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INTRODUCTION

At the time when the foundations of classical statistical mecha-
nics were laid down, the theory of probability was not yet enough
developed, to serve as a safe basis on which statistical mechanics
could be built up. This possibility was given only after the theory of
probability has been developed by A. N. Kolmogoroff|l], into an
exact mathematical theory. A.Ja.Khintchine |2] was the first
who recognized the necessity as well as the possibility of building
statistical mechanics on the basis of modern probability theory. He ful-
filled this task not only with respect to the classical statistics, but
also for quantum statisties [3].

The theory of Khintchine is in many respect clearly superior
to former theories, and solves with success also those serious formal
difficulties which arise from the fact, that in statistical mechanics un-
bounded measures play an important role, and such measures can not
be interpreted as probability distributions in the theory of Kolmo go-
roff. As a matter of fact, according to Kolmogoroff, a probability
space is defined as a triple (S, A, P) where § is an abstract space,
whose elements are the elementary events, A a o-algebra of subsets
of S, called events and P=P(A) (the probability of the event A) a
measure on A, normed by the condition P(S) = 1. Thus unbounded mea-
sures can not be interpreted as probability measures, for instance it
has no sense to speak about a probability distribution, which is uni-
form in the whole rn-dimensional Euclidean space E,. But exactly such
a distribution in phase-space is suggested by Liouville’s theorem
on the invariance of volume in phase-space with respect to the natural
transformations of this space during the motion of the mechanical
system considered.

The same difficulty presents himself also in other domains of
application of probability theory, e. g. in quantum mechanics, integral
geometry, in some problems of mathematical statistics, etc. In all these
disciplines, there arise in a natural way such problems, which can be
solved only in a round-about way within the frames of the theory
of Kolmogoroff, owing to the fact that they lead to unbounded
measures. To solve this difficulty, the author of the present paper de-
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veloped recently [4] a new axiomatic theory of probability, in which
unbounded measures are admitted and give rise to probability distri-
butions. In this theory, which is a natural generalization of that of
Kolmogoroff®* conditional probability is taken as the fundamental
concept.

In § 1. we give a short sketch of the new theory and in § 2.
we apply this theory to give a new and simple deduction of Max-
well's law of velocity distribution, from which the reader may judge
the advantage of the new theory for statistical mechanics.

§ 1. A new axiomatic theory of probability

In what follows if A and B are sets, we denote by A-+ B the
set of those elements which belong to at least one of the sets A and
B, and by AB the set of those elements which belong to both of the
sets A and B. The empty set will be denoted by O, the subset of B
consisting of those elements which do not belong to A will be denoted
by B—A. If a is an element of the set A, this will be denoted by

acA. If a does not belong to the set A, this will be denoted by aeA

We start from an arbitrary set S, the set of elementary events;
the elements of S will be denoted by the letter a. Let A denote a
o-algebra of subsets of S; the subsets of S which are elements of A
will be denoted by capital letters 4, B, C,..., and called (random)
events. Let us suppose further that an arbitrary non empty subset B
of A is given; and finally, that a set function P(A B) of two set-va-
riables is defined for AeA and BeB; P(AiB) will be called the con-
ditional probability of the event A, with respect to the event B. As
the conditional probability of the event A4, with respect to the event
B is defined if and only if B, belongs to B, B may be called the set
of possible conditions. We suppose that the set function P(A B) sa-
tisfies the following axioms:

Axiom I. P(A'B) -0 if AsA and BeB further P(B B) =1
if BeB.

Axiom Il. For any fixed BeB, P(A B) is a measure (by
other words a countably additive set function) of A,
i. e if AyeA (n-1,2,...) and A;A,=0 for jFk, jk=12,...
we have

P(Z A,.‘B) iP(A.!B).

oo
n—=1 nR==1

Axiom lll. If AcA, BeA, CeB and BCeB, we have
P(A'BC)P(B|C) = P(AB | ().

