ neaenro. The terms on the right sides of (3. 11a) and (3. lib) are, of
course, identical. This follows from the following consideration: the right side
of (3.11a) is nothing else than two times the probability of the event that
a random point normally distributed in the plane (x,y) and having the pro-

bability density function"l— e_zozﬂla, lies in the infinite sector 0<x<-t-°c,
O<y<x d(l'f’a) , and this probability is equal to

2 arctg a(I_—aG)

b ; 0(1-6)
(3. 12 ¢ arc sin 6(1—a) °
Indeed, because of the circular symmetry of the normal distribution having

the density function-z%(e_f(r"'/'), the probability corresponding to the infi-

nite sector of angle < is y

Theorems 5—8 will be proved in § 5. First in § 4 we shall prove
some auxiliary theorems which are of interest in themselves too.

8 4. Some new limiting distribution theorems

Let a sequence be given consisting of the sets of random variables
1, 2te*d Xn o 32..)»
Let us assume that the random variables have the expectation 0 and a
finite variance, further, that the random variables having the same first index
n (n=1,2,...) are mutually independent and satisfy Lindeberg’s condition,,
that is to say, introducing the notations

= * : i : - = -
Fih(x)= P (E,*<x); Sni m2tn,r; D-S,,.yH K\le £,

we suppose -
Mi,, fc= 1 xdF,, k(x) O,

co

(4.1) lim I xdF,,,[(x)= 0 if e>0.

— 2
«>oBnk— Ix1
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Concerning these sequences satisfying the above conditions we shall prove
the following theorems.

THEOREM 9.
4.2) lim P( max S,,,<xB,L)SV_ .e “ar i x>0,
n—> ® I=h= \ ZO lf xfo
THEOREM 10.
¥ ’I+l)n
(4.3)  limP( max |S,.|<xB)={ 7 Y(—nf e el ik k.
O 1f =0
THEOREM 11.
4.4) hfl P(—yB. _l(nkn<n\ Swin gl (rrllax S 3 < XBy) ==
(’l+1)n -
» € ZEHP sm(2k—{—1),r
o T 1 x>0 dand  y=0,

O feitlier ox =108 Jor  yi=—10.
REMARK. In case y=x, Theorem 11 reduces to Theorem 10.

THEOREM 12. Let-An—=D"S, », with 1=M, <N, and

. A)I -
Then

(4.5) lim P( max |S,, 3L Y )=

n—>w M, <k=N

k+1)2n2 -

u?

4 < i 2 (% :
:g—“/_( 1) %1 (1— IoE J e duJ,—g);.-) ifi iy =10,
Yy

e—0

(0 if y=0 ’

where

n
y2 (2h+1) )
)2u5‘

2ie 2@ L
—VZ—_'ry—f e sinudu.

\OI‘A ——

REMARK. In the special case of M,,=1 (i.e. for 4=0), Theorem 12 is

identical with Theorem 10.
For the special case in which all the considered random variables &,

have the same distribution, Theorems 9 and 10 were proved by P. ErRDOS

14 Acta Mathematica
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and M. Kac [22].2 In the proofs of the above more general theorems, we
modify their proofs inasmuch as we apply an ordinary (one-dimensional)
limiting distribution theorem instead of the multi-dimensional limit theorem
used by them; this enables us to generalize their results. We shall use Theorems
9—12 in 8 5 to determine the limiting distribution of the random variables
FHxX) —F(x) F..(00—F(x)

A0 R M TR
where F,,(X) denotes again the distribution function of a sample of 1 mutually
independent observations concerning the random variable £ having a conti-
nuous distribution function F(x) and further 0 <a<b” 1

Let us turn to the proof of Theorem 9. Let us put

P,,(x) = P( max Snk<xBn).

Let rii, nn, ... be mutually independent random variables which are
normally distributed with mean 0 and variance 1, and let us introduce the
random variables

_ * —

= -1 (*=1,2,...).
First of all we shall prove that for any s> 0 and for any positive integer K
we have

(4. 6) limP,,(x) » P(max (£, Q <(x—s)fk)-—]-
and
(4.7) limP,,(x) s P(max (£lt £9 < x /).

