ON THE ZEROS OF POLYNOMIALS
By
A. RENYI (Budapest) and P. TURAN (Budapest), corresponding members of the Academy

1. This paper deals with the method of D. BERNOULLL' N. 1. LoBA-
TSCHEWSKY? and N. GRAEFFE® devised for the approximative solution of algebraic
equations. In the usual form* the method asserts that if

(1. 1) Jo(X)=an+ awx—+...+ax"=0 (an=1)
is the equation to be solved, with the zeros z,2,,..., 2, where
(1.2) P Pl BN E ol | 8
then we have to form the so-called Graeffe-transforms f,(x) defined by
(1.3) A= (=1 fa(lDfa(—Vx)  =1,2,..)).
If
(1.4) () =an+aux+. ..+ a.x" (am=—"19;
then the method asserts that
1
‘2]‘ — lim an»l,r\‘:l"
’ 1
’22‘ — lim Ap-2, 0|2
(1.5) P> an—l,“'
|2s| = lim £ A
v —> 00 alu

Curiously enough the method was used until 1930 without hesitation for
small »-values and without estimation of the error, nothing said about the
condition (1.2); without this restriction the rule is false in general. After-
wards, in the papers of R. SAN Juan,” A. OsTrowskI® and the second-named

1 D. Bernourul, Commentationes Petropolitanae, 3 (1728).

2H. U. Jlobauesckuu, Anrebpa uaum BeiuncieHue koHevHbix (Kasausb, 1834).

3 N. Graerrg, Die Auflgsung der hoheren numerischen Gleichungen (Ziirich, 1837).

1 See e. g. 9. C. besaukoBudy, [IpubanmKeHHbIE BBIYUCIEHUS.

5 R. San Juan, Compléments a la méthode de Griffe pour la résolution des équations.
algébriques, Bull. des Sciences Math., 59 (1935), pp. 104—109.

6 A. Ostrowski, Recherches sur la méthode de Graeffe et les zéros des polynomes.
et des séries de Laurent, Acta Math., 72 (1940), pp. 99—257.
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276 A. RENYI and P. TURAN

author” are contained the first modified forms of this method which work
with finite »’s, give estimations for the errors and are valid without the
restriction (1.2). Replacing (1.2) by*

(1.6) [Zat=tanl = s nl =2

and restricting ourselves to the approximation of |z,|, the rule of OSTROWSKI

and the first rule in? both form the first » Graeffe-transforms and obtain
approximative values 7, resp. 7, for |z| in terms of a;, so that

(1.7)

and

(1.8)

The remarkable fact in both estimations (1.7) and (1.8) is that they depend
only upon n and », i. e. not upon the coefficients of f,(x) and give exactly
the same bounds.

2. In7 the author has expressed his opinion that his procedure can be
imbedded in a chain of procedures (some of which give narrower bounds)
working with the v™ Graeffe-transforms. In this paper we shall show that
this opinion was right. Indeed, we shall show the correctness of the following

Rule I. Let us form with the coefficients (1.4) of the »'" Graeffe-trans-
form f,(x) of fi(x), with M—T]nlog(2n*)]+2 the sequence s,,s,,...,Su
successively from the system of recurrent equations

sl+an—1,1':o
So+An-1, 081+ 20n-2,,=0

(2‘1) s)l+a11 I,vsu 1"‘{_‘-.‘—'—’10(":':0
Sn+l+an—1.7rsn+.. .+(7.),.S, :O
Sar+ An-1,vSar—1+ « « . + QovSar-» ==1();

Then we have

7 P. Turin, On approximative solution of algebraic equations, Publ. Math. Debrecen,
2 (1951), pp. 26—42. !
8 Obviously (1.6) is a notation only and contains no restrictions, in contrary to (1.2).
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With the notation
(2.2) ( max |s,-\‘/f)2"'-z 5t
ot bR
we have three approximative values for |z,|, namely 7,,7, and 7;’. Owing
to the rule I, 7’ gives the closest approximation, but needs obviously the
greatest computational work. Rule I in itself gives no scale of rules, such a
scale is furnished by the more general
Rule I1. With an arbitrary ¢ in O<e<1 and
o
(2.3) N= T”