* The author has been informed, that the idea of such a generalization of his
theory has been peointed out in a lectire some years ago by Kolmogoroff himself,
but he did not publish his ideas on the subject.
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If the Axioms I—IIl. are satisfied, we shall call the set S, the o -algebra
A of subsets of S, the subset B of A and the set function P(A K B),
together a conditional probability space and denote it
for the sake of brevity by P =[S, A, B, P(A é)} It is easy to see that
it follows from our axioms that P(A!B) = P(AB B) and that
P(A'B) £ lfor all AeB and BeB, further that P(O B) = 0.

If P=[S,A B, P] is a conditional probability space and C is an
arbitrary fixed element of B, putting P(A) = P(A,C) clearly [S, A, P.]
will be a probability space in the sense of Kolmogoroff. Thus a
conditional probability space is nothing else than a set of ordinary
probability spaces, which are connected with each other by Axiom IIL
This connection is such that it is in conformity with the usual defini-
tion of conditional probability. Namely if we put P{A4) = P(AC) for
AeA, with CeB fixed, and define the conditional probability P *(A;B)
for a BeB for which P(B) > 0 as usual in the theory of Kolmogoroff,
by P‘(AiB):P;)f(i?), we have by Axiom Ill. PA B)-=P(A BC).

If £=¢(a) denotes a real-valued function defined for aeS which
is measurable with respect to A, i. e. if A, denotes the set of those
aeS for which 3(a@) < x we have A,eA for all x we shall call : a random
variable on |[S, A, B, P]. Vector valued random variables are defined
similarly.

An important class of conditional probability spaces is obtained
as follows:

Let us choose for S the n-dimensional Euclidean space E,, for
A the set of all measurable subsets of £,, let f(x) where x (x,, X,, ..., Xa),
be a non-negative measurable function on £, and for B choose the
set of those subsets BeA for which

@ (B) = f f(x)dx
B

(where dx denotes dx,dx,... dx,) is finite and positive. Putting

_ P(AB)
P(A B) = @ (B)
for AeA and BeB, we obtain a conditional probability space (S, A, B, PJ.

Especially when f(x)==1, we obtain a conditional probability

space, for which P(A B)= """ where m, denotes the n-dimen-

sional Lebesgue-measure; in this case B consists of all measurable sets
which have a positive and finite Lebesgue-measure. The conditional
probability space thus obtained will be called the uniform conditional
probability space in E,.

As [S, A P(A C)] is for any fixed CeB a probability field in the
sense of the theory of Kolmogoroff, any theorem of the ordinary pro-
bability theory remains valid in the new theory when ordinary proba-
bilities, distributions, mean values, independence, etc. are replaced
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by conditional probabilities, conditional distributions, conditional mean
values, conditional independence, etc. with respect to the same CeB.

If £ is a random variable and A7 denotes the set consisting of
those elements aeS for which u-— (a)<vand if AzeB(u<v), then the
conditional probabilities P(x- :<y|u=f<v) can be considered for
4~ x<y- v and thus ¢ generates a conditional probability space
on the real axis R, as the space of elementary events, the o-algebra
A; being the set of Borel subsets of R,and B;: consisting of the intervals
(4, v) for which AjeB.

This conditional probability space will be called the conditional
probability space generated by ¢ on the real axis.

Let F(x) denote a non-decreasing function of x which is conti-
nuous to the right for —oo<x<+4 co. If the set u-— f(a)<<v belongs
to B, if F(v)— Flu)>0 and we have for any subinterval (x, y) of such
an interval (u, v)

(1) Py Ay = 0

Fw)—Fay 47 <77
we shall call F(x) the distribution function of &; the function F(x)
1S not uniquely determined, as together with F(x) the function aF(x)+ b
where a>0 and.b are arbitrary constants, is also a distribution func-
tion of z; but as F(x) will be used only to calculate the conditional
probabilities (1), this will never lead te a misunderstanding. If the
distribution function F(x) of z is absolutely continuous, and F'(x)= f(x),
we shall call f(x) the density function of s; clearly f(x)is determined
only up to a positive constant factor.

If f(x) is the density function of z, we have

f f(t)dt

X

(2) PA, AD =, -
S 1wt

for u- x<{y- v provided that the denominator at the right of (2) is
positive. If f(x) 1 (— o <x<+ cc), we shall say that the distribution
of & is uniform in (— , +.).