For, let m, be the least positive integer satisfying

(y= 1,2,..., k). Obviously, 1~ m,* A A mk— Nn. Let us define now
the following variables:

(4. 8) 1 *sn, mil, Ta.j — Sn,nij Sn, my_| (y — 2,3,..., /ry.

We can see easily that for any fixedy (y= 1,2, ...,*) the Lindeberg con-
dition holds for the sequence

(4.9) Miy_i+1 =01, thj_i+2f =« <] bn, nij 1= 123,..).

12 Their method was generalized by M. D. Donsker [20b]. See further the papers by
A. Wald [27], [28], and K. L. Chung [29]. They consider the limiting distributions of the
supremum of the first n partial sums under the conditions that the variables have the
same distribution and that the variables have finite third moments, respectively. Chung
gives for this latter special case an estimate for the remainder lerm also. Erdés and Kac
remarked that their theorems can be proved under more general conditions.
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Indeed, introducing the notation

Bn,j ~D '|m,j
and using the relation

lim— sup DS, k=0

Bn 1=kt
which trivially follows from (4. 1), we obtain that, for any 6 > 0,
@. 10) =0 mnj=49d% i i nop)
holds. Thus for any s>0
u m f K 1 M r
gl-_Z I x ) x*dF’-M
"J r=mp 1+1 \X\‘E"EB . 1 O D« I'=1 1X|>‘] ¢ Bn
\

if n>n00), and s'= s T2 The Lindeberg condition is therefore actually

satisfied by the sequence (4. 9). Therefore, by the central limit theorem,

<4.11) lim P(4,,,j <xB,,.J) /21H -Ft y=12,..,Kk.

But the random variables 4,1, 2,2, ..., 4,,» are mutually independent and
lim Bl - 1

h e T on (J=h2,....k);
ence
<4, 12)
B, fk
bL rH rd bl i

(HD)".
i. e
<4.13)  limp S IFM2AT N o 10 0

il-> co ﬂ»
(KzT)KJJ"'J N ' dixdu.. dtk:
! (m

where the integration is to be extended over the domain Tx defined by
Tc: {—°° <fid-t24~e0eq' (/< 1 =12,..., k).

Hence we obtain

<4. 14) lim P( max S,,,mi<xBn P( max "j<x][k).

14~
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Let us put
Q.. .(*)= P( max S,,m<xBn),
and let n nr{x) denote the probability of the event that S,,r is the first of
the sums Snj (j= 1,2 ,..r) which is ™~ xBn, i. e. let
Mn,, r(x)= P(S,,,r"xB,,;lmax S,,.j<xB,,).
Obviously,

Yy
2iH,r(x) 1—A(*)=§1
Let us suppose rrij-i <r si m introducing the notations

; m\(x) = P(5nr= XB”;lar‘gar)Ei S,..J <xB}: |S. ,rﬁ—S,,,r\LLItB n)
an

[7f).(x) = P(S,,,s"xB,,\ max S,,,j<xBn; |5,)1,—Snr|<£#«)-
we get evidently
11,,,(x) 1I<* (X)+ n5(x).
Let us apply Tchebyshev’s inequality:

MNAr(x) =J7,,,r(x)P(I1Sy,, S nr\WaB,,)- H ,,,{x)"r

and consider the relation (4. 10); thus we obtain that

O™ rO)WMwr{x)X£-:,
therefore
(4. 15) 1-p n(x)=2 nnr(x) :
r 1 ).
On the other hand,
(4-16) N () si 1—Q,,, (x- f)

i=i
as from the relations
BArWxB,, and \S,,m—SH{ < *Bn
it follows that
Sn, wj > (x —t)B,,.
Thus we have

1—Pn) =i+ 1—Quk(x—e)

Further, on account of the trivial inequalities P,,(x) * Q,,.k(x) (k= 1,2,...),
we obtain

(4.17) Qn,h(x-i)- 'gj'j—*(d A PR(X) £ Q,./,(X).
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Comparing the above relation (4.17) with (4.14), we have just the desired
inequalities (4.6) and (4. 7).

