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Introduction

The axiomatic foundation of probability theory given by A. N. Koimo-
gorov [1] in the year 1933 has been the starting point of a new and bril-
liant period in the development of probability theory. According to this theory
to every situation (experiment, observation etc.) in which chance plays a
role, theie corresponds a probability space [5, 61, P], i. e. an abstract space
5 (the space of elementary events), a o-algebra & (the set of events) of
subsets of S, and a measure P(A) (the probability of the event A) defined
for A £¢é1 and satisfying P(S) 1 The-theory of Kolmogorov furnished an
appropriate and mathematically exact basis for the rapid development of
probability theory, which took place in the last 30 years, as well as for its
fruitfull application in a great number of branches of science, including other
chapters of mathematics too. Nevertheless in the course of development there
arose some problems concerning probability which can not be fitted into the
frames of the theory of Koilmogorov.

The common feature of these problems is that in them unbounded meas-
ures occur, while in the theory of Kolmogorov probability is a bounded
measure normed by the condition P(S): 1 Unbounded measures occur in
statistical mechanics, quantum mechanics, in some problems of mathematical
statistics (for example in connection with the application of the theorem of
Bayes) as limiting distributions of Markov chains and Markov processes, in
integral geometry, in connection with the applications of probability concepts
in number theory etc.

In the theory of Kolmogorov it has, for instance, no sense to speak
about a probability distribution which is uniform on the whole real axis or
on the whole plane, further it has no sense to say that we choose an integer
in such a way that all integers (or all non-negative integers) are equiprobable.

At the first glance it seems that unbounded measures can play no role
in probability theory, because, in view of the connection between probability
and relative frequency, probability clearly can not take any value greater than 1
But if we observe more attentively how unbounded measures are really
used in all cases mentioned above, we see that unbounded measures are
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used only to calculate conditional probabilities as the quotient of the values
of the unbounded measure of two sets (the first being contained in the
second) and in this way reasonable values (not exceeding 1) are obtained.
This is the reason why unbounded measures can be used with success in
calculating (conditional) probabilities. But as the use of unbounded measures
can not be justified in the theory of Koimogorov, the necessity arises to
generalize this theory. In the present paper such an attempt is made.

Clearly in a theory in which unbounded measures are allowed, condi-
tional probability must be taken as the fundamental concept. This is natural
also from an other point of view. In fact, the probability of an event depends
essentially on the circumstances under which the event possibly occurs, and
it is a commonplace to say that in reality every probability is conditional.

This has been realized by several authors; | mention here without aiming
at completeness only H. Jeffreys [2], H. Reichenbach [3], J. Keynes [4],
R. Koopman [5], A Copeland [6], G. A Barnard [7] and I. J. Good [§].

But none of the mentioned authors developed his theory on a measure-
theoretic basic. The axiomatic theory developed in the present paper com-
bines the measure-theoretic treatment of Kolmogorov with the idea proposed
by the authors mentioned (and also by others) to consider conditional proba-
bility as the fundamental concept.

The novelty of the theory lies only in this combination. It follows from
what has been said that in developing the theory proposed in this paper we
follow the same way as Kolmogorov, only we try to go one step further.
Thus, this new theory should be considered as a generalization of that of
Kolmogorov. In fact, it contains the theory of Kolmogorov as a special
case, but includes also cases which can not be fitted into the theory of
Kolmogorov, Namely cases in which conditional probabilities are calculated
by means of unbounded measures.

Among the authors mentioned above only H. Jeffreys uses explicitely
unbounded probability distributions (especially random variables | for which
log £ is uniformly distributed on the whole real axis) but he does not give
an exact mathematical meaning to such distributions, and restricts himself to
the remark that it is a mere convention that to a certain event there corres-
ponds the probability 1; he says that in some cases instead of 1 the value
+ °0 can also be taken.

The attempt to extend the scope of the mathematical theory of proba-
bility with the aim to give a well founded basis for such calculating proce-
dures which were successfully used in many fields of applications without
being mathematically rigorously justified, has many analogues in the history
of mathematics. | mention only, as one of the latest such successful attempts,
that of S. L. Sobotev and L. Schwartz, concerning the generalization of the
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notion of a function, to include, for instance, the function of Dirac, together
with its derivatives etc.1

The theory as presented in this paper is still far from being fully devel-
oped; we restrict ourselves to give here only the axioms and their immediate
consequences (8§ 1), further to discuss some examples (82) and applications
(8 3), and finally to develop some *“conditional” laws of large numbers (8§ 4).
As an application of the conditional strong law of large numbers, a generali-
zation of Borer’s theorem on normal decimals for Cantor’s series is given.

I hope to return to the questions left unsolved in a forthcoming publication.

I had the occasion to lecture on the present theory in 1954 at several
congresses: in Budapest [9] at the General Assembly of the Hungarian Aca-
demy in May 1954, at the Conference on probability and statistics in Prague
in June 1954, at the International Congress in Amsterdam [10] in September
1954, at the Conference on probability and statistics in Berlin [11] in October
1954 and at the Conference on stochastic processes in Wroclaw in December
1954. At these (and other) occasions many valuable remarks have been made.
I mention only the following ones: B. V. Gnedenko Kindly informed me in
Prague in June 1954 that in a lecture held some years ago in Moscow A. N.
Kolmogorov himself has put forward the idea to develop his theory in
such a manner that conditional probability should be taken as the funda-
mental concept, but he never published his ideas regarding this question.
I was glad to learn from this information that my attempt, besides of being
a continuation of the work of Koimogorov, follows the lines which have
been pointed out by himself. In § 3 an inequality of J. Hajek is used which
he communicated to me in Prague in June 1954. A proof of this inequality
is published in a joint paper of the author and J. Hajek [12] in this volume.
Some interesting measure-theoretic problems, which arose in connection with
the present paper, have been solved by A Csaszar: his results, which he

1 The Dirac «-“function” and the uniform distribution on the whole real axis
whole space etc.) arise in the same way in quantum mechanics and they are in a certain
sense dual to each other. As a matter of fact, it is easy to verify the following fact connected
with Heisenberg’s uncertainty relation (for the sake of simplicity we restrict ourselves to
the one dimensional case): if the wave function y>(x) of the position of a particle degener-
ates into a Dirac <%“function”, the wave function q(p) of the impulse of the particle degen-
erates into a function for which |9(p)|2= const, is the “density” of a “uniform proba-
bility distribution in the whole phase space”. This can be shown as follows: as it is known,
denoting by <p(p) the wave function of the position and by <p(p) the wave function of the

+co ipx
impulse of a particle, we have y(/>) = y (x)e h dx. This formula shows that if
1I'2nh &
J
y(x) degenerates into the Dirac function S(x—x0, we have <(/?) - —--—-- e h for

which I<(p)ls= const. \2nh

(or the
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exposed at the first time as comments to my lecture [9], are published in his;
paper [13] in this volume and settle the question under what conditions
can the conditional probability, introduced in the present paper as a set
function of two set variables, be expressed in quotient form by means
of (one or more) set functions of one variable. D. van Dantzio called my
attention to the work of Keynes, Copeland and Koopman. Ju. V. Linnik
called my attention to a paper of J. Neyman [14], where the foundations of
the theory of probability are sketched in a form which has some points of
contact with the point of view of the present paper. In Berlin A. N. Kolmogorov
called my attention to those conditional probability spaces which | call “Cavalieri
spaces” (8 2). | hope to return to the thorough investigation of such spaces ina
forthcoming paper. lowe to a discussion with E. Marczewski Theorem 14 of § 2.
The result of 3.5 has been suggested to the author by a remark of K. Sarkadi.
A. Csaszar and J. Czipszer Kindly read the manuscript of the present paper
and made some valuable remarks which | have utilized in preparing the
final form of this paper.

I am thankful to all those mentioned for their remarks and suggestions.

8 1. The axioms and their immediate consequences

1. 1 Notations. In what follows if A and B are sets, we denote by
A+ B the sum of the sets A and B (i. e. the set of those elements which
belong at least to one of the sets A and B); AB denotes the product of the
sets A and B (i. e. the set of those elements which belong to both of the sets
A and B); to denote the sum resp. the product of a finite or infinite family
of sets, we use also the notation N resp. //. The empty set will be denoted
by O; A~B expresses the fact that A is a subset of B; the subset of B
consisting of those elements of B which do not belong to A will be denoted
by B—A. If ais an element of the set A, this will be denoted by afA.
If a does not belong to the set A, this will be denoted by a”A.

1 2. Definitions and axioms. Let us be given an arbitrary set S; the ele-
ments of S which will be denoted by small letters a,b,... will be called
elementary events. Let 61 denote a «-algebra of subsets of S; the subsets of
S which are elements of d will be denoted by capital letters A,B,C,...
and called random events, or simply events. [The supposition that 61 is a
«-algebra means (see [15], p. 28) that 1 if Andd(n= 1,2,...), we have

A 1Aud 61; 2. if AdEl, we have S—Add; 3. 61 is not empty. This implies
that O £61 and S dd-] Let us suppose further that a non empty subset JT
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of & is given; we do not suppose any restrictions regarding the set Sir We
suppose finally that a set function P(AjR) of two set variables is defined for
A£g and B £81; P(AjR) will be called the conditional probability of the
event A with respect to the event B. As the conditional probability of the
event A £<§ with respect to the event B is defined if and only if B belongs
to So, & may be called the set of possible conditions. We suppose that the
set function P(AjR) satisfies the following axioms:

Axiom 1 P(A|R)"0, if AEd and R£<$; further P(RjR) = 1, if
RES.

Axiom Il. For any fixed B ( P(A|B) is a measure, i.e. a countably
additive set function of A££], i.e if ALEd (n 1,2,...) and Ajak= O
forj-vk (j,k 1,2,...), we have

/"c o @

PRX By - 2P M«lR).

Axiom N3 If AE<G R $&8 C£Sh and BCASi, we have
P(A BC)P(R O P(AR|C).

If the Axioms I—IIl are satisfied, we shall call the set S, together with
the o-algebra 61 of subsets of S, the subset of 61 and the set function
P(AjR) defined for A£61, B £ B a conditional probability space and denote
it for the sake of brevity by [S, 61 SI, P(A R)].

1 3. Connection with Kolmogorov’s theory. If P(A) is a measure (i. e.
a countably additive and non-negative set function) defined on the
o-algebra 61 of subsets of the set S, if further P(S)=1, then the triple
[5, 61, P(A)] is called a probability space in the sense of Kolmogorov, and

if we define 6I" as the set of those sets B £A for which P(B) >0 and put
P(AR) Ap (/™ Yor B £ 6I', dearly [S, 61, 61* P(AjR)] is a condi-

tional probability space which will be called the conditional probability space
generated by the probability space [S, 61, P(A)].

Conversely, if [S; 61, b, P(AJR)] is a conditional probability space and
C is an arbitrary element of JB putting Pc(A)* P(A|C), [S, A P,(A)] will
be a probability space in the sense of Kolmogorov. Thus a conditional pro-
bability space is nothing else than a set of ordinary probability spaces which

2 It will be seen that our axioms imply that O (£ <§ but it is possible that con-
tains all elements of Sl except O; on the other hand, it is possible that Jg contains
only one set. The theory is somewhat less general, but considerably simpler if it is sup-
posed that 8, is an additive class of sets, i. e. if from Brf£Jg, and B2£ it follows
B\ + B> Concerning the consequences of this supposition see [13].

3 See 1.7 where an equivalent axiom (Axiom W) is discussed, and 1.8 where a.
stronger form of this axiom is mentioned.
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are connected with each other by Axiom IIl. This connection is such that it
is in conformity with the usual definition of conditional probability. Namely,
if we put P, (A)= P(A|C) for AEEL with C $ B fixed, and define the con-
ditional probability P*(A|R) for a B £eB for which P,(8)>0, as usual in

the theory of Kolmogorov, by P*(A\B) = >we have by Axiom Il

P*(A|R) = = P(ARC). In case SE£B clearly [S, 6t, Pn(A)] is a

probability space in the sense of Kolmogorov. It must be mentioned that in
this case [S, <9, Si, P(A|R)] may not be identical with the conditional proba-
bility space generated by [S, 61, P.YA)] because dB may contain sets B for
which P(B\S) = 0 and at the same time need not contain every set B for
which P(BjS)>0, i e. the system Sis consisting of all sets BE& for which
P(R|S)>0 need not be identical with cB. However, if P*(A|R) is defined

by P’(A[R) PFE'?BES) for B £ Sis, we have P*(A|B) = P(A |B), provided
that B £ Si.

1 4. Immediate consequences of the axioms. We shall prove some simple
theorems which follow from our axioms. In what follows if P(A|R) occurs,
it is always tacitly assumed that A£61l and B"Si. We denote the set S—A
by A

Theorem 1 P(A\B) = P(AB\B)
Proof. If in Axiom Il C= B, we have P(AJB)P(RIR) = P(AR|R).
Taking Axiom | into account Theorem 1 follows.

Remark. It follows from Theorem 1 that P(S|B)=" 1; namely, by Theo-
rem 1 P(SjR) P(SRjR) P(B|R) and thus, by Axiom I, P(S|R)=A.

