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On some combinatorical problems.
In memoriam Tibor Szele.

By P. ERDOS and A. RENYI in Budapest.

Introduction.

‘Let Cx(n) denote the least number of such combinations of order k of
n different elements, that any two elements are contained in at least one
combination (k, n=2,3,...). Such a system of combinations will be called

a (k, ri);system-, Clearly we have ( 12{) Ce(n) = ( g), as there are (Izc) pairs

in any combination of order £ and each of the ( ) possible pairs must be

contained in one of the Ci(n) combinations. Thus we have

n(n )
If for some values of k£ and n there is equality in (1), we say that an op-
timal (k, n)-system exists. It is well-known, that if k= P41 and n=P"
+P"1-}— ---+ P41 where P is a power of a prime and r =1 an arbitrary
integer, there exists an optimal (k, n)-system. This has been proved — accord-
ing to our knowledge — first by TH. SKOLEM (see [1]). There exist also optimal
(P, P") systems, if P is a power of a prime and r = 1. These facts are nowadays
utilized in constructing balanced incomplete block designs (see [2]). An op-
timal (k, n)-system is clearly a balanced incomplete block design of n varieties
n(n—1)
k(k—1)
every other variety exactly once in the same block. It seems that up to now
interest was focusetl on optimal (k, n)-systems and the asymptotic behaviour
of Cx(n) for n— o has not been investigated. In § 1. of the present paper
we prove that if k=P is fixed, where P is a power of a prime, we have

. Ck(ﬂ) 1
@ o —T] R—1)"

into blocks of k plots each, such that every variety occurs with
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i.e. there exists a sequence of asymptotically optimal (k, n)-systems for each
fixed k= P where P is a prime power. (2) is valid also for k= P+ 1 where
P is a prime power. The proof is analogous to that given in the present
paper for k=P, only Lemma 1is used instead of Lemma 3. It can be proved

by the same method that the limit lim %ZYk exists for any k=1,

n—>» @

but we do not know the value of ¢, for other values of ¥ than mentioned
above. However it can be proved that

@ fim 31 lim oy

i.e. that lim k(k—1)yx=1. These results together with a simple but ingen-
k—>

ious method of proof, which has been formulated and used by T. SzZELE
in his thesis [3], are applied in § 2. to prove a conjecture which has
been recently proposed by the second named author [4]. Let Dy(n) denote
‘the length of the shortest sequence formed from the digits 1,2,...,n in
which any two digits i and j (1 =i<j=n) are at least once to be found
in such position, that they are separated by at most ¥ numbers. It has been
proved, in [4], that

e Dk(n) T Dk(/l) 1
—z =~ =lm==g
and it has been conjectured, that
@ tim 20,

exists for k=2, 3,...; however the existence of (4) is proved only for k=2
and k=3, the proof for k= 3 being due to N. G. DE BRUIN; in these two

cases the limit is Wl——2 We prove that the limit (4) exists for all k= 2;

however our method does not lead to the determination of the value of Ui«

§ 1. The asymptotic behaviour of Cy(n).

Let us put

- o k(k—l)C;,-(n)
(5) Cr (ﬂ) = T_l) 2
We shall prove

Theorem 1. v
lim ¢x(n) =1 jor k=P

n—> o

where P is a power of a prime.
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The proof requires a number of lemmas, some of which are well-known
.and are stated only for convenience.

Lemma 1. (SKOLEM) If k=P+1, where P is a power of a prime
and n=PpP '+ p! + -+ P+1, where r is arbitrary, we have c(n)=1,
i.e. there exists an optimal (k, n)-system; this system can be chosen in such

—1 )-system.

-a way that it contains a subsystem Which is an optimal (k”;ch

For the proof see [1] or [2] p. 109—111.

Lemma 2.
ci(n) = c(@eu(n)  (k<g<n).

PROOF OF LEMMA 2. Let us form from the numbers 1,2,...,n a (g, n)-
:system consisting of C,(n) combinations of order ¢. From each such com-
bination let us form a (k q) system consisting of C.(¢) combinations of
-order k. Thus a (k, n) system is obtained. Thus we have Ci.(n) = Ci(q)C,(n).
k(k—1) ‘
n(n—1)

Lemma 3. If Pis a power of a prime, and r = 1 we have cp(P")=1,
i.e. there exists an optimal (P, P")-system.

Multiplying this inequality by we obtain the assertion of Lemma 2.