Let us consider now the special case in which the variables &, , assume
only the values +1 and —1, and

PE—+)=PEu=—N=7 k=12, N=n 1—12..)
Then
1 n
(4 18) Pu (X) A= 2T Z i = n—w —
e R e

(except if x|'n is an integer) and thus from the Moivre—Laplace theorem
we conclude that

(4.19) lim: P, (o) = = dt (x > 0).

n—r>w

Therefore, as it follows from (4. 6) that

(4. 20) 1im P(max (§,, &, - - -, &) < x) k) = lim Po(x+ &)
k> n—>®
and from (4.7) that
(4.21) lim P(max (&, &, .. ., &)< xV k) = lim P.(x),
k—> > >0
we have
12
(4.22) lim P(max (5, 5, ..., ) < x| k)= 2dt (x>0),
k—»> o

0
and, applying again the relations (4.6) and (4.7), we obtain (4. 2).

The basic idea of this proof can be summed up as follows: we have
pointed out that in case of a special choice of the variables &, », (4.2) holds;
from this, by (4.6) and (4.7), we have concluded that (4.2) is true also
in case &, =1, where the variables 1, are normally- distributed; hence,
again by (4.6) and (4.7), it followed that (4. 2) holds also for any variables
&, » satisfying the conditions of the theorem.

The proof of Theorems 10 and 11 is based on the same idea and,
with suitable modifications, agrees step by step with the proof of Theorem 9.

It is sufficient to prove only Theorem 11, because this, as we have
seen, includes Theorem 10 as a special case. It is unnecessary to detail the
first part of the proof, thercfore we shall deal only with the second.

Let us have again

B 1)=P(_E,,‘,,:f—1):% G2 =t =20

and let us suppose that the variables &, . (k=1,2,..., N, = n) are mutually
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independent. Then it follows by simple arguments, well-known in the theory
of the random walk in the plane, that, if A= [x//?]+ 1 and B = [y jk]+ Ir
then

(4.23) P(—y\'n <S, k< x]In; k= 1,2,..., t)=
V]_ i GO

~ (V2v(A+B)+k—V-2v(A+B)-2B-k + wu-2n(A+B)+k— V-2r(A+B)+2A-k) j
where
if k~n {mod:2)

K

0 in all other cases.
As, by the Moivre—Laplace theorem,

lim
Az o2 ] fange X
n,v+ n inl

by simple calculation we obtain
(4. 24) limP(—y]/n <S,, k<x\in; k= 1 2,..., ri)

e (ded2e

4 x e 2 sin (2K +e )M

r i) 2 e (x>0, y >o).
Similarly to the case of Theorem 9, it follows that the limit of the proba-
bility on the left side of (4.4) is the same also in the general case.

Theorem 12 can be derived from Theorem 11 as follows. Owing to the
independence of Snuu and Snk—S,,m,, (k> Mn), by the relation

P(Mn@%ynls,,. Ei<yBn= P(—yB, <@.M,* (5, K—Sn\V,)) <yB,,),

we obtain, by virtue of the theorem on total probability, that
(4. 25) P( DBy, S»)fd <yBn)

. Slu
= | P(—(x+ y)Bn<S,, k—Sn.ii,,<(y—x)g,)</P( B n<x

As, in accordance with our restrictions, Limdleberg’s condition is satisfied

(SH@\ 1
Bn Bn
fore (uniformly in x in all finite intervals) we have

N
by the sums Sn.uy= xj k. further, D] Aasn— 00, there-

u )
fSn.M
4. 2 limP "<xl i - fe~"du dt.
(4. 26) Bn b f ik -



ON THE THEORY OF ORDER STATISTICS 217
Furthermore, by Theorem 11, considering the relation
D (Sn, N = n M”) S l/82 n’

it follows that
4.27) im P(—(x+43)Bn < S, 6 —S8nu, <(y—X)Ba; k=1,2,...,n)

I

( o (2k+1)2 12 (1-A2)
4 e i . _y—x
zzgé’—wsmgk—i—l)fz TR if ¥s0. a08 " xl=9,

0 # =0 or y>0 bt [#>n

Therefore, finally, we obtain
(4. 28) lim P( max IS,I x| < yBy) =

7> M, <k=
(°I|+1)2~11(1 ) 4y

4 e
ZE;_(, 2k+1 JV

Hence, by simple calculations, we obtain Theorem 12. In fact,

12
)42

sm(2k+1)1 2y X dx.