Theorem 2. P(AjR)g 1

Proof. According to Axiom Il we have P(AR|B)-RP(ARjR) = P(R|R).
As by Axiom | P(BjB) 1 and P(ARjR)2=0, it follows P(AR|R)a=1 and
thus by Theorem 1 we obtain P(A|R)" L

Theorem 3. P(0(R)=- 0.
Proof. According to Axiom Il P(0|B) P(O-fOjBR) 2P(OjR) and
thus P(O]R) = 0.

Remark 1. It follows from Theorem 3 that O(£eB, because if O would
belong to c¢B we should have P (0]0) 1 by Axiom | and P(O|O0)="0
by Theorem 3; thus the assumption O £ B leads to a contradiction.

Remark 2. It follows from Theorem 1 and 3 that if AB-—0, then
P(AIR) O.
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THEOREM 4. P(A|BC)P(B|C)—P(B|AC)P(A|C).

PrROOF. By Axiom IIlI both expressions are equal to P(AB C) and thus
to each other. '

THEOREM 5. If ACA'CBS B, we have

P(A|B") =P(A’|B).
PrROOF. We have
P(A|B)=P(AA'B|B)=P(AA’"|BB)P(B B') =
=P(AA’|B)—P(A’|B)—P(AA’|B) = P(A'| B).

REMARK 1. If A-—=A’, we obtain the following special case of Thec-
rem 5: if ASBC B, we have P(A|B’) = P(A|B).

REMARK 2. If B— B/, we obtain the following special case of Theo-
rem 5: if AC A’, we have (without supposing that A" B) P(A|B) = P(A’|B).!
As a matter of fact, P(A|B)—P(AB|B) and P(A’|B)—=P(A’B|B) by Theorem
1; if ASA’, we have ABS A’BC B, and Theorem 5 can be applied.’

THEOREM 6. If A, + A, S B,B, € &, further P(A, B,)P(A.B,) >0, we have

P(A,|B) P(A|B,)

P(A,|B) P(A.[By)’
PrROOF. According to Axiom Il

(1) P(A,|B,B,)P(B,|B,)=P(A,B,|B,)=P(A,|B,)
and similarly
(2) P(A,|B,B,) P(B,|B,) =P(A:B, | B;) = P (A, B,).

Dividing (1) by (2) we obtain

3 P(AliBIBJ)* P(A,\B_.)
5 P(A.|B,B))  P(A)B)~

Interchanging B, and B, in (3) we obtain
P(A:|B,B;) P(A:B)°

Comparing (3) with (4), Theorem 6 follows.

THEOREM 7. If CEB— > Bi.and AB;B.C—O for j==k (j, k=1,2,...),

k=1
we have
P(A|C)= > P(A|B.C) P(B:|C).
=1

4 1t should be mentioned that this special case of Theorem 5 follows from Axioms

I and II; Axiom Il is not needed. i

5 Acta Mathematica V1/3—4
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Proor. By Axiom Il P(A[B.C)P(B:|C)—=P(AB:|C) and thus by
Axiom II and applying Theorem 1 twice, it follows

> P(A|B.C)P(B:|C)— I;‘:P(AB;.-,IC): P(AB|C)=P(ABC|C)—

=P(AC|C)=P(A|C).
REMARK. We mention the following consequences of Theorem 7: Let

us suppose B, € ® and B;B,— O for j==k, B— >'B, and B¢ ®; if
k=1

P(A|By) =iP(A’|By) for k=1,2,... where 2A=0, we have P(A|B)=
= AP(A’|B).

Especially if P(A|By)—AP(A’|By) for k=1,2,..., we have P(A|B) =
=AP(A’|B), further if P(A|Bi)=4 for k=1,2,..., we have P(A|B) = 1.

ProOOF. Applying Theorem 7 twice with C= B we obtain
P(A|B)= > P(A|B)P(Bi|B) = 4 > P(A’| B,) P(B:|B) = iP(A’|B).
k=1 k=1

The two other assertions are evident consequences.

1.5. Representation of the conditional probability as a quotient. We
shall give a sufficient condition under which the set function P(A|B) of two
set variables can' be represented in ‘“quotient form”, i. e. in the form

Q(AB)

P(A|B) = —1 5
(A|B) QB)

satisfies Q(B) >0 if B € .

THEOREM 8. Let [S,d, B, P(A|B)] be a conditional probability space.
Let us suppose that there exists a sequence of sets B,(n=0,1,...) for which
the following properties hold:

a) B.S B,11 (Il — 0, 1., .),

b) P(By|B.)>0 (r=12,.:.)

c) For any B¢ & there can be found a B, for which BES B, and
P(B|B,) > 0.

Then there exists a finite measure Q(C) defined for C¢Q* where AF
is the ring of those sets C¢€& for which there can be found a B, with
C< B, and this measure Q(C) has the following properties :

«) QB)>0 if BE®B,
: Q(AB)
B) P(A|B)— :
) PAIB= 375
If the sequence B, satisfies besides a), b), c) also the following con-.
dition :
d) lim P(B,|B.) >0,

n—>@

where the set function Q(A) is a measure on d and
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then Q(C) can be defined for all C€ 8 and is a bounded measure on d,
and thus, putting P(C) gg—g
of those sets B € & for which P(B) >0, if & is not identical with $, we
may extend the definition P(A|B) to all B € &* putting
P(AB),
P(B) "’
the conditional probability space [S, &, B*, P(A|B)] obtained in this way will
be identical with the conditional probability space generated by the ordinary
probability space [S, &, P(A)]. :

Proor. First we suppose only that the sequence B, has the properties
a), b) and c). Clearly 4" is a ring and we have S d* <. Let us con-
sider a set A € d*, choose an index n for which AS B, and define Q(A) as

follows :
P(A|B,
©) Q) — pg .

It is clear that the value of Q(A) does not depend on the choice of n. As
a matter of fact, if ASB, and A< B, where n<m, we have by Theorem 6
_P(A|B) _ P(A|Bn)

P(BB.Y - P(BI|B,)

Now, if B¢ B, Q(B) >0, we have
(6) ‘ P(A|B)=

we have P(S)=1. Denoting by &* the set

P(A|B)=

Q(AB)
QB) -
This can be shown as follows: if BE B, and P(B|B,) >0, we have
Q@AB) _ P(AB|B,) P(B)B,) P(AB|B,)
Q@B  PB[B) P(B[B) P(B[B)
Applying Axiom III' we obtain

Q(AB) ;
Q(B) P(A|BB,).
As BB,==B, (6) is proved.
From (5) it can be seen that Q(A) is non-negative. To show that Q(A)
is a measure, we have to prove that Q(A) is countably additive on &, i. e.

if A,c" (k=1,2,...) and A;A,—O for j=£k and > Ax= A €@", then
=1

k y
Q(A) — > Q(Ay). This follows simply from the remark that if ASB,, we
k=1

have A, €SB, for 1,2,... and thus in the relations

P (AI\' | Bu)

Qi SVl pa T gy i AR

P(B,|B.)

5%
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the same B, may be used, and therefore the countable additivity of Q(A)
follows from that of P(A|B) for fixed B € & (Axiom II).

Thus the first part of Theorem 8 is proved. Now we suppose that the
sequence B, has besides a)—c) also the property d). By a well-known the-
orem (see p.e. [15], § 13, Theorem A) the definition of Q(A) can be extended
to the smallest o-ring ¢l containing ¢* in such a manner that Q(A)

remains countably additive on A*. Let us put $*— > B,; we shall show

that d** is identical with the o-algebra ¢1S* i.¢€. with the set of all sets of
the form AS* where A € . As a matter of fact, A*=aS* and 4S* is a o-
ring, thus we have clearly " < dS8* On the other hand, if AZ¢l, we have

AS*= > AB..

=)

Now AB,<B,, and thus AB, € " and therefore AS*¢€ a*; thus
AS* S A" which implies &0 8*=— ™. Thus the definition of Q(A) can be
extended to all A€dS*. We prove now that Q(A) is bounded on &S8*,
To show this it is sufficient to prove that Q(S) is finite. But S*-— lim B,

H-»o

and B, B,.;, and thus Q(S*)— lim Q(B,) where Q(B,) is non-decreasing.

On the other hand,
P(B.|B.) 1
QBI=PERIBY ~ PHEIB)
Thus e) implies that Q(S*) < + ~. Defining Q(A) by Q(A4)=— Q(AS™) for
A€d, AgAaS”, the definition of Q(A) is extended to the whole g-algebra A.
The final part of Theorem 8 concerning P(A) is obvious. Thus Theorem 8

is proved. :
A necessary and sufficient condition for the existence of the quotient

representation P(A|B) — —, Gla is contained in the paper {13] of A. CSASZAR.

1.6. Random variables on a conditional probability space. Let [S, &, &,
P(A|B)] be a conditional probability space. If &= &(a) denotes a real-valued
function defined for a € S which is measurable with respect to ¢, i.e. if A,
denotes the set of those a€S§ for which §(a) < x, we have A, € for all
real x, we shall call & a random variable on [S, &, &, P(A|B)]. Vector-valued
random variables are defined similarly. The (ordinary) conditional probability
distribution function of a random variable & with respect to an event B € &
is defined by F(x|B) -~ P(A.|B);if F(x|B)is absolutely continuous, F’(x|B) =
« f(x|B) is called the (ordinary) conditional probability density function of &
with respect to B. The conditional mean value M(§|B) of & with respect to
an event B € & is defined as the abstract Lebesgue integral

M(EB)— | £(a)dP(A|B)
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of & with respect to the measure defined on S by P(A|B) with B fixed.
Higher conditional moments, the conditional characteristic function etc. are
defined similarly. The random variables & and » are called independent with
respect to an event C, if denoting by A, the set of those a€ S for which
&(@) <x and by B, the set of those a€S for which 7(a) <y, we have
P(A.B,|C)=P(A.|C)P(B,|C) for every real x and y.

As [S, ¢, P(A|B)] is for any fixed B¢ & a probability field in the sense
of the theory of KOoLMOGOROV, any theorem of ordinary probability theory
remains valid when ordinary probabilities, distributions, mean values, inde-
pendence etc. are replaced by conditional probabilities, conditional distribu-
tions, conditional mean values, conditional independence etc. with respect to
the same B ¢ . Problems which are peculiar to the theory presented in this
paper are those in which conditional probabilities with respect to different
conditions are figuring. We shall see in § 3 some examples of such problems.

Let us mention that if & is a random variable, and AP denotes the set
consisting of those elements @ € § for which « = &(a) < 2, and if AL e & for
a set X of intervals (e, 2), then the conditional probabilities P(A%|Af) can
be considered for (¢, 8) € X and thus & generates a conditional probability
space on the real axis R, as the space of elementary events, the o-algebra
& being the set of Borel subsets of & and & consisting of the intervals
(a¢,8)€ X.

This conditional probability space will be called the conditional proba-
bility distribution generated by & on the real axis.

Let F(x) denote a non-decreasing function of x which is continuous to
the left for —oo<x<4oo. If the set AS belongs to & whenever
F(3)—F(«) >0, and we have for any subinterval (x,y) of such an interval
(e, 3)

we shall call F(x) the generalized distribution function® of §; the function
F(x) is not uniquely determined, as.together with F(x) G(x)— cF(x)-}-d
where ¢ >0 is also a distribution function of £; but as F(x) will be used
only to calculate the conditional probabilities (7a), this will never lead to a

misunderstanding. If the distribution function F(x) of & is absolutely conti-
nuous, and F'(x) f(x), we shall call f(x) the generalized density function
of &; clearly f(x) is determined only up to a positive constant factor. If
F(x)=—x (i.e. f(x)- 1) for —oc << x < o0, we shall say that the distribu-

tion of § is uniform in (— ~, - o).

5 Conditions ensuring the existence of a generalized distribution function of a ran-
dom variable & can be formulated by using the results of the paper [13].
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If f(x) is the generalized density function of § we have

.[;f(u)du
(7b) P(AZ|AD) =27 ——.
fwydu

The generalized distribution function resp. density function of a random vector
is defined similarly.

1. 7. An alternative form of Axiom IIl. We have already pointed out
that our system of axioms can be characterised in the following manner: the
set S, the o-algebra & of subsets of S, the subset & of & and the set func-
tion of two set variables P(A|B) defined for A€ & and B¢ & form a con-
ditional probability space if § =[S, d, P(A|B)] is an ordinary probability
space for every fixed B €& and if the probability spaces &¢ and &y are
connected by Axiom III if C € & and BC ¢ 8. Thus different probability fields
can be combined to form a conditional probability field only if they are
“compatible” in that sense that they satisfy Axiom IlI which can be consid-
ered as the condition of compatibility.

Now it is easy to prove

THEOREM 9. Axiom IIl can be brought to the following equivalent form:

Axiom III'. If Be®B, Ce B, B&C and P(B!C)>>0, we have for any
Acd
P(AB|C) .

“P@BIC)

Proor. Clearly Axiom III” is a special case of Axiom IIl. Conversely, if
Axiom III’ is valid, Axiom IIl follows. This can be shown as follows: if
Ac@, Bed, Ce& and BC € &, two cases are possible: either P(B|C)—0
or P(B|C)>0. In the first case we have also® P(AB|C)-—0 and thus
P(A|BC)P(B|C)—=P(AB|C) reduces to 0=—0. Now ‘let us suppose
P(B|C)>0. It is easy to see that Theorem 1 follows already from Axioms
I—IIl’, and thus it can be applied in the present proof. But this means that
P(BC|C)=P(B|C) >0 and thus the conditions of Axiom III" are satisfied
with BC instead of B, and it follows from Axiom III’

8) P(A|BCYP(BC|C)=P(ABC|C).
As P(BC|C)=P(B|C) and P(ABC|C)—P(AB|C), it follows from (8)
P(A|BC)P(B|C)=P(AB|C).
Thus Axiom III follows from Axiom III".