Now we introduce the notion of the regularity of the distribution
of random variables. If 7.5, ..., 5, are random variables on a con-
ditional probability space P [§, A, B, P| and for any point x —(X,,..., Xs)
of £, the set B, defined by the conditions gy=x, (k-1,2,..., n)
belongs to B, further for any interval / defined by ax xx<ba,
k 1,2,..., n, B, denotes the set determined by the inequalities
ar=&a~ by and there exists a non-negative measurable function f(x)
of the variable x = (x,, X,,. .., X,) such that for any AeA and any interval

/ for which rf f(x)dx>0 we have B,eB and
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,f P(AB,)f(x)dx

(3) P(A B;) = f oode

we say that the distribution of the random variables :,...,z, is
regular. !

Especially if f(x)- f,(x))...falxs), the random variables :,,..., :qa
are independent with respect to any 5;eB and f,/x) is the density func-
tion of z,.

If further fo(x) 1 for — <x< + we sav that the joint
distribution of the variables ;‘, is uniform and regular in £,.

Let us suppose that :, &,,..., &, are independent positive
random variables on the conditional probability space P and that their
distribution is regular. Let us denote by fi(x)(x >0) the density func-
tion of s(k=1, 2,...,n).

Let us calculate the density function of the random variable
n=5+ 8+ ..+ 4 If Jrois the interval 0 x, T (k=1,2,...,n),
Br the set for which 0- <7, and A, the set defined by [, 2z, we

have by the definition of regularity
f I_I Fl(xa)d xy

R==1
.\_‘x‘- 2, 0 xp- T

(4) P(A: Br) - " ;o
f 1 o(x)dx
0

Now let us suppose that 0-"z,<z,<7; in this case we have

_ P(A., Br)
P(Azl Z:) p(A‘, \Br)
and thus
f ka (xx) dxa
k=1
Sape o
(5) P(A;, A;) = *!
f nfk(xk)dxk
k=1
."3
k=

It follows that if we put

g1(x) =f1(x) and gu(x) = f ai(x— W) ¥y for k=2, 3, ..., n,

4 MspecTns na Matemarmaecuns u-7, 7. II, am. 2
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we have

(6) P(A, A;) = ——— (0<2,<2y).

f &r(x)dx

Thus the well-known law of composition of probability densities
is valid, though some or all of the integrals

ffk(x)dx

may be divergent. It follows that the method of Laplace-transforms can
be applied also in this case.

The situation is more complex, if it is not supposed that the ran-
dom variables considered are positive. If £ and »n are two independent,
regularly distributed random variables with density functions f(x) and
£(x) and we want to determine the density function A(x) of :+4n, we
can not put in general

h(x) ~ f f(x- y)g(y)dy,

because this integral will not converge; however if the limit

[fx—vatzay
(7 lim ~* , —e = A (X)

A= 4on
f S(xo—y)g(v)dy

exists, for a fixed x,, umformly for all ., then clearly A(x) is the density
function of :4-»5. Thus for instance if » is umforml\ dmtnbuted on
the whole real axis, and f(x) is arbitrary, we have A(x)= i. e :4p
is also uniformly distributed on the real axis.

It is easy to see that if : and , are regular random variables on

a conditional probability space, and 4(x, y) is their joint density func-
tion and if

(8) e~ [ hex, yyax

is finite, the conditional density function of ¢ under the hypothesis
";:y 18
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{ h(xly)
9 X'y) = — 20
&) f(x'y) 2())
Clearly f(x y) is an ordinary density function, i. e.
~+oo
S16 yyax =1
If B

oo
f(x) —:-fh(x’y)dy

is also finite, it follows from (9), that

gy x)f(x)
10 fxy) = 2 )JAX)
(10) f(xy) 20)

where g(y x) is the conditional density function of » under the
condition :=x. This is the formula of Bayes for conditional pro-
bability spaces; it should be noted that f(x) and g(y) must not be
ordinary density functions, i. e. we may have

+oo +o
ff(x)dx=fg(y)dy=+m.