+y _1_2
952
(4. 29) _sin (2k+1)~c mei.l O
1/ 2y
s 5 2
g le*?(t (I;;)LZT)_
= (—1)ke 8y? j ot
L T2
Y
AT
oL
Now, since the integral of e > on any closed curve vanishes, therefore, if
a>0 and & is real, then
+a (t ib)? a—1ib ‘ﬁ +a 12 =q 7& 1—ib _ﬁ
g f g 2 ] il - e 2
: = dt=J I X ] : dt+J B
J‘ l/.?.ﬂ —a—il V L 1 l/z & -a-ib 1’24-[ () V s
a 7t_2 _il;—’_ b
e 2 e % £ L
= —dt + _Je sinav duv.
j V2 2
Consequently,
+y
sm(2k—{—l)1 dy—
r
5 @k+1) >
@A ; - Az
—(—1)e & : f e * sinwvdv
y v

This completes the proof of Theorem 12.
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§ 5. Proof of the tests analogous to those of Kolmogorov
and Smirnov

Let £ be a random variable having the continuous distribution function
F(x) and let §,&,...,& denote the results of n independent observations
for the value of & i.e. let &,&,...,& be mutually independent random
variables having the same continuous distribution function F(x). Let us denote
the distribution function of this sample by F,(x).

We shall prove the theorems formulated in § 3 by means of the method
exposed in § 1, using the theorems of § 4.

Let us put 7=F(&) and G=Ilog 11, , further, ;= F(&) and

T

=R, L,...,5). In this case the variables 7, are uniformly distributed
in the interval (O, 1) and their sample distribution function is

G.(x) = F.(F ' (x))
where y— F'(x) is the inverse function of x = F(y). But it is easily seen that

F.(x)—F(x) )* Gn(x)—x
o T e
therefore, instead of the variable on the left side of (5.1), we may consider
the variable sup ﬂx})—_x identical with it. The variables 7; — as we

a=z=1

have seen — form a Markov chain. Further, we have seen that the variables
01 = (n—k) (5i—C7) are mutually independent and exponentially distributed
with mean 1, i. e.

P@Or<x)=1—e™" (x>0).

We have also seen how the variables L — log r*l may be decomposed in-
(k+1-k

to sums of mutually independent random variables by means of the d/s:

Let us turn to the proof of Theorem 8. First of all, it is easy to see that
instead of the relation (3.4) it is enough to prove

QL(_X)_S_:—,,{ 5 (y>0).

(5. 2) lim P ( /n sup

n—>w o= G,,q.r)

For, if |G.(x)—x| =, then from G, (x) = a+¢ it follows that x= G.(x)—¢=a
and thus

st Gu(x)—x = sup G, (x)—x
- 9 Gy ()= ate X

1
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i.e. from sup Gl —x < - it follows that sup L)% <X . But if
a=2z X l/ G, (@) =a+e X V[l

A, A" and B are any events and AB < A’B, then
P(A)=P(AB)+P(AB) = P(B)+P(A'B) = P(B)+ P(4).

Applying this inequality to the case when A is the event sup%—x< V—_
a=a n
B is the event |G.(x)—x|=¢, and, finally, A’ denotes the event
sup L %, we obtain
G (@)= ate X /'n

p([’ﬁsup "(") <y)<P(\G(x)—xbs)+P(]/n sy ol — <y)

a=x t+ E%’f”( ) X
It can be simllarly shown that

P(Vﬁ sup % <y) =P(|G.(x)—x|> e)—}—P(Vﬁ ilépLx)Z_ﬁ<y)

< éGn ()
As
limP(|G.(x)—x|>¢&) =0 (¢ >0),

n—>rm

it follows that if (5. 2) is satisfied then

=3
ﬁfnP(Vﬁsqu—“(%-_—x<y)§V? f e 2dt

n—>w a=zx

and

lim P(l«nsup»G—«()—;—c)—_—x<y)”§ V% j e 2dt.