P(A|B) —

6 See the footnote * to Remark 2 to Theorem 5.
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REMARK. Theorem 9 means that Axiom Il contains a compatibility con-
dition for &5 and §. where BS C if and only if P(B|C) > 0; if P(B|C)—0,
&5 and &, are compatible without any restriction. This fact is the basis of a
general principle by use of which conditional probability spaces can be con-
structed. This principle is expressed in Theorem 14 of § 2.

1. 8. Extensions of a conditional probability space. 1f [S, d, &, P(A|B)]
is a conditional probability space, it is natural to ask how could this space
be extended, by including into & sets A € & which are not contained in .
The most simple way is suggested by Axiom IlI, and is contained in the
following

THEOREM 10. Let B, denote a set for which B, € & and B, & . If there
exists at least one set B, with the jollowing three properties: «) B, € &,
8) BB, y) P(B\|B,) >0, further if for any other set B, which also has
the properties «), (), y), we have BB, € &, the definition of P(A|B) can be
extended for B-— B, by putting

P(AB,|B,)
P(B\|B,) -

Proor. If P(A|B,) is defined by (9), Axioms I and Il are clearly satis-
fied, therefore we have to verify only Axiom IIl. Three cases must be dis-
tinguished. a) If we put B,=—=C’ and B’ is a set for which B'C' € %, we
must verify

©) P(A[B)

P(A|B'C)P(B'|C)=P(AB]|C).
But this means by (9)
P(A|B,B)P(B,B|B.)— P(AB,B|B.)
what is true by force of Axiom Ill, in view of B.B"—B'C’ ¢ and B, € 3.
b) If B,— B'C’ where C’ € &, we must verify P(A4|B)P(B'|C)— P(AB'|C).
But this means by (9)
P(B|C")P(AB,|B))— P(AB'|C")P(B,| B
what reduces to 0=0 if P(B’|C’)~ 0 and to

P P(ABIB)  P(AB|C)
P(B,|B) P(B’'|C’)

if P(B’|C’)>0. But as B,=— B'C’, by applying Theorem 1 to both condi-

tional probabilities on the right of (10) we find that (10) is equivalent to

a1 P(AB,|B;)  P(AB,|C)

PBiB)  PBIC)

But (11) follows from Theorem 6, taking into account that

AB+-Bi=B,<B, and AB+B =B=BC'<SC(C/,
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and that clearly P(B,|C’)=P(B’|C’) >0 and thus C’ has the properties «),
#) and y) and therefore B,C’ € .

. B C =B, and .C =8, 'where " Bcd, we have to verfy
P(A|BC)P(B'|C')=P(AB’|C’). As P(AB'|C")=P(AB' C’|C’), this rela-
tion is trivially equivalent to P(A|B,)=—P(AB,|B,), which is satisfied by
force of (9).

It is easy to see that the definition of P(A B,) does not depend on the
choice of B,; as a matter of fact, if both B, and B, have properties «), )
and 7), it follows by Theorem 6 that

P(AB,B) P(ABi|B)
"PB.[B) P(BI[B)

It is also clear that P(AB,|B;) can not be defined otherwise as by (9) be-
cause if B, is included into &, (9) must hold by force of Axiom Il

Another possibility for including new sets into & is yielded by passing
to the limit; this procedure is described by the following

THEOREM 11. Let us suppose that B,¢®H, B,<B,., further

P(B.|B.i1) >0 (a=0,1,..) - and that [[P(B.|Ba) converges. If

#n=10

Bm:_\-_‘ B, does not belong to &, the definition of P(A|B) can be extended

=0

for B=— B, by putting
(12) P(A|Bs)—I1imP(A|B,) for any A€ d,

provided that the following condition is satisfied: if B¢ % and P(B|By) > O
for some N, we have BBy € $.

ProOF. For an arbitrary A¢d we put A9—AB,, AY— AB.B;
(k=1,2,...). As AW B, for n = k, the sequence P(A®|B,) is by Theorem
5, Remark 1 monotonically decreasing for n—k, k-41,... and thus

lim P(A®|B,)= P(A®|By)

>

exists.
Putting

(13) P*(A|Bo) = 2, P(A®|B.)

we have defined P*(A|By) for every A € ¢&l. To prove Theorem 11, we have
to show that if P*(A B.) is defined by (13), Axioms I[—IIl remain valid,
further that lim P(A|B,)— P(A|B.) exists for all A€ d and P(A|Bo)=—

P*(A|Bs), i. e. that (12) and (13) are equivalent. As regards Axiom I, it
is clear that P*(A Bo) = 0; the validity of P*(B.|Bs)-—1 can be shown as
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follows: if A= B, AY—B, and A® = B;B;., (k=1,2,...) which implies

P*(Bw|Ba) = P(B)|Bo)+ >, P(B:Bi.1|Bo) = lim P(Bx|Ba).
=} No>m
But
n—-1 @
P(By|Bs)— lim P(Bx|B,) = lim [ [P (B.|B..\) = ,[(P(B,,.iB,,.A 1)
> k=N k=N

n->

and thus

P*(Bo|Bo) = \l'il)]‘(ln ]_I(;P(BI:)‘B/.-; D=1

because the remainder-products of a convergent infinite product are always
tending to 1. Now let us verify Axiom II, i. e. that P*(A|By) defined by
(13) is countably additive. Let us suppose that A, €c and A;A,=O, if

j=k (k=1,2,...), and Ao — > A,. Let us put AY—A,B, and AP —

=1

— A,B.B.\ for k=1,2,..., further AQ —=A,B, and AY — A,B.B.., for
k=1,2,.... As for ASB; we have

(14) P(A|Bs)—P(A|By) I? P(B.|B..1)

and P(A|B:) is countably additive, further A% — > A and AY.AY = O
n=1

for n--m, it follows

(15) P(AY)|Bo) — > P(AY|By).
=1

But

(16) P*(Ax|Bs) — D P(AY|B.).
fe=40)

From (15) and (16) it follows

(17) P'(Aw|Bs) = D P(AY(Bo) — > D P(AY|B.,).
1 ==t =0

k=0 n

As we have from (13) :
(18) T\_?P(A‘,,"’:Bm):P*(A,,\Bm),
it follows from (16) andl(17) that

(19) ' P*(‘Amem)fS; P*(A, B.),

i. e. that P*(A4|Bs) is countably additive.
Now we prove that

(20) P*(A|B.) — lim P(A|By)
N>
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for any A €d. As a matter of fact, by (14)

%) P (A“‘) [ Bm)

R
k=0

© X
(21) P(AEBN):ZP(A(NB‘V) \‘p(A(i)IB Jas = :
=0 3
I(P(B,,!B,,H)

it follows from (21) that

(22) lim P(A|By) — \’P(AMB )
N> *
and thus, by (13), (20) follows.
Now let us prove that Axiom I’ is valid. We distinguish three cases.
The first case is when C¢®B, B, <C and P(B./C)>0; then we have
P(ByiC)>0 if N is sufﬁcxently large and thus

y_ P(ABy|C)
(23) P(A[B_\)WW.
Passing to the limit N— =~ in (23), and using (20), it follows that
| __P(4B:|C)
(24) P(A}Boo)" P(B IC)

The second case is when B€®, BS B, and P(B|Bs)>0; we have to
prove that

: P(AB|B.
(25) P(AIB)—"praro
If there exists an index N for which B < By, we have for sufficiently large N
P(AB|\By) :
P(BIBy) — P(A|B)

and thus, passing to the limit N—oc, (25) follows. :

In the general case, let us consider the two measures w,(4) ~P(A[B)
and w,(A) = P(A\ B.). Let A€ denote an arbitrary set, for which A< ByB
for some N. Then we have by Theorem 6, taking N sufficiently large, to
ensure P(B|By) > 0,

P(A|By) P(A|B)

“P(BIBy) PBB) and thus w(A) = P(B|Bx)u.(A),

taking into account that lim P(B|By) — P(B‘Bw): 1 and thus P(B|By) >0

N >r@
for sufficiently large N. Thus u,(A) = Cu,(A) where C=P(B|By) does not
depend on A if A runs over all sets for which there exists an index N for
which A< ByB.
Clearly these sets A form a ring. As u,(A) and Cu,(A) are finite meas-
ures, it follows that they coincide for the least o-ring which contains all
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mentioned sets A. As By — > By, it follows that u,(4) = Cu,(A) if AS BoB
N=0

and A€d. As B< B, this means that «,(A)- Cu,(A) if ASB, i.e. we
have proved that

: P(A|Bs) e
P(A|B)- P(BB.) if ASB.
As ABCS B for any A €d, this means that for any A € d we have
P(AB|Bo)
_— 2 et b el el
P(A|B)=P(AB|B) P(B|Ba)
Thus (25) is proved. The third case is, when B==B, and C= B ; in this
case we have to prove that P(A|B ):w' but this is evident
$ P(Bx|Bx) ’

because we have shown: that P(By|Bs)=1 and by (15) P(ABy|Bs) =
—P(A Bs). Thereby the proof of Theorem 11 is accomplished.

REmARK. The assertion of Theorem 6 for the case A, A, B,B,, but
without the supposition BB, € &, can be considered as a stronger form of
Axiom IlI, it shall be called Axiom III*.

Axiom III*. If A, €Q,A,€8,B,€®H and B,€ &, further A, + A, < BB,
and P (A, B)P(A,|B,) >0, we have
P(AB)  P(A|B)
P(A,|B) P(A.|By) -
As Theorem 1 is not a consequence of Axiom III*, in case we replace
Axiom III by Axiom III*, we must suppose the validity of Theorem 1 as

Axiom III**. P(A|B)=P(AB|B) for A€ and B¢ 3.

Axiom IlI* and Axiom IlII** together imply Axiom III' and thus Axiom
III. As a matter of fact, choosing A,—AB,A;=B,B,=B and B,=C
where A€, BEB, Ce« N, BSC and P(B|C) >0, the conditions of Axiom
I1* are satisfied, and as by Axiom IlI** P(A|B)=—P(AB|B) it follows that
; P(AB|B) . P(AB|C)
P(B|B). . PAB[C)

P(A|B)—

i.e. Axiom III' is really a consequence of Axiom III* and Axiom [II**,

As Axiom III and Axiom III" are equivalent, Axiom III is also a con-
sequence of Axiom I1I*. Conversely, Axiom III* does not follow from Axiom III,
only in the special case when BB, € &. If we would suppose Axioms III*
and III*¥* instead of Axiom IlI, the conditions of the extension theorems The-
orem 10 and Theorem 11 could be reduced: in Theorem 10 the condition
that for two sets B,, B, with properties «), ) and y), B.B; € & could be
omitted, in Theorem 11 the condition that if B€ & and P(B|By) >0, then
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BBy € & could be: omitted. In what follows we do not suppose the validity
of Axiom IlI*¥; it should be mentioned, however, that Axiom III* is contained
as a special case in Axiom IV, introduced by A. Csiszir [13].

If §—[S,4, B, P(A|B)] and & —[S",d, #,P'(A|B)] are two such
conditional probability spaces that S&S§’, A=A, RS H" and P’(4|B) —
—P(A|B) if Acd and B¢ &, we shall say that the conditional probability
space § is imbedded into the conditional probability space &. In the forego-
ing section we considered only such special imbeddings of a conditional
probability space & into a conditional probability space §" for which §" =S,
A" and B H'. These imbeddings of § were obtained by extension of
M in several manners. lf § is imbedded into &', we shall write & < §".

1.9. Continuity properties of conditional probability. 1t follows from
Axiom Il that P(A|B) is for fixed B € a bounded measure in A, and thus,
of course, continuous in A, i.e. if A, €A and A,€ A, (or A,2A,.) for
n=1,2,...,,we have for B¢ ®

limP(A.|B)—=P(lim A,|B).

"> n—>» M

As regards the continuity of P(A|B) as a function of ‘B, we have

w

[HEOREM 12. /f B.€& and BiSB.. (n=1,2,...), further —"\'“ i
n—1|
= Be®B, we have for A€ d
limP(A|B,)-—P(A|B).

n-r@

Proor. We have by Axiom III

__ P(AB,|B)
P(AIBH) e P(B”W
it P(B,/B)>0. As lim P(B,|B)—P(B|B)=1, the last condition is satisfied

n-—>

for sufficiently large n, and thus

. , M P88 " paBIB)
I P B = e BBl PBE

—P(A|B).

Thus Theorem 12 is proved.
The situation is somewhat more complicated if we consider a decreasing
sequence of conditions. In this case we have

THEOREM 13. If B¢ B, BC,. € B and C,2C,1 (n=1,2,...) further if
putting C— [ [ C, we have BC € & and P(C|B) >0, it follows that

n=1

lim P(A|BC,)— P(A|BC).

I->»0
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PrOOF. We have by Axiom Il
_P(AC.1B)

P(C.|B)
As P(C, B) = P(C B) >0, the condition P(C,|B) >0 is satisfied by every n,
and thus it follows

P(A|BC,)- if P(C./B)~0.

limP(AC., | B)
. AL _ P(AC|B)
PR = e PO, )

n-»

what proves Theorem 13.

