GENERALIZATION OF AN INEQUALITY OF KOLMOGOROV

By

J. HÁJEK (Prague) and A. RÉNYI (Budapest), corresponding member of the Academy

In what follows P(A) denotes the probability of the event A, $M(\xi)$ the mean value, and $M(\xi|A)$ the conditional mean value, under the condition A, of the random variable ξ .

The inequality of A. N. KOLMOGOROV [1] in question states that if $\xi_1, \xi_2, \ldots, \xi_k, \ldots$ is a sequence of mutually independent random variables with mean values $\mathbf{M}(\xi_k) = 0$ and finite variances $\mathbf{M}(\xi_k^2) = D_k^2$ $(k = 1, 2, \ldots)$, we have, for any $\varepsilon > 0$,

(1)
$$\mathbf{P}(\max_{1 \leq k \leq m} |\xi_1 + \xi_2 + \cdots + \xi_k| \geq \varepsilon) \leq \frac{1}{\varepsilon^2} \sum_{k=1}^m D_k^2.$$

This inequality is extremely useful in proving the strong law of large numbers and related theorems. In what follows the inequality (2) will be proved which contains (1) as a special case. The use of (2) instead of (1) makes it possible to simplify the proofs mentioned.

The inequality (2) has been found in 1953 by the first named author; the proof of the inequality given below is due to the second named author.

The following theorem will be proved:

THEOREM. If $\xi_1, \xi_2, \ldots, \xi_k, \ldots$ is a sequence of mutually independent random variables with mean values $\mathbf{M}(\xi_k) = 0$ and finite variances $\mathbf{M}(\xi_k^2) = D_k^2$ $(k = 1, 2, \ldots)$ and c_k $(k = 1, 2, \ldots)$ is a non-increasing sequence of positive numbers, we have for any $\varepsilon > 0$ and any positive integers n and m (n < m)

(2)
$$\mathbf{P}(\max_{n \leq k \leq m} c_k | \xi_1 + \xi_2 + \dots + \xi_k | \geq \varepsilon) \leq \frac{1}{\varepsilon^2} \left(c_n^2 \sum_{k=1}^n D_k^2 + \sum_{k=n+1}^m c_k^2 D_k^2 \right).$$

PROOF. Let us put

(3)
$$\zeta = \sum_{k=n}^{m-1} (\xi_1 + \xi_2 + \dots + \xi_k)^2 (c_k^2 - c_{k+1}^2) + c_m^2 (\xi_1 + \dots + \xi_m)^2.$$

It follows

(4)
$$\mathbf{M}(\zeta) = c_n^2 \sum_{k=1}^n D_k^2 + \sum_{k=n+1}^m c_k^2 D_k^2.$$

Denoting by A_r (r = n, n+1, ..., m) the event consisting in the simultaneous

validity of the inequalities1

$$c_s |\xi_1 + \cdots + \xi_s| < \varepsilon$$
 $(n \le s < r)$ and $c_r |\xi_1 + \cdots + \xi_r| \ge \varepsilon$,

the inequality (2) can be written in the form

(5)
$$\sum_{r=n}^{m} \mathbf{P}(A_r) \leq \frac{1}{\varepsilon^2} \mathbf{M}(\zeta).$$

The inequality (5) is the consequence of (6a), (6b) and (6c) of which the first two are evident:

(6a)
$$\mathbf{M}(\zeta) \geq \sum_{r=n}^{m} \mathbf{M}(\zeta|A_r) \mathbf{P}(A_r),$$

(6b)
$$\mathbf{M}(\zeta|A_r) \geq \sum_{k=r}^{m-1} \mathbf{M}((\xi_1 + \dots + \xi_k)^2 | A_r) (c_k^2 - c_{k+1}^2) + c_m^2 \mathbf{M}((\zeta_1 + \dots + \zeta_m)^2 | A_r),$$

(6c)
$$\mathbf{M}((\xi_1+\cdots+\xi_k)^2|A_r) \geq \mathbf{M}((\xi_1+\cdots+\xi_r)^2|A_r) \geq \frac{\varepsilon^2}{c_r^2}$$
 $(r \leq k \leq m)$.

In verifying the inequality (6c), one has to use the fact that according to the definition of the event A_r the random variables ξ_k (k > r) are mutually independent of each other also under the condition A_r , further that they are independent also under the condition A_r of the variables $\xi_1, \xi_2, \ldots, \xi_r$. It should be mentioned that the same fact is utilised in the proof of (1) due to Kolmogorov [1].