Lemma 3 can be deduced from Lemma 1 (see [2] p.112). Let us con-
sider an optimal (k, n)-system, for k=P+1, n—P " +P ' 4... - P41,
which exists according to Lemma 1, and which contains as a subsystem an

-optimal (k, —nk—:—:—)-system. Let us omit from the given (&, n)-system the

mentioned (k, %__:}—)-system; it is easy to see that any one of the remaining
-combinations contains exactly one element of the omitted subsystem. Omitting
the mentioned element from each of these combinations, we obtain an optimal

(k——l, n— Z_l )—system, i.e. an optimal (P, P")-system, as k—1 =P and

n— »
L —P

Optimal (P, P) -systems can also be constructed directly, without using
optimal (P++1,P" -+ P"'4 ... 4- P-4 1)-systems. We give here only the con-
struction of optimal (p, p*)-systems if p is prime. Let us represent the p?
elements by all pairs (i,/) of residue classes modp (i,j=0,1,...,p—1).

Let us consider to any two residues £ and & modp the combinations
Ci: (0, h), (1, h+ k), ..oy (1, BA-TR), .., (p—1, h4-(D—1)k).

Thus we obtain p? combinations; let us con51der be51des these for any residue

h mod p the combination

Cu:(h, 0), (1, 1), ..., (h,p—]).
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Thus’ we obtain altogether p®-- p combinations of order p, which together form
an optimal (p, p*)-system. As a matter of fact if (x,») and (u,v) are two
pairs of residue classes mod o then if x=u these two pairs of residue classes
are both contained in C,; if x==u the two pairs of residue classes are both
contained in the combinations Cux, where h and k are determined by the
congruences 1+xk=y (mod p), h+uk=v, (mod p), which have a solution

owing to x 5= u (mod p) namely kz%:—z (mod p) and 4 Ex;;%iu (mod p).

In what follows P shall denote a fixed number which is the . power of
a prime; a;, a,, ... will denote positive constants, depending eventually on
P or & but not on n.

Lemma 4. If O<8<—£11— we have
¢e(n) = cx(N) (1 4 8¢)

N(l—&=n=N (Nz=2).
Proor. We have Ci(n) = Ci(N) for n = N and thus

Ck,(ﬂ) = %:J;CA(N) = (1_#2&)26%(1\/)

4

Lemma 5. (INGHAM): If pn denotes the sequence of primes, (n=1, 2, o5 )}
we have pua—p, < p."° for p.>a,, (See [5]).

Lemma 6. If p. denotes the k-th prime number and A, > A, = a,
we have

and if 0< a<i we have U+M = 14 8¢ which proves Lemma 4.

Max P — +——]

A1§Pk§Az pk

Lemma 6. follows easily from Lemma 5.

Lemma 7. There exists to any & with 0 <s < % arbitrary large num-

bers B for which
cp(n)=1+432¢ for B=n=24.

PROOF. Let O<s<% and an integer a, be given. Let us choose an

integer r such that A— P” = g,. By Lemma 3 ¢p(A)=1 and thus by Lemma 4
cp(n) =1+8¢ for A(l—e)=n=A. If as is sufficiently large, there is at
least one prime in the interval (A(1—¢), A). Let gy <gy<--- < ¢s denote the
primes in the interval (A(1—e), A). 1t follows from Lemmas 2 and 3 that
if m is any fixed integer, m=2, we have cr(qi)=148¢ as cp(g)=1-8¢
D 26
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(i=1,2,...,s); thus by Lemma 4 - :
cp(n)=(1+488P=1+432¢ for ¢'(1—e)=n<gqi.

Now, if we choose m in such a way that the intervals (¢i"(1—&), ¢i") are not
disjoint, i.e. gi1(1—e) <g", it follows, that cp(n) = 1+ 32¢ for gi'(1—e) =
1

=n=gq,. Now giu(1—e) < g (i=1,...,s) is satisfied if i1 <( ! )m,

i 1—s¢
(1=i=s). As by Lemma 6. q(’;l <]+C4(1——1:9W if az is sufficiently
/ 1/m
large, this is true if 1 +.(A(1 —ls))"’/“* e (11_8) and thus if as is sufficiently

large, this is true if m < A'. Thus if a;—a(¢) is sufficiently large, we have
c(n) = 1432¢ for (A(1—e&)+A")"=n=(A—A"")". Now the intervals.
[(A(1—&)+ A""®)", (A— A"*)"] are not disjoint, if m > (log A)?, if a3 is suffi-
ciently large. Thus it follows that ;

cp(n) = 1432¢ for (A(1—é&)+ AWI6) Moy < o < (A— Al/t6) 4t

and thus a fortiori for e2(og4®=pn =< e4”s. As the interval (e20og4”, ¢4") cont-
ains an interval (B, 2B%), provided that a; is sufficiently large, Lemma 7 is
proved.