1.10. Products of conditional probability spaces. The product of two
conditional probability spaces (S%), A%, R* POy — " (k—1,2) is defined
as follows: let S=SWxS® denote the Cartesian product of the ‘sets S®
(k=1,2), i.e. let S denote the set of all ordered pairs (a", a®) where
aeS® and a®€8®. Let & denote the set of all subsets B,— B,*B, of S
where B, € & and B,¢ B@. Let ¢l denote the set of all subsets A— A,%A,
where A, € AW and A, € d®), and let &1 denote the least o-algebra containing
d. Let us define P(A|B) for A— A,%*A, and B= B,*B,, where A.€d®,
A, €d®, B, € 8V ‘and B, € &® by

P(A|B) =PV (AM|BM) PA(A®|B®),
and let us extend the definition of P(A|B) for every fixed B¢ & to all
A€d in the usual way (see [15], § 13). Thus we obtain a conditional prob-
ability space &[S, ¢, &, P] which will be called the Cartesian product of
the conditional probability spaces § and §? and denoted by § — D% F.

The Cartesian product of a finite number of conditional probability
spaces is defined similarly. The Cartesian product of a denumerable sequence
of conditional probability spaces P —[S®), A", &®, PW] (k=1,2,...) is
defined as follows: we denote by S=—S;*.-- %S, % --- the Cartesian product
of the sets S® (k=1,2,...) by & the setof all sets B=5B% --- % B, % ---.
whére B, € #" (n—1,2,...) and by & the set of all sets A of the form
A— Ak Ao - A% SV i e & is the set of all “cylinders” of §.
We define P(A|B) for A€l and B€ &, where A—A;--- A, xS0V ... and
B=—Bi---B,, by

P(A1B)—[] P¥ (4B,

and extend the definition of P(A|B) in the usual way for any fixed B¢ &b
to all sets A belonging to the least o-algebra d containing &. In this way
we obtain a conditional probability space P —[S,d, &, P(A|B)] which will
be called the Cartesian product of the conditional probability spaces &®
and denoted by §F=8§Wx...%x8"x%.... To prove that & is really a condi-
tional probability space, we have only to verify the validity of Axiom III,
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as Axioms I and II are clearly valid for &. As regards the validity of
P(AB|B)=P(A|B) (i. e. of Theorem 1) for &, it suffices to prove that

(26) P(A|BC)P(BC|C) —P(ABC|C)

for AcQ,Bed, Ced and BCE .

As both sides of (26) are measures as functions of A for fixed B and C,
it suffices to verify (26) for the case when A is a cylinder, A~ AM ...
ek AM § SOHD L.

In this case

P(A|BC)—= 11 P®(A®|(BCY®).
1
Putting
Py — [ P®((BC)®|C®),
k=1

the sequence Py is monotonically non-increasing, and thus lim Py p exists.

N-—>o
Two cases are to be distinguished. If p=0, we have P(BC|C)--0 and
thus P(ABC|C)==0 and therefore (26) is satisfied. If p >0, we have

N ®
P(4BC|C)— [ [P (A® (BCYW|CW) [[PO(BC)|CW)
1 N+1
and
P(BC|C)= [T P®((BC)M|C™),
and thus
P(AIBC)P(BC|C)— [ [ PO/(A®|(BC)?)PH((BC)®|C) ] | PO((BCY|C).
=1 N+1
and thus, as P® satisfies Axiom III, we have
PO(AD|(BCYW)PO((BCYY | C®) — PO(AB(BCYY] CW)
and thus (26) is valid.

§ 2. Examples of conditional probability spaces

2. 1. Conditional probability spaces of simple quotient type. An impor-
tant class of conditional probability spaces is obtained as follows:

Let S denote a set, & a o-algebra of subsets of S, #(A) a measure on
, B the set of those sets B € for which w«(B) is positive and finite and
put P(A|B)— H;E?B[? for AcQ,B€&®. Then [S,4, B, P(A|B)] is a condi-
tional probability space which will be called a “conditional probability space
of simple quotient-type”. We mention two special cases.
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a) Let us choose for S the n-dimensional Euclidean space E,, for A the
set of all measurable subsets of E,, let f(x,,x,...,x,) be a non-negative
measurable function on E,. For & we choose the set of those subsets B¢ d
for which

D(B) — [f(x,, o RIS B ) 5 0% 7 § s

B
is finite and positive and we suppose that B is not empty.

D(AB)

m(B)

for Acd and B€®. Clearly [S,d, ®, P(A|B)] is a conditional probability
space of simple quotient-type, provided that B is not empty.

Especially, when f(x,,X.,...,Xx,)=1, we obtain a conditional proba-
bility space, for which P(A|B)— —”;fég)
measure of the measurable set C; in this case & consists of all measurable
sets which have a positive and finite Lebesgue measure. The conditional
probability space thus obtained will be called the uniform conditional proba-
bility space in E,.

P(A|B)—

, where m(C) denotes the Lebesgue

b) Let Sdenote a finite or denumerable set, with elements o, a,, ..., a;, ...;
let p. (k=1,2,...) denote an arbitrary sequence of non-negative numbers.

Let & denote the set of all subsets of S and & the set of those subsets B

of S for which > p.— MN(B) is positive and finite. Let us suppose that &
akEIf

is not empty and put

P(A|B)— ﬂr%%)- for Acd and Be@.
Clearly [S, &, &b, P(A|B)] is a conditional probability space of simple quoti-
ent-type. Especially, if p.=1 (k—1,2,...), we obtain a conditional proba-
bility space which will be called uniform on the denumerable set S.

2. 2. Conditional probability spaces of alternative quotient-type. A general
type of conditional probability spaces is described by the following

THEOREM 14. Let S denote a set, &, a o-ring of subsets of S if yeI’
where I' is an arbitrary ordered set of “indices”, and suppose that ds <=4,

if B <7y according to the order relation of I'. Let us put & — > &.,. Let ®,
YET

denote a subset of &, and put & fé\;s&,; we suppose that &. is not empty
¢

for any v €Il and that &z and &, are disjoint for 3==7y. Let us suppose
that for any y € I' a measure u,(A) is given for A€ & (which can take also
the value - <), and that if B¢ ®,, we have 0 < u,(B) <+ ~. Let us sup-
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pose that if 3€ 1, v€1’, 3< v (according to the order relation defined in 1°)
and pg(A) <+ o, then wu,(A)=0.
Let P(A B) be defined for A€ and B € & as follows :

1 (AB)
w(B)

where v is uniquely determined by the condition B € &,. Then [S, &, &, P(A|B)]
is a conditional probability space.

P(A|B)—

Proor. Axioms [ and Il are clearly satisfied. Instead of Axiom III we
verify the validity of Axiom III” which has been shown to be equivalent to
Axiom lll. Clearly Axiom IIlI” is satisfied, because if B¢ &y and C¢€ &8, and
B c C, only three cases are possible: 2=y, @<y or 2> y. The case =1y is

: e oy Mv(BC) _ uy(B)
evident. If 8<y, P(B|C)- L) 0
we have by supposition w,(B) =0 and therefore P(B/C) = 0; and thus there
is nothing to prove.

Finally 7 < # is impossible, because from C € &y it follows 1, (C)< -+ ~
and thus wug(C)==0, what implies wu;(B)-——0 because of B<C; but this
contradicts B € #Bg. Thus Theorem 14 is proved.

The conditional probability . spaces described by Theorem 14 will be
called “conditional probability spaces of alternative quotient-type”. If B € &,
we may call ¥ the “dimension” of B, and say that the measures w, are
“dimensionally ordered”. '

We mention two special cases:

and as wz(B) < >~ and g< 7y

a) A special case of a conditional probability space of alternative
quotient-type is obtained as follows: let f(x,, x., ..., x,) denote a non-negative
Borel measurable function in S=E,; let ¢l denote the set of all measurable
subsets ‘of E,, and & the set of those measurable sets B, for which either
®(B)— | f(x,,...,x,) dx,dx,-- - dx, is finite and positive, or B is contained in a

I

k-dimensional subspace E;'' 3 "+ of E, (k=1,2,..., n—1) defined by
Xi, = C1y Xiy=Ca, +. ., Xi,_,= Ci,_;, and the integral

(27 bt [, 5 a0 fy X, < -
B

is finite and positive, where j,, /,, ..., ji denote those of the indices 1,2, ..., n

which are different from i, i,, ..., 7, and in (26) x;, =¢;, Xi,= Cay ..+, Xi,_=Cn-k

are substituted; we suppose that & is not empty; in the first case we

~ put

M(AB) .

P(AIB)=-"g 75
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it Be&® and B is contained in Ej; "~ we put
il', ’.'.'.’. L,"_" (AB)

- where @3 " is defined by (27).
b) Another special case of a conditional probability space of alternative
quotient-type is the following: let S=E, be the n-dimensional Euclidean

space, ¢ the set of all Borel measurable subsets of E,, &, the set of those
Borel measurable subsets of E,, which have finite positive k-dimensional

measure’ (1 =k =n). Let us put e‘1~—2,u, and P(A|B)—mk(i41£), if
“ my,

B € &,., where m,(B) denotes the k-d1mensnonal Lebesgue measure of the

set B. Clearly this conditional probability space is an extension of the

uniform conditional probability space mentioned in 2.1, a).

2. 3. Cavalieri spaces. Now we introduce a general concept, that of a
“Cavalieri space”. Let [S,d,,P(A|B)] be a conditional probability space
and let us make the following assumptions:

C 1. To every real number ¢ (« =1{< ) there corresponds a set C; € .
C 2. For any numbers a and & for which e =a<b=§

C(?ﬁ Z Cfe gz’

a=t<h

C3 If e=s<t<p we have C,-C:=0Q.

C4. If for A€d, A €d, we have P(A|C).= iP(A’|C:), where 4 = 0,
for every t lying in the interval [a,b) (¢ = a < b= p), it follows P(A|C!) =
= AP(A’|C)).

If C1—C4 hold, we shall say that [S,d,®, P(A|B)] is a Cavalieri
space with respect to the family of sets {Ci; e« =< 8}.

Let us mention that if instead of a family C; of the power of the con-
tinuum we consider a denumerable set {C,} satisfying properties C1, C2,
and C3, then (as it has been mentioned in the remark to Theorem 7) C 4
is always satisfied. On the other hand, Theorem 14 shows that conditional
probability spaces in general are not Cavalieri spaces with respect to a family
{C:} of the power of the continuum, satisfying C1, C2 and C 3, because if
P(C/|C)=0 for a =t< b, P(A|C) can be replaced by any other measure
for every t¢[a, b), by leaving P(A|C;) unchanged.

The following simple consequences of the definition of a Cavalieri
space may be mentioned: if [S,d, ®, P(A|B)] is a Cavalieri space with
respect to the family of sets {Ci; ¢ =t < ¢}, then

© See [26], p. 108.

6 Acta Mathematica VI/3-4
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L* If P(A|C)=—AP(A’|C) for a =t < b, we have P(A|Cl)-— AP (A’|C)).

IL If P(A|C)—4 for a =t<b, we have P(A|C))—Ai.

As a matter of fact, if P(A|C)=AP(A’|C) for a=t<b, we have
P(A|C) = 2P(A’|C) and thus by C4 P(A|C)) = AP(A’|Cl), further (if 2>0)
we have P(A|C)= 1 P(AC) and thus P(A[CD)= 1 P(A[C)), i. e
IP(A'|CH=P(A|C)= AP(A’|C.) (also for 2—0) and therefore P(A|C.)—
— AP (A’|C)).

On the other hand, II follows from I by choosing A"~ C.. The notion
of a Cavalieri space can be extended by replacing the one-parametric family
{C:} by a k-parametric family {Ci, ¢, . n;ei=t<fi;i=1,2,..., k}.

2.4. Regular spaces. Let §—[S, a, &, P(A|B)] denote a conditional
probability space with the following properties :

R 1. To every real number ¢ (¢ =t = ) there corresponds a set R; € 3.
R 2. For any pair of numbers a,b (¢« =a<b=73) R, — : R
R3. Ie=s<it<p wehave ;- R— Q. a=t< b

R4. If Acd,P(A[R:) is a Borel measurable function of ¢ for ¢ =¢<g

R 5. There exists a strictly increasing and continuous function F(#) in
(e, #) with the property that if « =a <b = we have for any A€

[PaiRyar
(28) PR =
| dF ()

In this case we shall say that § is regular with respect to the family
[Ri;e =t<@). If F(f) is absolutely continuous, we shall say that & is
absolutely regular.

Clearly if § is regular with respect to the family {R}, it is also a
Cavalieri space with respect to {R:}." As a matter of fact, C1, C2 and C3
are identical with R1, R2 and R 3, and C4 follows from R4 and R 5.

It is easy to prove by using FUBINI’s theorem, that if 0 < f(x:, X, ..., X.) < M,
the conditional probability space defined in 2.2, a) is regular with respeci to

8 This consequence of the definition of a Cavalieri space (for Z-=1) is analogous
with the well-known “principle of Cavalieri” (according to which if the areas of the
intersections of two solids with every horizontal plane are equal, the two solids have the
same volume) introduced by Bonaventura Cavaiiert (1598—1647) in 1635. This justifies the
name ‘“Cayvalieri space”.

