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Let I denote a sample of size n from a population with the
distribution function F(x). By other words, are mutually independent
random variables with the common distribution function F(x). Let 
be the same set of variables, rearranged in increasing order of magnitude, i. e.

S =
where /?,,(xu ...,x„) denotes the Är’th term of the sequence obtained by 
rearranging the numbers xu . . . , x n in increasing order of magnitude.

The present paper deals with the order statistic £*. Some basic facts 
will be proved by simple methods. We aim expressively to avoid the cal
culus and at reduction of any calculation to possibly minimal extent. As 
consequence, our results may be easily checked by calculation in various 
different ways, which we are not intended to mention.

Our results seem us mostly to be known, though we did not find 
some of them explicitly in the literature. We endeavoured to give an elementary 
and systematic treatment of our subject. Accordingly, our paper may be of 
methodical interest. As to the literature we refer to the bibliography compiled 
by S. S. W ilks [3] and by the second named author [4].

1. In order to obtain distribution-free results, i. e. results independent 
of the distribution function F(x), we introduce rlk =  F(f,k) ( k = \ , . . . , r i ) .  If 
we suppose that y =  F(x) is strictly increasing and continuous, the same 
holds for the inverse function x =  F l(y) and we have1

P(r/t < x) =  P(£t < F~l (x)) =  F ( F ’ ( x ) )  =  x ( O s x s l ) ,
what shows that the variables rjl f . . . ,r jn are uniformly distributed in the 
interval (0,1). Putting rf — F(fk) ( k = \ , . . . , n )  we have

n% =  F(S) =  A(/?,-(£,,. . . ,  £,,)) =  Rk(F(f) , . . . ,  F(£„>) =  / fcfai , . . . ,  rin).
Consequently r\\, . . . r j l  are order statistics of a sample of size n from a 
population of uniform distribution in (0, 1).

1 P(A) denotes the probability of the event A.
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Accordingly, we confine ourselves in what succeeds to the research of 
the order statistics rf.  Our results may be interpreted as facts concerning the 
original order statistics §?•

2. The variables rf are not independent, the relation r f  g  rf (in case 
j < k) contradicts the independency.

The joint density function o f the variables i f , . . rf  is
(1) / ( x 1;. =  n\ ( O g X i ^ - - - 1).
As a matter of fact, if E denotes any measurable subset ot the n-dimensional 
simplex defined by the inequalities 0 ^  • • • g; xn ^  1, we have

P m , . . i f )  i E )  =  Z  P ( (% ,. • - , r]in)cE),
where the summation is extended over all permutations in of the indices
1 and the density function of l y j  is equal to 1 at any point
(Xj,. . . ,  x„) of the cube 0 gj xk ^  1 (k n).

Considering now the case that rf =  ck, . . . , i f  =  c„ (2 ^  к ^  n) are 
fixed, we state that r f , . . . , r f - \  are order statistics of a sample of size к— 1 
from a population of uniform distribution in the interval (0, ck). In fact, this 
is true if r f , . . . , r f - 1 are furnished by any given к—1 variables out of
i]j , . . . ,  r\n, since these к—1 variables are uniformly distributed, even within the 
cube 0 Ш x, ^  ck (i =  \ , к— 1). Thus, by (1), the joint density function 
o f the variables r f , . . . , r f - \ ,  under condition i f  =  ck, . .., ?]* =  cn, is

(2) /(x„  . . . ,  xfc-i |cfc, . . cf) =  (k~~ri

By the same argument, if  i f  = C \ , . . . ,  i f  =  ck (1 Si к ^  n — 1) are fixed, 
rf+i, ■ ■■,rf are order statistics o f a sample of size n — к from a population 
o f uniform distribution in the interval (ck, 1) and the joint density function of 
the variables rf+\, . . . ,  i f ,  under condition rf =  Ci,. . . ,  i f  — Cu, is

(n—k) !
(3) f  (x,,-...i, . . ., Xn j Ci, . . . ,  cf) -

(1 - c f) '1
(ftS X it 1 g - S X , i l ) .