+2

form the system analogous to (2.1) but ending with the equation
SN+ Ayp-1,»SN-1 + R Ao, v SN-v = 0.
Then we can again successively determine s, S, ..., Sy and we have

i (i)Q‘”S —I‘_Z"—_*f = (_L)ll
(2.4) n _( max ]sj|‘/j)'-’"' ~1—e
i=1,2...,N J
Rule 1 follows from rule Il taking &= -,11—; hence it suffices to prove
rule II orﬂy. For e:% we have

N—|[2nlog 4n]+2

\o-v

and the corresponding bounds in (2.4) became (111) , 2°". These bounds

: are identical with those of rule I in?. We had there however to form

( 1
T,’.f( max |s;|7

f =15 ey 20
this means that by greater computational work we obtained an approximative
value, which is not better. The computational work with the approximating
value 7, is also considerable; we emphasise again the importance of the
conjecture expressed in’that for a suitable ¢>1, independent of n, we have
already >

a-v

|2

max |s;|’
i) P S YRl ) )
A compdrison of these with the rule II shows that probably in (2.3) one can
replace N by an N’ of the form
’ N'=[ei(e)n];
the truth of this conjecture would diminish considerably the necessary calcu-
lations. Further remarks on this subject can be found in 7.

18*
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As the example
el e e e ()
shows, we can have for an arbitrary large integer N”
EA

- 1o
( max ]sj[-")
j=1,2 ..., N"

i. e. one cannot replace in (2.4) the quantity (1—&) 2" by another one,
less than 1.

b

3. The paper " was one of a series of papers dealing with the various

applications of a central idea.” This idea was to estimate from below sums
of the form
—

3.1)
where the numbers b; and w; are arbltrary complex numbers, by max 1w_,~l'

resp. by mm 1w,|’ when f is an appropriate integer from an mterval

ceey

(m—+1, m+n) (m a non-negative integer). The deepest result of this theory
is the inequality

8 t AR n 3

2 XE . ""W‘+"'+b"w"'=(250(m+2n)) e e
t integer

if

3.3) =l ==l = .. 2wl

The result so obtained for m —0 is rather weak, even in the case
(3.4) b1:b2:..-:bn:1;

the main tool of the proofs for the rules in”was a direct approach for this
case. So we obtained in’ the inequalities

lo 2
(3.5) max Wit wit. ] = 5
tﬁ:e:g;e,l"c T+ + +_

(3.6) max lwtx+---+w$,!‘§%.

tmtegern
The conjecture (2.5) would follow from the proof of é
3.7 max |wid...+wh|=c.

‘:ﬁé@‘e}’

9 For a detailed exposition see the forthcoming book of the second-named author
entitled Uber eine neue Methode der Analysis und ihre Anwendungen.
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The proof for the rule Il of the present paper will be based on the inequality

(3.8 max_|wi+... +w|=1—¢
1=it=N

t integer

where N is defined in (2.3) and (3.3) holds. I. e. the lower estimation in
(3.8) is better than in (3.5) and (3.6), but the range of ¢ is bigger. But

more generally for the general expression > b,w; one can obtain for m—0
7=l

an estimation, in a certain respect better than (3.2), in an important special
case which may be called for a certain reason Dirichletian case. This will
be given by

THEOREM . Putting
ft)= 21 b;w;,
_]:‘.

we suppose that the w;'s satisfy (3.3) and the b’s are positive. Choosing ¢
satisfying the restriction

(3.9) O<e< mm( 2(b’+b2" +bn))
we define
(3.10) M, — [Lb@) o 2f(0)| e

Then we have
max |f({)| = b,(1—e).
1=t=M,
ti.teger
For b, =b,=...=0b,=1 we have obviously got again (3.8).
Next we deduce from (3.8) the rule II, in the following § we prove
theorem I and in the further §§ we treat the similar problem for integrals.