9 J. Czipszer has shown that there exist Cavalieri spaces with respect to a family
{R,} of sets which are not regular with respect to the same family {R,}.
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the family {R;} defined as follows: R; is the set of points (x;, x,, ..., x,) for
which ;s =x<b; for ik, i=1,2,...,n, and x=¢t (@ =t< )

It is clear that if & is regular with respect to the family {R:; ¢ = t < 8},
we have
(29) lim P(A|RI'™)=P(A|R)

h>0,h>0
for almost every f in («, ) with respect to the measure generated by F(t)
on (¢, ) for any fixed A.

It is also evident that if & is regular with respect to the family
{Ri;e =t <p), we have P(R|R))=0 for e=a=t<b=24.

Let £=&(a) (a € S) be a random variable on a conditional probability
space § =[S, d, B, P(A|B)], further let us denote by R; the set of those
a ¢S for which §(a)=t (—o =t < 4 o). Let us suppose that & is regular
with respect to the family {R:}, i.e. we have for A€

| P(A|R)dF ()
(30) L o N

h

|y

for —oo < a < b < 4 oo. Evidently the conditional distribution generated by &
on the real axis is the distribution

F(b)—F(a)
F(d)—F(c)
i.e. F(x) is the (generalized) distribution function of & If (30) holds, we
shall say that § has a regular conditional distribution with the distribution
function F(x); if F(x) —x, we shall say that & has a regular uniform
distribution.

The notion of a regular space can be extended by replacing the one-
parametric family {R:} by a k-parametric family { R +, ..+ }. We consider
only the case when the following postulates are satisfied:

P@=t<blc=E<d)—P(RRY)— for c=a<b=d,

R1. To every point T=(4,%,...,8) of a k-dimensional interval
[—=(e;=t<p;i=1,2,...,k) there corresponds a set R; € 5.

R 2.  For. -any- -subinterval - J=(@t={fic bi;r 1= 152+ k)~ where
G=ars b =0 (I— 1,2, .,k we have RJ:T;RTE B,

R3. If Tl‘%——Tg, we have er'Rn — @),

R4. If Acd,P(A|Ry) is a Borel-measurable function of the variables
i) L e 25

R5. There exists a function f{f,%,...,%4) which is -positive
and integrable on [/, and if J is the interval o, =#<b; (i=1,2,...,k),

6+
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(ci=a;<b;=p; i=1,2,...,k), we have

[PAIR)f @ty ..., 1)t ... di
P(A|R)=-"

(7, s )y o G
5

k
If R1—R5 hold, and f(t,..., t[;):[lﬁ(tj)x we say that the space is abso-

lutely regular with respect to the famzly {Rr} with independent parameters.
Especially if Ry is the set defined by & =14, ..., & =1 where &, tz, B e

are random variables defined on [S, &, %, P(A4|B)] and f(t,,..., 1) = ]] 1),
7=l

the random variables &,...,&§ are independent with respect to any R,,
further & has a regular conditional distribution with the generalized density
function f;(t) (j=1,2,...,k).

2.5. Remark on Borel’s paradox. The notions of Cavalieri spaces resp.
regular spaces introduced in the preceding sections, are connected with the
well-known paradox of BoreL. (Cf. [1], p. 44.) Let S denote the surface of
the unit sphere x*-3)*4-2"=1; let us introduce spherical coordinates ¢ and
9, defined by x=cos¢sin$, y=singsin$, z=cos ¢ (0=¢<2m;
0 = 9 < =xr). Let us denote by & the set of all Borel subsets of S (i. e. sets
A for which the set of all pairs of numbers (4, ¢) for which the correspond-
ing point belongs to A, is a plane Borel set). Let us denote by & the set
of all sets B) defined by the inequalites a = ¢ =b,c =9 = d, where
O=a=b0=2mx and 0=¢ < d = 7. Let us put

J' | sin$d9dy
Bb
Ba, if “a=<b;

P(A|B. %)=

b

d
] fsm Fdddy

e. let P(A|B) for fixed B be proportional to the area of AB. Let us denote
by B, the set ¢ —1,0 =9 =« (i. e. put B,— B;{); let us choose a bounded
measure (,(B;) =1 defined on the Borel subsets of B; and normed by
!”(Bf) ::1, and put

t, d
BlAThn) gy e ),
i (B )
and let us suppose that P(B3s"|B))— F(x, t) is a continuous function of x
and f{, strictly increasing as a function of x. Clearly [S,d, B, P(A|B)]=¢&
is a conditional probability space by any choice of the measures «;(A); we

P(A(B;Y)—
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shall prove that itis a Cavalieri space with respect to the family {B;; 0 =1¢< 2:r|
if and only if

(31) wi(A) = :1?] sin ¢d 9.
AB,
This can be shown as follows: let us suppose that & is a Cavalieri space
with respect to {B;; 0 =< 2x}; let us choose a number 4 (0= 4< 1) and
define x(¢,Z2) as the number for which, if A;(4) denotes the interval 0 = 9 =
= x(t, 4), we have P(A:(2)|B;) =4, i. e. F(x(t,4),t)=4. Now it follows from
our supposition, that x(f,4) is a continuous function of ¢ and thus if
A@Q)— D Ai(2), we have A(Z) € d, further P(A(2)|B;) =4 for 0=¢<2.
0=t<2n

It follows;by Il of 2.3 that putting B. i — B., we have P(A(Z)|B))=42 for

b x(t,2)
O=a<b<2m, i.e: % 1 J sin $d$dt = A(b—a). By taking the derivative
2 0
of both sides, with respect to b, by virtue of the continuity of x(#, 2), we obtain
z(t, A)
that % J sin $d 9 =1 for every ¢ (0 = t < 2x). Thus, it follows easily that

0
(31) holds.

Our result can be stated as follows: the uniform probability distribution
on the surface of the sphere combined with arbitrary distributions on the
meridians ¢ =t gives always a conditional probability space, but this space
is a Cavalieri space with respect to the set of meridians (under suitable con-
tinuity restrictions) if and only if the density of the distribution is on every
meridian the same, and equal to Lzsin 4. In this case the conditional prob-
ability space is clearly also regular with respect to the set of meridians, as

we have
[/

o B . |P|Byat
by P LA R e ) i e dhe st el |
P(AfB,,),,,b_a‘] ( Jsin .;aw)dt .

a  ABy | dt
a

2.6. Composition of conditional probability distributions. Let us suppose
that §—&;(@) (j=1,2,...,k; a€S) are positive random variables on the
conditional probability space § =[S, &, B, P(A4|B)]. Let us denote by Ry, +, ...+,
the set of those a€ S for which &(e)=1{,...,&(@)=1% and suppose that
the space & is absolutely regular with respect to the family {(R:. .. .
O0=f< +oo; i=1,2,...,k}, with independent parameters and thus the
functions F;(7)) figuring in R5 are absolutely continuous and F/(t)--f(t)
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is almost everywhere positive (0</< + <¢). Let us suppose further that if
M is a Borel subset of the Ar-dimensional Euclidean 5|oace,(tu tk)eM/?_’

belongs to o In this case if / and | are ~-dimensional intervals,
= (™ ti<Br, /==12,...,k) and J= (fli~/e<br, i 1,2,..,/c)

where 0~ a-”" a-<b, g ™ (/=-1,2,..., k), we have, putting £= (£,,...,

y
k  Jfj(tj)dt
(32) PG~ licl)  11e%.— ]
(mat
!
Thus the random variables St are independent with respect to any /?,.

Let us calculate the conditional probability distribution of G £,-f--f-
e (-la- Let BT be the interval 0" t, <T (j= 1,2,..., k) and Az the set

defined by £k<z. Clearly, /Ir£0i4, asyl.= V  B,..,h; we have by R5
m dt;
K =T
P{AB))
mim )dt)
310
Now let us suppose that 0 * z 1<z2<T; in thiscase A .c“4 c:8, and thus
| nm )dt]
S*i<4
P(A"\BT)= » k r
[ (\mdt
» 1(0 )
and
_ _ PNIINZAr) P (AZIBT)
PUT N3 PUT i/ BT) P (JIr21BT) P(Ass o
and thus
J| szljf_j(tj)dts
K
(33) PUIL,1)==" 1 -

LIS
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It follows that if we put

t
at)y=/f(t) and g(t)—=|g (t—m)fw)du if t=0
and A
G =0~ it -t 0 (=28, k)
we have by (33)

| gu(yat
(34) P(A, |Ag) =t

Thus g,(f) is the generalized density function of &;.
If ’.fj(t)dt <+ (j=1,2,...,k), we obtain as a special case the
well-known law of composition of independent probability distributions, but

clearly some or all of the integrals ff,(t)dt may be divergent.

o

The method of Laplace transfc?rms can be applied also in the case when

J.j“,(t)aftl~ =+ oo, but A‘.e"-“’f,-(t)dt = @;(s) existsforsome s >0 (j=1,2,..., k)

and in this case we have, putting 1;:_,-(3):‘|‘e"‘"g,‘(t)dt, evidently

k
wes) = I 9:09).

If e. g. & and » are independent, regularly distributed random variables
which have the (generalized) density functions x*! resp. xf-' in (0, - o0),
where « >0 and >0, the (generalized) density function of the random
variable §--# is x*f-'. A striking property of the random variables with
density functions x« ! (0 < x < o) is the following: if & has the density
function x*! in (0, + o) and C >0 is a constant, the random variable C&
has the same density function.

The problem of composition of distributions in the general case (i.e. if
it is not supposed that the random variables considered are positive) is more intri-
cate." If & and » are independent random variables with regular joint distrib-
ution and density functions f(x), g(»), respectively, and the limit

+A

| f(x—»)g(»dy
lim = - — = h(x)
A>mo

| fex—g)dy

A

(8]

10 The theory of “distributions” of L. Scuwartz has to be applied.
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exists uniformly in X and is positive on a set of positive measure, then h(x)
is the density function of This implies for example that if the distrib-
ution of 1] is uniform on the real axis, the distribution of £+ is also
uniform, whatever the density function of t should be.

§ 3, Some applications of the notion of a conditional
probability space

In this 8§ we consider simple applications of the notions introduced in
81 and § 2 to some problems of ordinary probability theory. The random varia-
bles considered in this § are thus random variables defined on an ordinary
probability space [5, 61, P], except when it is explicitly stated that they are
defined on a conditional probability space.

3. 1. The limit of the Poisson distribution for Z->+ oo. Let & denote
a random variable which is distributed according to Poisson’s law with mean
value | > 0. The random variable  generates the probability distribution on
the set $+ of non-negative integers

pKl)= P(h= *) =7 * 0,1,...).

It follows easily from Stirling’s formula that

. Pm+iW

I
(35) m ook
for j,k = 0, +1, +2,...; thus if $ is the set of all integers, A and B are
finite subsets of 3 and B is not empty, then we have

n(AB)

imP (£:.-[/-KACB) gy

where Nn(B) denotes the number of elements of B. The result can be stated

as follows: the conditional probability distribution generated by —|[/]on 3
tends to the uniform conditional probability distribution on 3 if A—»+o0”.
3.2. The number of prime divisors. An interesting application of the

result in 3.1 to number theory is as follows: let U{ri) denote the number
of different prime divisors of the integer n; let n k(N) denote the number of
those natural numbers n ~ N for which U(ri) k. By a theorem of P. Erdés
[16] we have

(36) Cp- = (log" e 1@t~ + 0(]))
for Kk—Iloglog TVI<cC flog logN, where ¢>0 s constant, and o(l) tends

uniformly to 0 for N —<m», if ¢ is fixed. It follows that if D(1) = 0, D(2) --1
and D(n) = U(n)—[loglogn] for n= 3,4,... and Pi,(N) denotes the number
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of positive integers n *N for which D(n) = k, we have by (35) and (36)

i PAN)
im
Noyo PAN)
for /' A= 0, +1, + 2,...; thus the conditional probability distribution of the
number-theoretical function D(n) (\-"n”N ) tends for to the uni-
form conditional probability distribution on S.
3.3. The normal distribution for a—»+00. Let gabe a random variable,
normally distributed with mean value 0 and variance <f. Then we have for
Cwa<bhLlld h

le'2dx
a
P(a <b\cwfa<d)= —

\e~*dx

4
and thus

limP(6"£,,,< b\c d)= - —
4>b00 « C

i. e. the conditional probability distribution, generated by  on the real axis
J1 tends for »-*e-(- 00 to the uniform conditional probability distribution on $.

3. 4. Limiting distribution of the sum of independent random variables.
Let 8i,g j d e n o t e independent random variables; let us suppose

that the variTabIes have the same distribution with the density function f(x)
@

for which 1f2(x)dx exists.1l Let us suppose that M(§,) 0 and

+00

M(E;) = 1 xif{x)dx —D1< + oo.

- @

Let us put = li+ lgt--———-- Putting

<f(/):w|0ei>¢f(x)a'x (—™<t<-\- o),

we have j \y(t)\'dt <+ oo for « 2 (see [17]), and thus denoting by f,,(X)

the density function of we have
(37) fn(x) 2n7 (TiOTe "dt.
-00
1 These conditions can be replaced by weaker ones.
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As by supposition |¢(f)|==1 for #-=0 and lim |¢(f)|—0, it follows easily
t—>—+4
by the method of LAPLACE (see [17]) that

(38) £1(x) = D_vilﬂ“ +o(1)),

where 0o(1) >0 if n— oo, uniformly for |x| = C, where C does not depend
on n; thus for ¢c =a<b=d we have

(39) limP(a =&, < blc =L <d)= Z—a,

n—>» o —C

i. e. the conditional probability distribution generated by £, on & tends to
the uniform conditional probability distribution on & for n-—oc.