Lemma 8. If cp(n) =« for B=n = 2B* we have cp(n) =« (1 s _szlb)
for B=n<2B'if B=a,.

PROOF. Let 71, 75, ..., 7t denote the primes in the interval (B, 25%);
then by Lemma 2 and 3 cp(:c}) = cp(7t;) = @. By Lemma 6 we have

2 9
T 1 Y 3 : ;

and. thus we have

9

2 3 2
TCi I_W LT .

It follows by Lemma 4. that cp(n) = a(l + 32:/116] for
ﬂ?(l—g%)gnén?.
As
211 3 = (B - B16)2| 1 3 B2
|1 — g | = B+BP |1 — g | <
and

7 = (2B —2B"*Y =28
if a, is sufficiently large, Lemma 8 is proved.
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Now we are in position to prove Theorem 1. It follows from Lemma 7

that for any & (O< &= %) we can find a number B, which can be chosen

greater than an arbitrary given number, such that cp(n) =1432¢ for
B=n=2pB 1t follows by Lemma 8 that

cp(n) = (1 +32&)ﬁ(1 —I—EDZZ%J for any n = B.

A =0 \
S
x_f 24 as
g(l +BS.21‘4) =1+ Bps

it follows that
(6) nlgn; cp(n) = (14 32¢) (‘1 -!—%) .

As >0 can be chosen arbitrarily small and B arbitrarily large, (1) and (6)
implies
lim cp(n) = 1.

Thus Theorem 1 is proved.

Now let k£ denote an arbitrary number and P the greatest prime power
= k. Clearly we have Ci(n) = Cp(n) as any (P, n)-system can be transformed
into a (k, n) system, by adding arbitrary k— P elements to each combination
of the given (P, n)-system. Thus it follows from Lemma 3 that if £ is arbitrary

nlijm; c(n) = —’;H

where P is the greatest prime power = k. As P> k—kl for k=a it
follows that

Tim en) = 1+2%
and thus
(7 lim (lim ¢.(n)) = 1.

k> n>o

It is not difficult to prove by the same method as_applied in proving
Theorem 1 that lim ¢x(n) exists for every k, and thus lim can be replaced

by lim in (7). o

§ 2. Application of a lemma of T. Szele.

In his paper [3] SzELE has used the following simple but often very useful

Lemma 9. If a, is a sequence of real numbers, which is ,almost mono-
tonically decreasing®, i.e. if a, = a,(1--¢) for any ¢>0 and any m = m,(s),
if n=ny(e, m), further a, is bounded from below, then lim a, = ¢ exist.

n—>
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Lemma 9 may be proved as follows. It follows from our supposition
that for any ¢ >0 and m = m,(s) we have

®) lima, = a.(1+¢)
and thus
) 11m an = (1+¢) lim a,;

as &¢>0 is arbitrary, (9) implies that lim a, exists.

n->»> @

Now let Dy(n) denote the length of the shortest sequence, consisting
of the digits 1,2,...,n, which has the property that any two digits i and j
(1 =i<j=n) occur somewhere in the sequence in such a position that they
are separated by not more than k elements of the sequence. We may restate
‘the definition of Dy (n) in the language of the theory of graphs. Dy (n) is the
length of the shortest directed path in the complete graph of n points, which
has the property that from any point of the graph we may reach any other
point in not more than k4-1 steps, by going along the path always accord-
ing to the given direction or always in the opposite direction. Then we have
clearly

(10) Dy(n) = Cu(n) Dk(m) (k<m<n)
and thus ’

an D) = D)y

Thus '

0 BODO_a(,2) g,
and n = ny(s, m), i.e

(3) 28 <40 200

if m=my(s) and n = ny(¢, m). Applying the Lemma of SzELE this implies

that lim D‘;IE”) exists.

It should be mentioned that the authors of the present péper have
applied the lemma of SzELE with success to other combinatorical and number-
theoretical questions too. '
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