-
n»czn & &
0

Since & can be chosen arbitrarily small and the integral is a continuous
function of its upper limit, it follows that
1-a

‘ patiles |
hmP(Vnsup&(x)—_x<y)=1/2 J e *dt.

n—> o v X JE
0

a
T [

Therefore, (3.4) actually follows from (5.2) and thus, to prove Theorem 8,
it is enough to show that (5.2) holds.
Further, we shall need the following relation:

k
(5. 3) n sup S [/n max (ﬁ; — 1) :
a= G, (%) X an=k=n \ Nk

This follows from the fact that G, (x) is a constant lying between 2 and



220 A. RENYI

rjf)ﬁ, and so in any interval fk<x< rjk)ﬂ' the supremum of 9’-Q(-)~-_i1 Gn() T
is equal to
X
G.(2*+ 0) 1 n, 1

Ve
Now, let us apply Theorem 9 to the sequence consisting of the following
sequence of random variables:
dj—\ .
n+ 1 vy (y=1,2,..., [,i(l-0)] + 1);
this sequence satisfies Lindeberq’s condition (and, moreover, even Liapunov’s
condition) if 0< a< 1 Then, by (1. 11), for any 2>0, we obtain

on 2

. i 2 dt.
(5.4) nI-I>mXPVann2?<‘)§n an’Z/f:n fIt v e 2d
As in case of an and O0<a< 1],

v b K U) and annkAn ft an WO M
from (5. 4) one concludes
7 K \

(5.5) max log <z \-a

. \/an K&n Tik 1 an \] m

therefore, finally, introducing the notation y = z 1—a’ we have

Fa

. 2
_N___ =
(5. 6) limP\. nanrg% nIog I * 1<y " e ¥ dt
In view of (5. 2) and (5. 3), Theorem 5 follows from (5. 6).
Let us now turn to the proof of Theorem 7. We may obtain the
random variable

(5.7 r=1n max log——— >—i m omax Y O\
an — Kk — bn an<K"'ant| n+I_J

as the sum of to independent random varlables 1T and t2 where

6 -\
5.8 Vv

( ) r11 N h+l-bn ft IIAiLJ
and

o Ym N —I
(5.9 To-tnoomax 2} -=r

an~rn+l-k < bnj=

Yy
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It is evident that in the limit xt is a normally distributed random variable

with the standard deviation 1T—b; further, from the proof of Theorem 5

we can see that

(5. 10 limP(r2fb<z)= - | * *dt (*>0).

Considering further that rx and r2 are independent, it follows from (5.8)
and (5. 10) that
I V b Z" ) bn2 >_£>ys
(5.11) HTP(T<y)= "\, JEIM j e 2dtdu.
This completes the proof of Theorem 7.

In the same way we can also prove Theorem 6. Here the relation (5. 3)
is replaced by

k_ b
Gn(x)—x _ n n
(5' 12) ]/n«g%pfm B ynan maz(n I v 71k-1
from which it follows
K
Jn max g -j iYn sup G,,();z—x
(5. 13 antkron vk

K k+1 k+ 1
. n n . n
For, if 1 < —, then P . —1 j
1 Vk+1 \ﬁg(+l ' AV S Vk+1 i,
however, r+H ~ —, then in case k”*an, ?*4 LWa and thus
K K k+ 1 Ar+l
n 1=1 n n 1 n
Vil Pe-L Wl nUel w1 " tan
Consequently, in either case
K K+1
n n 1 .
1 (k is an}

Vw kH an



222 A RENYI

k+1 K
. n
-1 a - , We get
and S|ncean[nka3<n b anmkin jz-ll* 1 g
( K K K
max iy 1 s max " A
an<fe<nVlBi . bt+i 7 an A~ k — ° nl an
The limiting distribution of the variable
k_
n
Al
Vn max A

occurring here is identical with that of the variable

7 n+l-k v

|
In max log—*21-- =Jn max Y °“i—1
an<fC<n| [k v=k an — k A n m I’]+I—j

which can be determined by means of Theorem 10.

To prove Theorem 8, those steps have to be applied simultaneously
which have been used in the proof of Theorems 6 and 7; in this proof we
shall use Theorem 12 instead of Theorem 10.