3.5. A connection between the uniform conditional probability distribution
on R, and on 9.. Let [S,d, B, P(A|B)] denote a conditional probability
field, &= &(a) (a €S) a random variable, which takes only non-negative
integer values; let us denote by A, the set of those a € S for which §(a) =k,

put B, ZA/;, and let us suppose that A, € B and B, € ® (k,n-—0,1,2,...).
k=0

Let us suppose that 4= 4(a) is an other random variable which generates
a regular uniform conditional probability distribution on the positive real
axis &K;; let us denote by C: the set of those a € S for which 4(a)=1 and

put D= Z C,; let us suppose that C, € ®, D, € &, further that B,D. € R

I=sj<a
O<x<+o, n=0,1,2,...). We suppose

t

‘ ll.'
(40) P(A:|C)= ~k", I

i.e. that & has a Poisson distribution with mean value ¢ under the hypothe-
sis that Z=1{ We shall prove that in this case the conditional probability
distribution generated by & on the set of non-negative integers J. is the
uniform distribution, i. e.

% TR e T o e
P(Ax|B)) =PE=FK|E = n)"'_nJr—l far =) e s B==0,1; 00
This can be shown as follows: We have by Theorem 12
: . P(ADv.)
" = I Y — j— —
(41) P(A:|B.) ,I-TC,P(A"'B"D") anED P(B. D)

As we have supposed that the distribution of 4 is not only uniform on &.
but also regular, we have

(42) P(A|D.)
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and thus by (41) and (42)

TP(A,.\Ct)dt

(43) P(A!||D|1) n 4 --------------- ®
n r
f'éOJ P(A, \C<)dt
As by (40)
|P(A,,\C,)dt tky dt ],
0 <

it follows from (43) that

which was to be proved.

A realisation of what has been said can be given as follows: let 5
denote the strip 0~ x< + 00)0 = J;<I| of the (X,y) plane, él the set of all
measurable subsets of S, the set of all Borel-measurable subsets of 5 with

Fg 1
positive and finite measure, and of all sets of positive linear measure lying on
some linex t(0~ t<+ °0), and let us put P(A\B) " >if mAB)>0,
where m2(B) and m2(AB) denote the plane Lebesgue measure of B and AB,

respectively, and put P(A\B) -= , if B is lying on a line & t, where
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m~B) denotes the linear Lebesgue measure of B. Define « as follows: «
-- K(x,y) X, and define §= §(*,y) as follows: for a fixed value of /1 let us
K¥oe-x Nx Je~
have §=0 for O "y <e~X, and S=Ar for o » (k 1,2,..).
=0 T r* y<Wn 7
The sets A- are shown on Fig. 1
Clearly each set A (A= 0,1,...) has the area 1. Our result can be
stated in the following suggestive form : if § has the Poisson distribution
with mean value t under the hypothesis k = t and the conditional distribution
of K is regular and uniform on <& £ is uniformly distributed on $+. Clearly

the result obtained is a consequence of the following remarkable property of
the Poisson distribution: each member ”ﬁ }of the Poisson distribution is as
a function of kK for fixed K a probability density function in the interval
(0 si k< + oc).

3. 6. Remarks on the method of Bayes. Let§ [5, 6t, B P(A B)\ denote
a conditional probability space. Let S= ?(u)and /= T7.(6) (a£S) be random
variables on § and suppose that § is regular with respect to the family of
sets defined by £ Xx,;ry- y for —oc<x< + o00; —oc<y<-f-oc and

let us suppose that Rfy = A R, where —m<c<(/<T»,
4 0 x<fd,y~Y"' 6
—oc< 7< 1<+ oc further if —oo Cc<dWw+ 00 and —oc<y < n< + oc,

we have

dA
I 1P(A R.)h(x,y)dxdy
(44) PA#n = 7 , ; ,
I 1h(x,y)dxdy
where h(x,y) is positive and integrable on any finite rectangle of the (x,y)

plane.
Let us suppose further that Rff £0B if c<d and Rff£dB if y <0,
further that we have

d
IP(A\R,,)h(x, y)dx
(45) P(ARLf) = A (c<d)
Ih(x, y)dx
and R
IP (AR ry)h{x, y)dy
(46) p(A Rt) (7 < 6).

th(x, y)dy
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In this case clearly for any fixed y, i(x, y) is, as a function of x, the condi-
tional density function of & under hypothesis =y and, for any fixed
x, h(x,y) is, as a function of y, the conditional density function of #; under
the hypothesis §==x. As a matter of fact, choosing y=dJ-=—y we have for
c=a<b=d from (45)

b
‘ h(x, y)dx

(47) P@=i<be=E<dn=y)="
| h(x, yyax

and choosing « - 3-—-x we have for y =« <# =0 from (44)
¢
| nex, )y
(48) Ple=n<Bly=n<d=x)=-=;

[ hx, yyay

It should be mentioned that the set R, defined by &=x is not sup-
posed to belong to &, and thus /(x, y) is not an ordinary conditional den-
sity function, but only a generalized conditional density function, in the sense
defined in 1.6. By other words, n(x,y) is the generalized density function
of the random variable 7 on the subspace (R.,d., ., P.) of (S, A, B,P)
where ¢, is the set of all sets of the form AB, with A €d, &B. the set of
all sets B¢ & which are subsets of R, and P.(A|B) is defined by

P.(A|B)— P(A|B)

for Acd. and B€ ®B,. If R.€, clearly h(x,y) is up to a constant factor
the ordinary conditional density function of 7 under the condition R, and

in this case f(x) ::J‘h(x, y)dy is finite.

If f(x)= | h(x,y)dy is finite for every x, then f(x) is the generalized

density function of & As a matter of fact, we have by Theorem 12

b
| f(x)ax
Pa@=&i<bc=st<d)=IlimP@=E<blc=Ei<d, y=n<d)=5——.
e | F(xyax
Putting
h(x,
49) gyl —22d)

besides /(x, y), g(y|x) is the normed (i.e. ordinary) conditional density func-
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tion of r] under condition ?= x. Similarly, if we denote by f{x\y) the gener-
alized conditional density function of £ under the condition L =Yy, we may
put /(x]y) = h(x,y) and thus we have
(50) fxly) g (yWx)f(x).

+®
If 1h(x,y)dx is also finite,

Noo)

L
I g(yWX)f(x)dx

is the normed (ordinary) conditional density function of 2 under the hypo-
thesis T=y.

The result obtained in this § is a generalization of the well-known
m%hod of Bay+(€£' The generalization consists in the possibility that
+
I f(x)dx and 1f(x\y)dx may be divergent.

Clearly if h(x,y) vanishes in some points of the plane, all what we

have said remains valid, only we may use as conditions only such sets
s

c~ I <d, - WT<§ for which |y|h(x,y)dxdy>0.
<

3. 7. Conditional ergodicity of Markov chains. Let us consider a tempo-

rally homogeneous Markov chain with a denumerable set of possible states;
let us denote the states by the numbers 0, +1, +2,... and put 2,= K if
the system is in state kK at time n (n 0, 1,2,...). Let us denote by Pjk the
probability of passing from state | to state K in one step, i.e. Plk=

P(2,Hl= Ai>»—/)» We introduce the following notion: if there exists
a sequence Pk of positive numbers, with the property that, putting
P(2,, A y)= Afc,Jwe have

. Pi
52 lim .
(52) i Pjk P
for all h,i,j,k 0, +1, -r2,..., we shall say that the Markov chain is con-
ditionally ergodic. If the chain is ergodic in the usual sense (see [18]), i.e. if
(53) lim P& = P.>0 (K= 0, £ 1, £2, ..),
then (52) holds and we have Pk 1

Ic= -

It is possible, however, that (52) holds without (53) taking place;

especially, this is the case if (52) holds and Pk= +o0°. If a Markov
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chain is conditionally ergodic, this implies that the conditional probability
distribution generated by &, on the set of integers converges to the con-
2P

ditional probability distribution defined by P(A|B)—"*S2 _ where A and B

2, P

kEB
are subsets of the set of integers and B is finite and not empty.

Let us suppose that the Markov chain considered is irreducible and all
its states are recurrent null states (see [18]) in which case lim P§)—0. If

n-—> M

the numbers P, in (52) satisfy the system of equations

)
(54) Pi= 2 PP k=0, +1,+2,..)),
J—-©
we say that the conditional limiting distribution defined by the numbers P,
is a stationary distribution. If the conditional limiting distribution exists, it is
always a stationary distribution, i.e. (52) implies (54). As a matter of fact,

('D‘
as we have supposed that all states are recurrent, the series > Py (k=0,41,...)
1

=

diverges, and thus, it follows from (52) that

n
L y
> 1»: )

kk
r=1 e Pk

(55) B g
2. P%
=1

But it has been proved by C. DERMAN [19] that if all states of an irreducible
chain are recurrent null states, the only solution P.=V; of the system of
equations (54) with V,— 1 is given by the limits in (55) which always exist.
The existence of the limits (52) has been proved by P. ERDOS and
K. L. CHUNG [20] in the special case. of additive Markov chains. Let us
consider an additive Markov chain, i.e. put & =§& 40,4+ 0,4+ --- 4 J, where
the d,’s are independent equidistributed random variables which take only
integer values, further suppose that the following conditions are satisfied :
Let us put P(d.=r=W, (r=0, +1, +2,...). We suppose that the
greatest common divisor of the differences r—s where r and s are such
integers, for which W, >0 and W,>0, is equal to 1, further that

D' |rlW, <+ and > rW,—0. It has been shown by K. L. CHUNG

and P. ErRDOs [20] that in this case the chain is (in our terminology) con-
ditionally ergodic, and the limiting conditional distribution is the uniform
distribution over the set of all integers, i.e. P,=1. If the variance

4+

D*= > W, of the variables 0 exists, this follows easily by LAPLACE's

r=-m
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method; as a matter of fact in this case, putting <p(t) NI Wreirt, we have

H1

(56)
and thus, by Laplace’s method,
<57 *ik L

) ! D]f2;tn
what implies ,

o p(3

(58) lim - =1

If D= +o0o0, the proof is more intricate.
The existence of the limits (52) in the general case is still open, as has
been pointed out by Chung [21].

3. 8. On a paradox of the renewal theory. Renewal theory (see [22])
deals with stochastic processes of the following type (“recurrent pro-
cesses”): events occur at the moments 0< Ty < r2< see < ¢, < ses Where
the differences r,,— = are independent positive random variables
with the same distribution function F(x)— P(i,, <jd; for any f>0
let r,() denote the moment when the first event after time t occurs,
i. e. we suppose =t<t,( and put Xx9(t) = r,0)—t; 3(t) is the
waiting time at {, i.e. the time somebody arriving at time t has to wait
until the next event occurs. Let us now suppose that somebody arrives at
random in the time interval (0, T) at time r, where T is uniformly distributed
in (0, T) and let us put 4(T)= &(T). it has been proved by W. Feller

cD

[22] that if m= | xdF(x) (the mean value of the time interval between con-
0

secutive events) exists, and F(x) is not a lattice distribution function, the
distribution of 3(T) tends for T—*» to the limiting distribution

X

(59) (=)= lim P(N(7)<x) = Ed| (1—F(u )du.

It has been shown by L Takacs [23] that if we consider 6(T) instead of
#(T), the limiting distribution exists for any F(x) with finite mean value,
and is the same as in the case of ~(T), i.e. we have

X

(60) H(x) lim P(d(T)<x) 1J3(1-F(u))du.
T-> co O
It has been pointed out by L. Takacs [23] that the fact that the mean value
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of the distribution function H(x) is —”1-2:;70—— where o* denotes the variance

of &, i. e. 0’= I (x—m)*dF(x), implies that if o= oo, the mean value

of o(T) tends to -+ oo in spite of the fact that o(7) is the part of some
time interval &, having the finite mean value m.