Since (2) and (3) depend only on ck, our statements hold also under the 
only condition i f  =  Ck, i. e. (2) and (3) give also the values of the functions 
/ ( x i , . . . ,  xft+i|c,£) and f(x M , ..., x„jck), and the same holds under any restriction 
on the non-occurring variables. By the same argument, under condition 
i f  =  ck, the sets of variables ( r f , . . . ,  and (if+i,. . . ,  i f)  are independent. 
By other words, order statistics form a Markov chain}

3. The joint density function o f the variables rf+1 , , r f  (1 s  / < к si n) is 

(4) M x i+1, ■■■, X k )  =  -Щ ’% )Г х ’ш  (1 — Xfc)"-1 (0 - xi+i i " ^ x t 5 l ) .

2 A. N. Kolmogoroff [1] was the first to remark this.
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Indeed, the joint density function of the variables / y f , f j * ,  rfM , ..., /у*, 
under the condition
(Ci) tfi+l 1, . . ., Г̂/с Xfc,

is clearly given by

f  ( x : , . . . ,  Xi j Xi; . 1, . * . ,  Xn I Xj+i, • . . ,  Xk) ■
Ja(XiH, ■■

X„)
, Xk) ■

On the other hand, since the variables iyí, • • •> ry* are by the Markov chain 
property, under condition (C,), independent of the variables 7yJ+b we
have

f(xu .. . ,Xi,Xk+1, . . . ,X n|Xi+l,...,Xfc) =
= f ( x l t . . . ,Xi|xi+b . . . , xn)-f(xM , . . . , x H\xu . . x,£).

Taking into account (1), (2) and (3), comparison of both statements estab
lishes (4).

By (5), taking the special case i + \ — k the density function of rjl is 

<5) M x k) =  — xky~k =  A (x ),

i. e. order statistics rf have Beta-distribution.
The joint density function of any rfki, r j t r (1 ^  kx < • • • < kr ^  n) 

variables is
A ,  ...,kr(x1, . . . ,  xr) =  G , , krXi~\x,—x j)k2~kl \ . . (xr—xr-i)K~k’■'1_1( 1 --- X,)n~kr,

where
r  = _________ ____________ ______________________

( ^ — 1)!(/t2—Arx—l)! ...( fc —fc-i — 1)! (л—£)!
and

0 ^  xx ^ ^  x , 1.
The proof is given immediately by the above argument, if we consider 
instead of (Q) the condition
(v_o) iy/c, =  X], . . . ,  Tjkr Xr,

divide (0,1) by Xj,...,x,. into r+ 1  subintervals, and take into account that, 
by the Markov chain property, the sets of variables rj* lying in these sub
intervals are independent under condition (C2).

4. We define /у5 =  0, ry?i+i =  1, and introduce the variables
dk === /у* — iy*+i. i f  =  1> • • •» л +  1).

Since d1(. . . ,  d„ are obtained from ry!,..., /у* by a measure-preserving linear 
transformation, their joint density functions are equal at corresponding 
places. By corresponding transformation уг =  xlt yk =  xk—xk~i (& =  2, . . . ,л )  
of (1) the joint density function of the random variables дх, . . . , д п is
(6) g(yu . . - ,y«)  =  n\ (y i^ O , ^  0; yj-t------Yyn ^  1).

1*
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We conclude from (6) that the variables őu . . . , ő n have the same dis
tribution. As the distribution of rjk is symmetric with respect to the point

” , this symmetry holds also for the joint distribution of (rf, . . . ,  r*,). Es
pecially, r)'i =  r*i and d„+i = l — rf have equal distributions. We draw the 
conclusion that the variables r)j, . . . ,  r)',l+i are equally distributed.

Their common density function is that of гД, given by (5),
ßn\(x) =  n(\ — ( Og i ^ l ) .

Their common mean value is, because of d'H------ 1.

(7) Щ 0к) =  ~ ± ^  ( k = \ ,  . . . , n + \ ) .

5. The variables ö1, . . . , ö n + 1 are not only equally distributed, but are 
also equivalent variables, i. e. their joint distribution remains invariant under 
any permutation of them. This is established by (6) for permutations of 
d1,. . . ,dn ,  by the above mentioned symmetry for the permutation 
(d i,. . . ,  dn+i)—*(dn+i, . . . ,  d,), and by successive application of these for any 
permutation of da, . . . ,  ön+í.