The basic idea of the proof is as follows. The limiting distribution of
the variable

Fn(x) — F(x)
R )

is identical with that of the variable

n max

an — k — bn

and therefore it is identical also with that of the variable

K
tl'{]]K i ‘Il
- Yn max Mx = Yn max T
3f2 an —k ~ bn I-Og H:, an ~ K bn £| ﬂ+ 1 J

Thus Theorem 12 is applicable, namely, since the values of the constants A,
and Bn occurring in it, are as follows:
1—a
An- ]'tg----bo — and BHe= an

therefore

An a(l-b)
! I"Ii—TGDfi b{\ —a)’
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and thus introducing the notation S, , = Z izl e we have

Snt+l1—
F,.(x) F(x) <y)

SRy T
)

2k+1)2n2 1-a i

lim P(l/ﬁ sup

n-—>w a=F@x)=b

—limP( max |S,,,,4\<y1/

n—»w nt+l-bn=r=n+l-an

4 b l'e_ 8 ay? [ 2 ~ ".'72

— N Pt o= R At e 2 .
T.—z( b 2k+1 (1 V27 Je du+(>,,)

b

Yy 13

where
by? 9 Jot T
21/ lz—be 507 ©F ‘n I
0 = e J e " sin u du.
J2y

This completes the proof of Theorem 8.

§. 6. Remarks on the limiting distribution functions occurring
in Theorems 5—8

The values of the limiting distribution function occurring in Theorem 5
may be read from the tables of the normal distribution function. The values
of the limiting distribution function occurring in Theorem 6 can be computed

4 into the function
1—a

(__ (2k+1yA"
el

by substituting the values z = y]/

82*
2k+1

6.1) L(z)= ir

|T[~4s

( (z > 0).

At the end of this paper, we give the table of the function L (y ]/ Ti—a) for cer-

tain values of a. The curve of the distribution function L (y Vll—ia) can for

certain values of a be seen on Fig. 1.
The values of the limiting distribution function occurring in Theorem 7
can be approximatively computed in the following manner:

JE RE
6.2) F@,a, b)_-%J e 2 f e"T = U dudz

- 0
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where 7 is an infinite triangular domain in the plane («, v) defined by the

following inequalites:
: a{\—b)
6.3) 7 :—o»<u<y 1_b,0<v b2

Introducing the polar coordinates r= \ul-\-v2 @ arctg Wwe obtain

{6.4) Fiya b)—~ ] Ji—e 2d-«< ,ia dip

0

we have finally the following approximative expression:

1“ « arc jtg Oél_'t;)

<6.7) Fiyab) = e 2du——— T
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where

(6.8) R=— exp ,, —agsin'-/* d and a= arctg a(\—b)
If 1—b-=s is small, then R is, in most cases, negligible, except for extre-
mely small values of y, since
A ay- bf-

<6.9) R”™ exp 2(1 —a) sin2«; exp 20-b))"

The values of the limiting distribution function occurring in Theorem 8
can be approximatively computed in the following manner: it follows from
the second mean value theorem of the integral calculus that

b2 1 (e
2e &b J 1-yu2
<6. 10) (4 vosy e 2»2 sinudu
b2 4y
2e 20 T oxp @A+ D221 —)
f2ny { 5 1

In this way, using the notation (6. 1) the limiting distribution function
occurring in Theorem 8 can be expressed in the following form

<6. 11) Sty pﬂje 2du +2/
£,

where, as is seen by way of a simple calculation.

fit2 rd{b—a)
%12 a<2lerw o 1rexp  gaby2
nr2ny 1—exp 7tr(b—3)j
8aby

whence it is readily seen that if b is very near to 1, Ais negligible. Observe
that the first factor of the main term depends only on a, the second only
on b; this fact simplifies the computation to a great extent; namely, because
we can obtain the first factor from the table of L(z), the second from the
table of the normal distribution function.
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K TEOPUN BAPUALIMOHHbLIX PAOOB
A. PEHbW (BypganewT)

(Pe3tome)

Llenb HacTosileli cTaTbMM3/10XKEHUE HOBOMO MeT0Aa, C MOMOLLLI KOTOPOro MOXHO
NpPOCTbIM W CUCTEMATUYECKUM 06pa3oM MOCTPOUTbL TEOpMH BapuaLlMOHHbIX PSAOB U OKa3aTb
psAg HoBbIX TeopeM. CyLHOCTb MeTofa COCTOMT B TOM, YTO MccnefoBaHWe MNpefesbHbIX pac-
npeseneHnin BeNMUUH, 3aBUCSLLMX OT UIEHOB BapWaLMOHHOIO psiia CBOAMTCSI K UCCMEA0BaHWN
pacnpegeneHnn yHKUUA OT CyMM He3aBUCMMbIX Cly4valiHbIX BeMYMH. OTOT METOA UCXOAUT
13 hakTa, KoTopblii nepBbiM 3ametun A. H. KonmoropoB B cBoein pa6bote [6a], 4TO
uneHbl BapuaLMOHHOTO psiga o6pasyloT Uenb MapkoBa. bonee Toro, Kak fJokasan
S. Malmquist, ecnu [;£(k  1,2,..., N)—pacnofioXXeHHble B BO3pacTaloLLeM MOPSiAKe Y/eHU
anemeHToB iic(k— 1,2, ..., r) BbIGOpPKM 06beMa N W3 CTATUCTUYECKO COBOKYMHOCTM C
Henpe{3||(;|BH017| tdyHKupen pacnpegeneHve F(x) v = FQ*) (k= 1, 2, ..., ri), TO BeIMUMHbI