4, Hence we turn to the proof of rule II. The quantity s; is obviously
the jt power-sum of the zeros of f,(x), i. e.

n
Jje”
= 2"

Hence, owing to (1.6), for all natural j’s, we have

BIELIEA

i. e. this will hold choosing j=j,, where

1 1

|sj,[o=max |s;|7.
G120y N
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Thus
l, L DY 27
Jsiﬂ’juénlh'|zl|~ én‘zl|- )
|21

(‘ |5, "“J

which gives already the lower limitation of the rule II. To prove the upper
limitation, we apply (3.8) with

=n?

wJ.A(EJ;)" Gloetids o

2
Then there is an integer #, with 1 =4 =N such that
lsll)’ ; 1 8,
'le27'0
1
9 1 to £ 1 2
gl = (1) nlt =y _max sl
i.e.
‘El‘ 5( 17 2
Lyess [ 1—&
( max |s;| )
I1=j=N

which completes the proof of the rule II.

5. Now we turn to the proof of theorem I. Without loss of generality
we may suppose

(5.1) wy==1,
We consider for [z|>1 the function
n b
5.2 — 0
(5.2) 2= 2
Since |w;| =1, g(2) is here regular, i. e. we have from (5.2) for |z]|>1
Vv »
(5.3) 8= 2’ 1,
If R>1 (we shall fix the value of R only later), introducing the notation
max- [fvi= U
la\mlteger

we obtain from (5.3), owing to the positivity of the b,’s,

= J0)
2(R)|= +U(R“’+R V. (. )+f(0)(Ru+1+ )
(5.4) B8 £(0)

R +R(R—1)+R“"(R—1)‘
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On the other hand we have, using also (5.1) and (3. 3),"

/\ 7@7 <ﬂ S| 1
Now we observe that
B e Y
'HR—W./ P
hence from (5.5) and (5.4) we get
b, by+...+ b, b,+...4+0b, b+ ...+ b, U
5.6 3 = g +- -
ok R— s R-1 R R™(R—1)  R(R—1)
Choosing
G.7) Bl Shoale
(bl + . -+bn)_b1 (] +§“J
the condition R>1 is fulfilled owing to (3.9). Since -
b1t
b + b + +bu b]’i’.-.—i—b" Ny ]( __2_)
R—1 R[ 1 R R(R—1) ’
(5.6) gives
(5.8) U= b1(1—~%)—(b,+...+b,,)]€‘ W,
Now from (5.7) and (3.9)
logRap_] -~ i b,s b,s

. £
R (b._,+...+b,,)+b,§ b+...+ b,

and using the definition of M, in (3.10)
= £(0) 2f(0)J ) b -
R exp)(llt log THA T e T

f(O) 200 b | 2f©).
B b -FO) |~ be

l|\/

= exp ;
putting this in (5.8) we obtam

Uzbl(l—;) OE s

indeed. Q. e. d.

6. The expression
fy= 2, biwj
b
— in the important case, when the w;’s are of the form w;=e'® with real

10 Rz denotes the real part of the complex number z.
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«;’s and the b,’s are positive — can be brought to the form of a Fourier—
Stieltjes integral [e“-"dF(x) with a non-negative non-decreasing F(x); if

-
@ > @ > > 0y take stmply

F(x)=0 for —c <x<ay,
F(x)=b, Yot =% 01,
F(X):bu—i—bu-l fOl’ (7209 §x< Uy-2,

F(x)=bn+...+ b fore,=x<e,,
F(x)=b,+...+b foreg, =x< <.
The extension of the whole theory, mentioned in 3, to Fourier—Stieltjes integ-
rals seems to be very desirable in particular with regard to possible appli-
cations to the study of characteristic functions in probability theory. As a first
result in this trend we prove