The situation is still more paradox, if m= oo; it can be shown (see [9])
that in this case

(61) lim P(3(T) < x)=0

for all finite x; nevertheless, if putting G(x)=‘|‘(l—F(t)) dt the condition
(62) lim iGGT)(C;’)C)—ZO
is satisfied, there exists the limit of the conditional distribution of o(7), and
we have

> : s : G(x)
63 Iim P(0(T) < x|0(T) < y) ———~——
(63) Pt ((T) < x| ( )\y) G(y)

3.9. Deduction of Maxwell’s law of velocity distribution. Let us
consider an ideal gas consisting of N particles with equal masses m, let
Si, 4, - denote the X, y,z-component of the velocity of the k-th particle;
we suppose that &, u., & (k=1,2,..., N) are random variables defined on
a conditional probability space [S,d, &, P(A|B)]. Let us suppose that the
conditional probability distribution generated by the variables &, n, &
(k=1,2,...,N) in the 3N-dimensional Euclidean space is uniform, further
that the space is regular with respect to the sets defined by & — xi, m. =,
bh=2r (—oo <X <+ 00, —00< P <+o00,—0 << < Foco; k=1, 2,..., N),

further that the sets > Ri, .. . belong to &, where R, .. . Iis
e ' 3

the set defined by & =t,m=b, Gi=8, &=1t,...,5h=056y and M is a
Borel subset of the 3/N-dimensional Euclidean space, further that the space
is also regular with respect to the sets defined by {Eﬁ—i— 11}‘.'.+;i:zk
(k=1,2,...,N; 0<z: <+ o). All these conditions are satisfied, if S is
the 3 N-dimensional Euclidean space, & the set of all Borel subsets of S,
& the set of all Borel subsets of S which have positive and finite k-dimen-
3N
sional measure (k= 1, 2,...,3N), &, the set of all points of Sand B— > &,

k=0

and we put P(A|B)=1 if Be&, and BS A, P(A|B)—0 if B¢,
and BCA, further P(AIB)=""U5) & peg.  whee m(C) is
mk(B)
the k-dimensional measure of C (k=1,2,...,3N), further if denoting

for O<x=y<+ oo,

7 Acta Mathematica VI/3—4
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by P—=(x,»,2,...,Xy,Jx,2v) a point of S, we put &(P)—x
m(P)=p, ..., Ex(P)=2zx.

It follows that the kinetic energy s,i:—;—m(ﬁ}f—l—nf-{—c}‘:) of the k-th par-
ticle has the density function [/x for 0<x <4 oo and thus by 2.6 that the

N
kinetic energy &=— ZP,,- of the whole gas has the density function gy(x)
=1

defined by the recursion

e®—=Vx, &®=|g.@x—y)ydy for x=0.

0

Thus
(x =0),

3N .
and therefore, as any constant factor is irrelevant, we may take x* (x -0)
for the density function of s.

Similarly, the conditional density function of & under condition & ¢
3N-5

is clearly (x—¢#) 2 for x =t. It can be easily verified that the conditions
for applying formula (48) are fulfilled, and thus we obtain that the conditional
density function of & with respect to the condition ¢ —F is

3N-5

EIE (‘ P g) L

%VS

FE) - :
I(E —x) * Vxdx (1__) dex

(I

3N

If N is a large number, we have, putting p’——ﬁ,

3N-5

; X 2 e
(;l E) e and thus

approximately

3

(x| E) ~ l‘i e

Thus the conditional density function g(x|E) = mxf( ) of the velocity

e V;,.._;_ n;+ 2 of the k-th particle under condition «— E is approximately

g(xlE)~] Sl
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where o :-—;. As it is known that 5 :uikTwhere T denotes the absol-
Vms N2

ute temperature of the gas and k the constant of Boltzmann, we have

e R ‘KT ;i 7
B= T and o= V — Thus finally we obtain

(64) ; g(x|E)~ }/ % ‘_% e BT TV DR
i. e. Maxwell’s law of velocity distribution.

Summarising, we may state our result as follows: if the components of
the velocity of each of N particles are independent of each other and of
the components of the velocity of the other particles, further if all these ran-
dom variables have regular uniform (a priori) distributions on the whole real
axis, then the (a posteriori) distribution of the velocity of each particle under
the condition that the kinetic energy of the whole system is given, is approxi-
mately, if N is large, the Maxwell distribution (64).

The proof given above shows clearly that the law of Maxwell is an
approximation, which is valid only for a large number of particles. For a
small number N we obtain the exact formula

15 /(?’21\’) 2 mx* i

lm, T 3N_3) "'( ToSE
s

(65) ox(x|E) V? 2

It can also be shown by the same way that the conditional density function
of each of the variables &, 7, & under the condition & = E is exactly

(66) h(x E)

where | Thus under the condition &-=E all these variables are
| m

approximately normally distributed. This is the reason why the velocities have

a Maxwell distribution, as the Maxwell distribution can be defined as the

distribution of a variable |/& 27| C* where & #,  are independent and nor-

mally distributed random variables with mean value O and variance o®.

T*
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8 4. Conditional laws of large numbers

Conditional probability is in the same relation to conditional relative
frequency as ordinary probability to ordinary relative frequency. This relation,
which is well known as an empirical fact from everyday experience, is de-
scribed mathematically by the laws of large numbers.

The laws of large numbers concerning the behaviour in the limit of the
conditional relative frequency (and generalizations concerning conditional
means of observations) shall be called “conditional laws of large numbers”. These
laws will be investigated in this §. Before going into details it should be empha-
sized that the conditional probability P(J1|A) is considered in this paper as
an objective characteristic of the random event A, under an objective condi-
tion B, and its value as that number in the near neighbourhood of which

the corresponding conditional relative frequency ij'l will be found in general,

if a sufficiently great number n of observations is made, where kfi de-
notes the number of those under the n observations with respect to which
the condition B has been realised, and kAU the number of those observations
which gave such results that, besides the condition B being realised, the
event A occurred also, and it is supposed that kB> 0.

4. 1. A strong law of large numbers. In this section we consider ran-
dom variables defined on an ordinary probability space. We shall need the
following

Lemma 1. Let ii, . be mutually independent random variables
with mean values M(£,)= M, sr 0 and finite variances DI  D’(,). Let us
n

put £,= %_'ilfc and A,= M(E,)= Mi+ M+ -—-- M,,, and suppose that the
following conditions are fulfilled:
a) rI}i>(nJ?)An= + 00y
Di,
0 2, K,
[t follows that
(67) p(limjL=1] 1

Proof. Lemma 1 (see e.g. [27], p. 238) is a consequence of the

well-known theorem of Kolmogorov, according to which if ij2 e o pn,eee
are mutually independent random variables and M(?/)= 0 (A= 1,2,...), then

co

rik converges with probability 1, provided that the series con_
|



ON A NEW AXIOMATIC THEORY OF PROBABILITY 327

verges. Lemma 1 can be proved also directly by applying the following
inequality which has been found recently by ]. HAJEk (see [12]):

LEmMMA 2. Let 0y, 0oy . .., M, ... denote mutually independent random vari-
ables with mean values M(1) —O0 and variances D*(y) — D (k=1,2,. )
Let ¢, denote a decreasing sequence of positive numbers, ¢, = c¢..1 (k= n); then we
have for any >0

1 3 . n
(68) P(maxci|n, +n+ -+ | = &) = ~l en 2 Dt D e 07
n=~k . k=1 k=n+1

Applying Lemma 2, Lemma 1 can be proved as follows: it follows from (68),

applied for 2, —&—M;, ¢ = that
I

A

(©9) P(sup 1|z e) = L’

As a) and b) clearly imply that

(10) = s—=0,

¥-»

it follows from (69) that

(71) limP(sup 1*:.&)7—;0 for any > 0.

n-> \ n=k

and (71) is evidently equivalent to (67).
4.2. A conditional law of large numbers.

THEOREM 15. Let [S,d, B, P(A|B)] denote a conditional probability
space and §&,,§,,...,5,, ... random variables on S which are mutually inde-
pendent with respect to C € ®. Let & denote the interval a =x < b (a<b) of
the real axis. Let B, denote the set of those a € S for which §, (a) €Jd, and
suppose that B,< C and B, € ®B; let us suppose that M(E,|B.) >0 and
D, |B.) = D;, exists (n—=1,2,...). Let us put P(B,|C)=p. (md cuppmc
that the following conditions are saltsfzed

(72) Zp,w—ﬁLx and Z M=} oo ;
n=1 =1
‘,\;.sz.-Ml.
(73) fim e = A



328 g A. RENYI

exists ;
o S PDi+(A—pIM) _
2 R 2 i, e
_A;P_,‘Mi)
Then we have | I
¢ ew‘ > |
I 5’ ;
75 P|lim 55— =M C|=1.
(5) o ol 8

PRrROOF. Let us define the random variable ¢, as follows: & — 1 if & ¢J
and & =0 if & & J; let us put & = &:&. Then we have
M@E[C)=pM, and M(E|C)— pu(D}+M})
and thus
D*(E|C) — pu(Di-+ (1—pi) M),
Applying Lemma 1 to the sequence & of random variables on C, it follows
that ;

(76) P|lim = — —1({C|==1.

n

in—> 00 —
; ]2,‘ pi M, ‘

On the other hand, let us apply Lemma 1 to the sequence of random vari-
ables & on C. As

M(&|C)—p. and D*@&|C)=p.(1—py),
it follows that

(77) P| lim"" 1{C|=1.
" )UJZPL |

k=il

Combining (76), (77) and condition b) of the theorem, and taking into
account that

D E=2%& and > 1=g,
e k=1
1=k=n 1=k=n
(75) follows. Thus Theorem 15 is proved.
The statement of Theorem 15 can be expressed in words as follows:
the conditional empirical mean value of those of the variables &, &, ..., &,
which take on values lying in the interval J, converges with conditional prob-

ability 1 with respect to C to the limit M defined by (73). In the special
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case, when M,— M >0 and D,= D >0 do not depend on n, the conditions

(72)—(74) reduce to the single condition that the series > p. diverges.

n=:1

Especially let us suppose further that & is the closed interval [0, 1] and the
only values in J which the variables &, can take on B, are the values 0 and
1 (of course &, can take also other values outside ). Suppose that A, is the
set on which & =1, and p—P(A.|B,) >0 does not depend on n.

In this case the events A, and B, can be interpreted as the events
consisting in the realisation of some events A and B, respectively, at the n-th
experiment in a sequence of independent experiments, and we may put
p- P(AIB); in this case

e
i SK o WA |
€S e
: e fp=11=k=n
fu(A|B)=— P N7
1 ‘ 2 1
kEY §p=00r L1=k=n

is the conditional relative frequency of the event A with respect to the event
B in course of the first n observations.” The statement of Theorem 15 gives
for this special case

(18) P(lim /,(A|B)— P(A|B)|C) —1,

it P(B C)>0, i.e. the conditional relative frequency of the event A with res-
pect to the event B converges with the conditional probability 1 (with respect
to C) to the conditional probability of A with respect to B.

4. 3. Generalization of the theorem of Borel on normal decimals. The
theorem of BOREL [25] states that if f,(k;x) denotes the relative frequency
of the number & between the first n digits of the decimal expansion of the
real number x (0 = x < 1), we have

: 1
(79) lim f,.(k; x) =+ (k=019 .9

n->w 10
for almost every x; similarly all possible digits occur in the limit with equal
frequency in the expansion, in the number system with any basis ¢ of almost
all real numbers.

We consider a more general representation of real numbers; namely
expansion of real numbers into Cantor’s series. Let ¢, (n—=1,2,...) denote
an arbitrary sequence of integers, ¢, = 2. It is easy to prove (see [24]) that

2 This interpretation suggests itself in the following special case: let us form the
Cartesian product of a denumerable sequence of isomorphic conditional probability spaces

1 2 n
[S, 1, B, P] ard denote by A, resp. B, the sets defined by S Js-- % A % Sx... resp.
1 2 "
S#lS % -« B#Sx-.. (see section 1.11).
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any real number x (0 = x <1) can be represented in the form

o &0
x=—
200

where ¢,(x) may take on the values O, 1,...,q9.—1; the digits &,(x) are

uniquely determined except for those rational numbers x which can be writ-
N

ten in the form x — ZL (¢x(x) >0), where besides this finite re-

n=1 ql (]2 g qn
presentation the alternative infinite representation

n=I1 (11(]2...(]" qlqg. .-q,\' n—N+1 qlqg. . .q”
is also possible. We shall prove that in the case ¢, — 4 o, when all non-
negative integers are possible ‘“digits”, all these digits occur in the limit with

SIRL S TR N R )

the same (conditional) relative frequency, provided that ZL diverges. This

n—1Yn
is contained in the following theorem which is a consequence of Theorem 15.
THEOREM 16. Let the numbers q. satisfy the following conditions :
a) g, is an integer, g. =2 for n=1,12,...,
b) g. = N for n = n,,
C) >‘L =+ oo,

d—

n—1 qu
Let us consider the expansion of real numbers x (0 = x < 1) into Cantor’s
series with quotients q., i.e. the expansion

(80) x= 3 B0
n—I1 Q1q2 ceen
where &,(x) is one of the numbers O, 1,...,q,—1.

Let F.{k;x) denote how many of the “digits’ &(x), &(X),...,&.(x) are
equal to k. Then for almost every x in (0,1) we have

(81) lim i((/?—xi))zl for 0=j=k=N—I.

REMARK 1. If g, — oo, condition b) is fulfilled for every N, and thus
(81) holds for any pair of non-negative integers j and k, i. e. all digits
0,1,2,... occur in the limit asympftotically with the same frequency, in the
Cantor expansion of almost all real numbers. This is the case, for instance,
if g,—n-1, i. e. if we consider the expansion

_ N &)
(82) = -

B

where &.(x) can-have the values O, 1,..., k—1.
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REMARK 2. It follows from (81) that for almost all x

g F)[(k;X) o 1 -
83)  lim — i for k=0, 1 =l and =12y . Nl

M—>o ;FJ[(];X)

This is an other way of expressing that the frequencies of all digits
0,1,..., N—1 are in the limit equal to another.
If g,— o, we have

(84) i f‘igﬁ—;?‘L SR T

M—>w
for almost all x. This can be shown to be a consequence of Lemma 1 (see
(86) below).