In consequence, the distribution of the difference
rji+k — rji =  d1+i —(— - * • — (h+k ( 0 ^ i < i  +  k ^ n + \ )  

depends only on k, is therefore equal to that of /Д, has the density function (5)„
p

and, by (7), the mean value ——r .J v '  n +  1
Especially, the range zt =  r f —/Д has the density function

ßn,n-\(x) =  n(ji— l)x"-2( l — x) ( O s x ^ l )
and the mean value

M  (J )
n — 1 
Л +1 ■

6. As previously stated, under condition rfk =  ck, . . . ,  rfn =  c„ the variable 
rji ( \ ^ i < k ^ n )  is the f’th order statistic of a sample of size к—1 from
a population of uniform distribution in the interval (0,.Ca). Hence, the distri-*
bution of the quotient -%■ does not depend even on ck, remains therefore un-

Vk
altered if гД ,...,/Д  are not fixed, and has, by (6), the density function 
ß,:+k-i,k(x). Thus, both differences and quotients of order statistics /Д have 
Beta-distribution.

*

The variables — (Ar== 1 ,.. . ,  n) are mutually independent. Indeed, by
ijfc+i

above statement, the distribution of does not depend on the values of
Vk+1 * * *

Цк+1 , . . . ,  гД, is therefore independent of . . . ,  —A, -^f- =  ru.
T]k+2 Цп 1
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Moreover the independent variables

й=Ш
are uniformly distributed in the interval (0, l).:i As a matter of fact, the dis
tribution function of 7]* is

P ( t ] * < x ) = J j P ( r lk< x) =  xn ( O i x i l ) .
k=1

Correspondingly, since -if-  is the Ar’th order statistic of a sample of size к
rjk+l

from a population of uniform distribution in (0, 1), we have

Whence

[ i t
\Г)к+1< x =  x \

p(a < x)= p (—■ < у x I= x,'Jlk+l '
establishing our statement.

7. We introduce the random variables

(8) &k — — In £* =  — Л: In { k = \ , . . . , n ) .bk+l
These are, according to our preceding result, mutually independent and equally 
distributed, with the distribution function

P (,% < x) =  P (£* > e~x) =  1 — e~x (xgO ),
i. e. have exponential distribution with mean value 1.

From equations (8) we get

(9) l n ^  =  - Í ^  { k = \ , . . . , r i ) .
j=k J

Consequently, the logarithms of the order statistics rjt form not only a Mar
kov chain, but also an additive chain, i. e. they are consecutive partial sums 
of a sequence of mutually independent random variables.

We expressed by (9) the order statistics rjl as simple functions of 
independent and equally distributed random variables. Starting from this fact, 
limit theorems on order statistics may be obtained, by means of the central 
limit theorem, in a simple and straightforward way. This has been shown by 
the second named author [4].

(Received 4 May 1954) 3

3 This was proved by S. Malmquist [2]; his proof is rather complicated.
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ЭЛЕМЕНТАРНОЕ ДОКАЗАТЕЛЬСТВО НЕКОТОРЫХ ОСНОВНЫХ 
ФАКТОВ ТЕОРИЙ ВАРИАЦИОННЫХ РЯДОВ

Г. ХАЙОШ и А. РЕНЬИ (Будапешт)

( Р е з ю м е )

В работе, которая имеет преимущественно методический характер, дается систе
матическое и элементарное изложение некоторых основных фактов теорий вариацион
ных рядов. Пусть «?2> — независимые случайные величины, которые равномерно
распределены в интервале (0,1), пусть »,* á  г*, . . .  á  »?*—те же величины, располо
женные в возрастающем порядке. Доказывается, между прочим, очень просто, что вели
чины у* (к = 1 , 2 ,  , л) образуют цепь Маркова (теорема А. Н. К о л м о г о р о в а ,
см. [1]), более того, что величины In у* (к =  1 , 2 , . . . ,  л) образуют аддитивную цепь

[ „* \к
Маркова, так как случайные величины — (к =  1, 2 , . . . ,  я; »?*+i =  1) независимы и(ЧА- + П
равномерно распределены в интервале (0,1) (теорема С. М ал м кв и с т а ,  см. [2]). 
С помощью этих фактов возможно доказательство многих предельных теорем теорий 
вариационных рядов на центральную предельную теорему теории вероятностей (см. [4]).