TuEorem II. If F(x) is positive and non-decreasing on the real axis
such that

(6.1 F(40)—F(—0)— 4>0

and

(6.2) [ arE) =1,

then, if i ,

(6.3) 0<e< min(l, LIJ_—J—))

we have

(6.4) max | |e- dF(\)' = A(1—3).
. 1=v=2+ ngde]

7 nteger
Since the proof is very similar to that of theorem I, it will suffice only
to sketch it. We denote the expressmn on the left of (6.4) by V, the quantity

2
(6.5) 24 —ﬁlog JJ
by L and choose
(6.6) Bl e O

(2)

Then we have on one hand

* dF(x) TR e e A
—_—r 2 F(x
R—e&* R + . { )

- Ay



ON THE ZEROS OF POLYNOM!ALS 283

and on the other hand

(dF(x) _ 4 1y

N e e

Hence as in the previous proof

A — A V 1
R— +R+1 R4R(R—l)+ R*(R—1)’

Replacing R by its value in (6.6) we obtain

0 o e e
R+1 R R(R—1)’

1oceCs
®.7) VzJ(l—%)—Rl'".
Since :
log e i D = e
R

- ol >exp3(1+{ logjé“dsszdi
we obtain indeed from (6.7)
V=d4(1—s).

7. In all the rules mentioned above, the upper limitation is generally
the better one. It would be at the same time of theoretical and practical
interest to modify the procedure so as to improve the lower limitation at a
fixed »-value.

(Received 5 January 1953)
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O KOPH$X MHOTI'OYJIEHOB
A. PEHbM u I1. TYPAH (Bypaneurr)

(Pesawme)

B paGote noraswiaercs crepyiowast teopema 1: Ilyers wy, ws, ..., w, komniekc-
HbIC unena, |wy| = |w.|=...=|w,| u by, bs, ..., b, NONOKUTEIbHBIE YHUCIA; MYCTh

PO =B E=0,1 2000
j=1

TOr/A
max  |f()| = b,(1—¢),
1 B3 ’l

=1, 80

i [19 10 FO
bye bls

rae

. [, 2(f(0)—by)"
]—{—2 n 0<e< min (l,»& 1)—).
Kak cnepcrTsue 5TOM TEOPEMBbI MOAy4YaeTCsl CAEAYIOUMN Pe3yJabTaT: MyCTh

n

fo(x) Z aklbxk' fx'(x) . (_1)“-/;' 1 (V})faul (_ L_x) (‘V = I) 2)' . ')’

|

(= Z a,, xk (@,,=1)

k=0

u onpeaeanm uncaa Sy (k==1,2,..., N) n3 CuUCTEM JIMHEHHBIX yPaBHEHNUU

1
-

N

Si—jQn_j o - lra,,,k, , =0 (E=1;22, 1)

J=(

Z S il =0 (k=n-+1,...,N),

g=0

TOrAA ecam z; 0O0O03HA4YaeT HaiboabLIONH NO MOAYIIO KOPEEb ypaeHerus fy(x) = 0, T0 umeem

. e

‘ max |s,-|-’)
Ji=1,2,.., N /

2n
eecmmn 0<e<1 u N—I — log »A—|+2 Takum 006pazom nOAy4aeTcsi TOYHBRI BapUAHT

meropa Bepuynnm—/lanpennu—Jlo6auesckoro—I pade.

Ecan BMecTo cymmbl E b,w nocmoTpum xapakrepuctuueckyio yuxumo f(f) —
J=1
+ ®©

= | e'tdF(x) HekoTopoil (yHKkumn pacnpepenenusi F(x), past kotopoin F(+ 0)— F(—0) =

2(1—4)
4 >0, Torna pasi 0 < = < min (1, —(j—J) n M=

1 2
;J—Elogjé’—’r—ZumeeM Teopemy 2:

max |f()]|= 4 - &).
155"