REMARK 3. Theorem 16 clearly reduces to the theorem of Borel if
da— 10810 n=—125:0.%

PrROOF. Theorem 16 is a special case of Theorem 15, but it is more
simple to prove it directly by means of Lemma 1 of section 4.1. Let us
consider the ordinary probability space [S, d, P(A)] which we obtain if we
choose for S the interval (0, 1), for & the set of all measurable subsets of S
and put P(A)=m(A) where m(A) is the Lebesgue measure of the set A. Let
us define the random variables &.,.=—=&u.(x) O=x<1) for 0=k =n—1
(n=1,2,...) as follows:

(ELNSit en(oe)—1

(85) Sur () = |0 otherwise.
The variables &,. (n=1,2,...) are clearly mutually ipdependent, further
we have M,.— M(E.(x)) ql and D} D*En(x)) q‘- (1 = q‘ | for . =4,

i. e. for n = n, if k < N; the values of M,;. resp. D,, for n < n, are irrelevant.
Condition a) of Lemma 1 follows from supposition b) of Theorem 16, and
condition b) of Lemma 1 follows also from supposition b) of Theorem 16.
Thus we have

(86) Pllim>=——1]|=1.

As (86) holds for all k=0,1,..., N—1 and > &, — Fxu(k;x) the assertion

n=1
of Theorem 16 follows.
The results of this section (as well as those of section 3.2) show that
there exist sequences X, X, ..., X,, consisting of the numbers O, 1,2, ..., in

which the relative frequency F,,,‘l(k) (where F,(k) denotes how many of the
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numbers x,, x,, ..., x, are equal to k) of every number k=0, 1,... tends to
O for n—oc, but the conditional relative frequencies converge to definite
limits, i. e.

i =) (h=0,1,...,k; k=1,2;..)

2R 2P

=2}

where P, >0 for k—0,1,... and > P.= - ~. Such sequences may be

k=0
considered as mathematical models of sequences of observations on a random
variable & defined on a conditional probability field, and having the conditional
distribution
By
-
55

C— J
g=0

PE=h|0=E= k)= (=l s k=12,

(Received 25 July 1955)
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HOBOE AKCMOMATHUYECKOE MOCTPOEHUE TEOPUU BEPOSITHOCTEM
A. Peubu (Bypanewr)

(Pezwme)

Padora copepykuT HOBOE akKCHOMATHYECKOe MOCTPOCHHE TEOPHH BEPOSITHOCTEN ; OCHOB-
HOE MOHSITHE B 9TOM HOBOM Teopuu, siBagwouiercs o6o6uennem Teopun A. H. Ko amo-
r0opoBa, — MOHATHE yCIOBHOU BepositHocTH. [loTpeGHocTh B pazpaboTke HOBON TEOpUM
Obina BbI3BaHa TeM, 4TO B Teopun A. H. KoM or o p oBa HeorpannyeHHbIE Mephl MCKII0-
Y€Hbl, TAK, HAMPUMEDP, HC MMEET CMBIC/IA TOBOPUTb O PABHOMEPHOM pacnpeacIeHuu, BO BCEM
N-MEPHOM EeBKJINJ0BOM MNPOCTPAHCTBE, B TO BPeMs, Kak NPHIOXNEHHS] TEOPHH BEPOSITHOCTH
K (pusmke, K MHTErpaJbHON reOMETPUH, TEOPHH YNCEa M T. /. TPEGYIOT PAaCCMOTPEHHS TaAKHX
HEe HOPMHUPYEMBbIX pacnpenenesuit. BoiOupasi B kaueCTBe OCHOBHOTO HOHSITHSI TEOPHH BEPOSIT-
HOCTEH TMOHSITHE YCIOBHOH BEPOSITHOCTH, YNOMSIHYTHBIM HE HOPMHPYEMBIM pacnpeAeieHnsim
MOYKHO JaTh TOYHBIM MaremaTnyeckuii cmuici. Homasi Teopus aenaet BOSMOKHBIM 06001eHne
LEJIOr0 psAfa TEOPEM TEOPHH BEPOSITHOCTEH M HOBbIE NPHIIOKEHHsi Teopuu ; paboTa 3aHuma-
ercsi pa3pabOTKON HOBOW TEOPHM M 3HAKOMUT C HEKOTOPBIMM €€ THINHYHBIMH TPUIONKEHHAMHU.
Teopust HCXOAUT U3 CACAYIOUMX MPEATOIOKEHHI H AKCHOM :

Ilycts S ectb m0G0€ MHOXKECTBO, KOTOpPOE MbI OylAeM Has3biBaTh MPOCTPAHCTBOM
coOpiTHil ; nyeTh € ecTh g-aarebpa MOAMHOMKECTB MPOCTpaHcTEa S, HaemeHThl € Mbl Gyaem



334 A. RENYI

Ha3biBaTh COOBLITUSIMM ; MYCTb &R €CTb HEKOTOPOEe He MyCTOe MOAMHOMKECTBO OT ¢ (SR ecTh
MHOYKECTBO BCEX A0MyCTUMBIX ycioBun), a P(A|B) dyukuus MHOMKECTB OT [ABYX TNepemeH-
HbIX, onpenesnensas, ecm A€Q u BE€ §; uncno P(A|B) Ml Oyaem HaseBaTh  YCIOBHOH
BEPOSATHOCTBIO  COObITHSI A oTHOCHTenLHO ycaoBusi B. [lpeanonoskum, 4HTO BBIMOJHSOTCA
caenyomme 3 akCHOMBI :

Axcuoma l. P(A|B)=0,ectut A€EQ n BER, n P(B|B)=1, ecin BE §.

Axcuoma Il. Ecim B € & ¢uxcuponan, P(A|B) ectb mepa na o-anreope (.

Axcuoma lll. Ecim A€9,B€G,CER n BCESP, 10

P(A/BC)P(B|C)-P(AB|C).

Ecan axcuompr I—IIl BoinosnenHsl, TO COBOKYNHOCTH MHOXecTBa S, o-aaredpui ¢
cHcTeMbl MHOKECTB $p n (hyHkuun MHOxkecTB P (A|B) HasoBeM NpOCTPAHCTBOM YCIOBHO#
BEPOsiTHOCTH 1 0GosHaunm uepes [S, &, B, Pl

OueupHo, uTo ecam B (mkcuposanso, 10 S, ¢ u P(A|B) ob6pasyior 1no Teopun
A.H. Koamoroposa npocrpaucrso sepositnoctn. [losTomy npocrpanctso ycaosuoil
BEPOSITHOCTH $IBJISIETCS HH YeM MHBIM, KAK COBOKYMHOCTbIO OObIKHOBEHHbIX MPOCTPAHCTB BEPOSIT~
HOCTH, CBA3aHHBIX akcnomon III.

B kauecTre HeNmOCPEACTBEHHOrO CIEACTBUSI akCHOM Nojyvaercst paseHcTo P (A|B)
P(AB|B), a nostomy P(A|B) = 1. Pazpen 1.4 3annMmaercsl JanbHeNIINMH NPOCTHIMU CeA-
CTBUSIMH akCHOM. B paspene 1.5 uccaenyercss npm Kaknx yCJIOBHSX YCJIOBHAS BEPOSITHOCTH

Q(AB <
P(A|B) moxer Owith npepacrasiena B sune P(A|B) Q((BS) , rie Q mepa (He 00s13aTENBHO
orpannyennasi) na o-aareope ¢ u Q(B) >0 pasn BE §. Hcuepnbipawomee nCCICAOBaHne
HTOr0 BOMPOCA, a TaKKe caeayrouero 6osee oOLero Bonpoca: B KaKOM Ciayyae yCJIOBHast
s(AB
sepositHocts P (A|B) moxker Obith npexacrasneHa s suae P(A|B) - 96%3))— , rae mepa Qs
3
BLIOMPAETCS] U3 HEKOTOPOrO0 MHOMECTBA Mep B 3aBuCHMOCTH OT B, MOKHO Haiitm B padorte
A. Yacapa [13]. B pasgene 1.6 uccreayrorTcsi CaydaiiHble BeJIHYMHBI, ONpEAEIeHHbIE 1
NPOCTPAHCTBE YCJIOBHOI BEPOSITHOCTH, 1 COAEPIKUT ONpejeeHne ux (DYHKIIN pacrnpeieaeHns
i (DyHKLIMH TUJIOTHOCTH.

DyHrunio £==5(s) (s €S) Mbl Ha3bIBAEM CAy4YailHOM BEIMYMHON, €Cu OHAa M3Mepuma
OTHOCHTENLHO ¢]. MOHOTOHHO HeYOBIBAIOILIYI0 U C/eBa HenpepbiBHYIO (yukinuio F(x) Mbr
HaspiBaeM (0000LIeHHOIT) (PyHKImell pacnpeaesenns Cay4ailHoil BeJNUnHbI & eCIn MHOYKECTRO,
rae a = £(s) < b, mpunapaexxkut P, npeanonaras, uro F(b)—F(a) >0, n B aTom ciyuae

s
F(d)—F(c)

F(b)—F(a)’

dyurung pacnpefeneHust F(x) He onpeneneHa OJHO3ZHAYHO, MOTOMY 4YTO BMeCTe C
F(x) onpepenennto yposaersopsier u ZF(x) - pu, rae 2 >0 n @ BEUWECTBEHHO ; (QyHKIMs
pacnpenienenust F(X) MOKeT MpUHUMATH THOOBIE BELIECTBEHHBbIE (3HAYNT W OTPHLATEILHBIE)
snavenns. Ecim F(x) a6comrotHo HenpepsiBHA, (yHrumio f(x)=— F’(x) nasosem 00001IEHHOI
(hyHKUEell NIOTHOCTH CAyvailHONl BeanmuuHbl &; (DYHKUMSI TJIOTHOCTH ONpejeneHa nmib ¢

Plest=dla=s ecma=cLd<hb.

+o

TOYHOCTHIK) /10 MOJOKHTEILHOIO MOCTOSHHOFO COMHOMKHTEIS I | f(x)dx uwe obGsizaTenbHO
""(D

cyuwecryer. Ecan, B yactHoctH, f(x)=1(—>0 <~ x < -~ <), TO MBI T'OBOPHM, YTO CAy4ail-

Hasl BeJu4YMHa § PABHOMEPHO pachpejeseHa Ha Bceu pewecTseHHoi ocu. Paspen 1.7 sanuma-
ercst opHou nepedopmyaunporroit akcuomer lIl. B pasmene 1.8 paccmarpupaercsi paciumpenue
NPOCTPAHCTB  YCJAOBHOH BeposiTHOCTH, B 1.9 — HEMPEPHIBHOCTH YCJIOBHOW  BEPOSATHOCTH,
B 1. 10 — onpeaeneHne npomsBeieHns NPOCTPAHCTE YCIORHOM BepositHocTi. Pasapeast 2.1 u
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2.2 CoflepXKaT npyMepbl MOCTPOEeHUs! MPOCTPaHCTB YCMOBHOM BEPOSITHOCTY, B pasfenax 2.3
N 2.4 V3y4atoTCa MPOCTPaHCTBa YC/I0BHON BEPOSTHOCTW, 0ON13AAt0LLIME HEKOTOPLIMI AOMO/HM-
Te/lbHbIMA  CBOWMCTBaMM: TaK Ha3blBaeMble MpocTpaHcTBa Kaganbepy U perynspHbie npo-
cTpaHcTBa. Pasfen 2.5 paccvartpvBaeT napafokc bopensa, 2.6 — pacripefenieHue Cymvbl
HE3aBUCUMbIX C/TyYaliHbIX BE/MYMH 1 KOMMO3VLMIO BBEAEHHBIX B pasdene 1.6 0606LUEHHbIX
CyHKUMIA pacripenenieHnii. B 8 3 Ha HECKOMbKMX MpUMepax MOKasbIBaeTCsl, KaK HOBasi Teopus
MPUBOIMT K OTKPLITUHO HEKOTOPbIX HOBbIX COOTHOLLEHMIA, KOTOPbIE B paMKaxX 06bIMHOW Teopun
BEPOSITHOCTU He MOryT Obimb CpopMynMpoBaHHbI. Pasgen 3.6 coaepxuT 0600LLeHME MeToda
Baiic a Pazgen 3.7 comemKWT OMpeaeneHve YCMIOBHOM 3ProaMyHOCT OTHOCUTENBHO  LiEMevt
Mapkosa. B pasgene 3.8 paccMatpyBaeTcs OauH MapafoKe Teopun BO30OHOBMEHWS. Pasgen
3.9 cofepUT MpOCTOE M Mcxogsllee w3 60nee  MPOCTbIX YeM 0B6bMHO — Mpeanoso-
MEHWIA [10Ka3aTebCTBO 3aKoHa MakcBe/na 0 pacripefenieHun CKOPOCTeR, UCMoNb3ys [aHHOoe
B pasaene 3. 6 0606LLeHVe MeToga baiica. B84 peub uoeT 06 YCMOBHbIX 3aKOHaX GOMbLLMX
unces, OTHOCALLMXCA K CXOOUMOCTU C BEPOSITHOCTBHO 1 YCMOBHOTO CPefHEero HabnHomeHWIA.
B KauecTBe NpuioxeHus pasgen 4.3 cogepkut 0006LLeHe TeopeMbl Bopens, oTHocS-
LUEIACH K HOPMa/lbHbIM Pa3NOXKEHUsAM B [ECATUYHbIE [pobun, Ha psigbl KaHTopa.