«

'_ﬂ(ﬂ/ (£=1,2,..., n) ABNAOTCA BMNOJIHE He3aBUCUMbIMM U B uHTepBasie (0,1) paBHOMepPHO
pacnpefeneHHbIMU - CyYaliHbIMU  BEMYMHAMM, W MO3ITOMY BennumHM ti-= log obpasyioT
afaMTMBHYIO Lenb MapkoBa. [lpocToe AoKasaTeNbCTBO 3TOro (hakta fgaHo B § 1 §2
COAEPXWUT W3N0XEHNEe MNPUMEHEHUs 3TOro (akTa K MNPOCTOro [0KasaTeNbCTBa HEKOTOPbIX
M3BECTHBLIX TEOPEM Teopuii BapuauuoHHbIX psaos. B § 3 cchopmynmposaHbl crefyiolue HoBble
pe3ynbTaTbl, NOAyYeHHbIe C MOMOLLbI0 HOBOTO METO/A.

I‘IyCETb Fn(x) osHauaeT aMnupuyecKyto GyHKLMIO pacrpefenieHns BbIGOPKY, T. e. MOMOKUM

Fn(x)= — ana &k x< |*u (k= 1, 2,..., n—1), F,,(X)=0 pgna x < [|* un Fn(x)=1
ana i, x. Torga umeem
Teopema 5.
yy [T
e -dt gna y< 0,
lim P Fii (X)— F(X) ( _w
m PN Ay Foo Y 7
t. ana  TAao.
Teopema 6.
(Ik+Wh'-a-")
81R2a
(-1 -anaT>0,
F . (x)-F () )Xo 2Kyl

lim Pl pl-|0< ﬂgu;-)(.,)s 1 Fix) <Y

ana y<:0.
Teopema 7.
lim_ P \\n su *
U>m 5F(E<))A 6* \] .- \] du

— A<y < 4-oc.
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Teopema 8
o
. F..(x)-F(x)
Ail!;no P V\n0< 1t S-u(x)- b <. F(X) I V (_|)k- 2k'}'1 -'E'
s y-"0,
(I: *vz 2 (1 —&)41-
rae Jdu - 2% e *"" sin ndu.

3TN Teopembl, KOTOPble aHaIOrMYHbl M3BECTHbIM TeopeMam H. B. CMupHOBa 1
A . H KonmoropoBa, [alT KpuUTepuu And runote3 oTHocuTenbHo F(X), cooTB. gawT
[oBepuTeNbHbIe! rpaHunLbl A1 HeM3BeCcTHON yHkumid F(X).

[lokasaTenbCcTBO 3TUX TEOPeM COAEPXMTCS B § 5, M onupaeTcsi, KPOMe YMOMSIHYTOro
MeToAa, Ha HEKOTOPbIX HOBbIX MNPefeNbHbIX TEOPEM, W3MOKEHHbIX B § 4, OTHOCUTENbHO
MaKCMMyMa YacTHbIX CYMM NOC/ef0BaTe/lbHOCTEN He3aBUCUMbIX CyvyaliHUX BeNUYMH. § 6
COAEPXXUT HEKOTOPble 3aMeyaHWUsl OTHOCWUTE/IbHO BbIYMCIEHUSI MNpefenbHbIX (QYHKUUA pac-
npegeneHns, Gurypupylolime B TeopeMax 5—8. B KOHUe cTatm faHa Tabnuua 3HayeHWi
byHKUMI
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w TkO i ~ 2 r«e 2 y){-IA_-«

ana pasiMyHbIX 3HauyeHnn oT yna