REMARK 1. If we choose n=1 and $c_1=c_2=\cdots=c_m=1$, we obtain from (2) as a special case the inequality (1). If we choose $c_k=\frac{1}{k}$ $(k=n,n+1,\ldots,m)$, we obtain the inequality

(7)
$$\mathbf{P}\left(\max_{n \leq k \leq m} \frac{|\xi_1 + \xi_2 + \dots + \xi_k|}{k} \geq \varepsilon\right) \leq \frac{1}{\varepsilon^2} \left(\frac{\sum_{k=1}^n D_k^2}{n^2} + \sum_{k=n+1}^m \frac{D_k^2}{k^2}\right).$$

REMARK 2. By means of passing to the limit $m \to \infty$, it is easy to deduce from (2) the following inequality:

(8)
$$\mathbf{P}(\sup_{n\leq k}c_k|\xi_1+\cdots+\xi_k|\geq \varepsilon)\leq \frac{1}{\varepsilon^2}\left(c_n^2\sum_{k=1}^nD_k^2+\sum_{k=n+1}^\infty c_k^2D_k^2\right).$$

Especially, if $c_k = \frac{1}{k}$ (k = 1, 2, ...), we obtain the inequality

(9)
$$\mathbf{P}\left(\sup_{n\leq k}\frac{|\xi_1+\xi_1+\cdots+\xi_k|}{k}\geq \varepsilon\right)\leq \frac{1}{\varepsilon^2}\left(\frac{\sum_{k=1}^n D_k^2}{n^2}+\sum_{k=n+1}^{\infty}\frac{D_k^2}{k^2}\right).$$

¹ If r = n, only the second inequality is supposed.

REMARK 3. It follows from (9) immediately, that the strong law of large numbers holds for the sequence of mutually independent random variables $\xi_1, \xi_2, \ldots, \xi_k, \ldots$ if the ξ_k 's have mean values 0, finite variances $D_k^2 = M(\xi_k^2)$ and

$$\sum_{k=1}^{\infty} \frac{D_k^2}{k^2}$$

converges ([2]).

As a matter of fact, it follows from (9) and (10) that for any $\varepsilon > 0$

(11)
$$\lim_{n\to\infty} \mathbf{P}\left(\sup_{n\leq k} \frac{|\xi_1+\cdots+\xi_k|}{k} \geq \varepsilon\right) = 0$$

and therefore we have

(12)
$$\mathbf{P}\left(\lim_{n\to\infty}\frac{\xi_1+\xi_2+\cdots+\xi_n}{n}=0\right)=1.$$

(Received 25 July 1955)

References

- [1] A. Kolmogoroff Über die Summen durch den Zufall bestimmten unabhängigen Größen, Math Ann., 99 (1928), pp. 309—319. (See also the corrections, ibid., 102 (1929), pp. 484—488.)
- [2] A. Kolmogoroff, Sur la loi forte des grands nombres, *Comptes Rendus Acad. Sci. Paris* 191 (1930), pp. 910—912. (See also A. Kolmogoroff, *Grundbegriffe der Wahrscheinlichkeitsrechnung*, Ergebnisse der Math. 2., no. 3 (Berlin, 1933).)

ОБОБЩЕНИЕ ОДНОГО НЕРАВЕНСТВА А. Н. КОЛМОГОРОВА

Я. Хаек (Прага) и А. Реньи (Будапешт)

В работе доказывается следующее неравенство:

Пусть $\xi_1, \xi_2, ..., \xi_m$ независимые случайные величины, математические ожидания которых равны нулю (**M**(ξ_k)=0; k=1,2,...,m), а дисперсии конечни ($\mathbf{D}^2(\xi_k)=D_k^2$; k=1,2,...,m); пусть, далее, c_k не возрастающая последовательность положительных чисел. Тогда если $1 \le n \le m$ и $\varepsilon > 0$, имеем

(2)
$$\mathbf{P}(\max_{n \leq k \leq m} c_k | \xi_1 + \dots + \xi_k| \geq \varepsilon) \leq \frac{1}{\varepsilon^2} \left(c_n^2 \sum_{k=1}^n D_k^2 + \sum_{k=n+1}^m c_k^2 D_k^2 \right).$$

Если n=1 и $c_k\equiv 1$, то в качестве частного случая получаем хорошо известное неравенство (1) А. Н. Колмогорова. Воспользовавшись неравенством (2), можно упростить доказательство усиленных законов больших чисел.