§ 2. A New Deduction of Maxwell's Law

’

Let us consider an (ideal) gas consisting of A particles with
equal masses m. Let £y, 7n,, -x denote the components of the velocity
of the k-th particle; we suppose that z, n,, s (B=1, 2,..., N) are
random variables defined on a conditional probability space P. l.et us
suppose that the conditional probability distribution generated by the
variables fp. na, Sk (R—1, 2,..., N)in the 3N-dimensional Euclidean
space is uniform*, further that this distribution is regular.

It follows that the Kkinetic energy e,=; m (£x2 -+ 24 2a2) of the

k-th molecule has the density function** yx for O<<x<Z-~ and thus
*N

by 2.6. that the kinetic energy = 2 ¢, of the whole gas has the den-
k=-1

3N
sity function x7 ' (0<x< o).

* This supposition is justified by Liouville’s theorem mentioned in the
introduction.

** Note that if the random variable ¢ has the density function x* for 0<lx <o
(a real) and ¢ is a positive constant, c¢; has also the density function x* .
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The conditional density function of ¢ under condition ¢,=¢ is
3N s

clearly (x--¢t) 3 for x . It canbe easily verified that the conditions
for applying formula (10) for ;s =¢, and n-=e¢ are fulfilled, and thus we
obtain from (10) by some simple calculations that the conditional
density function of ¢, with respect to the condition ¢ =F is

¢ ‘,'3/\(' 3N-5s
f(x E) o 2) (l—x) 2m\/"‘-
(1 S (3N 3. E E’
Vaf 0 Jl;

f(x [) is the density function of the energy #, of the k-th particle.

Denoting by 1V, the velocity of this particle, we have e,=‘l)mV.9,i. e.

Vi \/‘;:l‘ thus if g(x £) denotes the density function of V, under

the hypothesis + [, we have g(x'l:‘)-—-f(m; [:') mx and thus
i
.. 1‘(3?/) V=3
. 2 /(m\a y mx?, 2
(12) A’(.rk).—Vv(E) (';N—3 x?(l— QE)
. [ >
.2

This is the density function of the ‘velocity of any of the particles.

If Vs very large, putting g= ;F and o ! , we obtain from (12) by

\mp
n
using Stirling’s theorem, and the relation lim<1 -4 ;) e’, that appro-
n-9ce
ximately

¢ 2 x?
(13) R(x E) ~ \/2 pATE I
P 4

- 3, .
As it is known that [\ » KT where T denotes the absolute tempe-

rature of the gas and A the constant of Boltzmann, we have ﬁ=~-l-~

| 4 KT
KT . N
and o m Thus finally we obtain
3 3
(4 xE) = Vi ( mr)2 x% T 2KT,

i. e. the Maxwell-law of velocity distribution.
Summarising, we may state our result as follows: if the com-
ponents of the velocity of each of N particles are inde-
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pendent from each other and from the components of
the velocity of other particles, further if all these
random variableshaveregularuniform (a priori)distri-
butions on the whole real axis, then the (a posteriori)
probability distribution of the velocity of each par-
ticle under the condition that the kinetic energy of
the whole system is given, is approximately, if N is
large, the Maxwell-distribution (14

It can also be shown by the same way that the conditional
probability function of each of the variables =, 5. - under the con-
dition ¢=E is exactly

, r(3;’v> RAVAE
m 2 mx*=\ 3
(15) h(xE)_‘Q,,\/E' r(;w—l) (1- 21:‘)
2
and thus approximately for large N
(16) hxE) e
G)2a

where O:\/Iiny Thus under the condition ¢- FE all these variables

are approximately normally distributed with mean value 0 and the
same variance o2 This is the reason why the velocities have a Maxwell-
distribution, because the Maxwell-distribution can be defined as the

distribution of a wvariable }.242%4 2, where z, 5, - are independent
and normally distributed random variables with mean value 0 and with
the same variance o2

If we interprete consequently the .structural functions* of Khint-
chine as density functions of the distributions of a random variable
on a conditional probability space, as defined in 1., we can build up
statistical mechanics systematically on a purely probabilistic basis.

Received August 3, 1955
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