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MATHEMATICAL NOTES.
By A. RENYI in Budapest.

II. On the sequence of generalized partial sums of a series.

Introduction.

Let a,,a,,..., a.,... denote an arbitrary sequence of real numbers. We
define the corresponding sequence Ay, Ai,..., Ay, ... as follows: we put

A,=0
and if the representation of the integer n =1 in the dyadic system is
¢)) n=2h+2%k ... 42k
(where k, >k, >...> k=0 are integers) we put
2) Av=ai+ay,+ - +a.

We shall call the sequence {A,} the sequence of generalized partial sums of

the sequence {a,} (or of the series Zan).
n—>0

Clearly the sequence {A,} consists of all possible finite sums of
elements of the sequence {a.}, each such sum occurring exactly once
in the sequence {A.}; the mentioned sums are ordered according to
the lexicographic order. Evidently the ordinary partial sums of any

rearrangement of the series > a, are all contained in the sequence {A,}. Clearly

n=0

e @
if the series >, a; is a rearrangement of the series > a,, then the sequence

n=0 n=0
{A;} corresponding to the sequence {a;} in the same way as {A,} corresponds
to {a.}, is a rearrangement of {A,}. This is worth mentioning because by
rearranging a series the sequence of ordinary partial sums is in general com-
pletely changed.
In the present paper we shall investigate how the properties of the
sequence {A,} depend on the properties of the sequence {a.}.
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§ 1. On the limit of the arithmetic means of the powers
of generalized partial sums.

_First we prove the following

Theorem 1. The limit

o4 i3
exists if and only if the series Zaj converges; in _this case we have
i=0 .

1 &
alz—z—Zaj.

J=0

ProOF OF THEOREM 1. Let us put

1 n-1
=2 A
3) o= 2, A
~ As clearly
, - ,
(4) ' At Ay =2 q; 0O=k=2"—1
=0
we have
1 s-1
(5) v 023—':7]‘;0%'.

[e4]

Thus if @, — lim 0, exists, we have also lim o5s=e; and thus a; is con-
‘N> s> Jj=0
©
vergent and has the sum 2e,. This proves that the convergence of 2 a; is
=0

necessary for the existence of the limit e,. Now let us assume that > a; is
=0

convergent, and let us put

(6) 2 a;=A.
It follows by (5) that

o]

) ‘ lim 0y =

8>

It is easy to verify the following assertion: If n=242%+... 424 where
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kk>ky>--->k =0, we have
1

1
iy, 2 :
1 27 O'qu, ;2!v(ak1+akz+ T +ak1/—1 ’

©®) 0, == += ,,
2, 2
y=1

1
Z 2ky
—

Now we need the following elementary

Lemma 1. If ¢, ¢i,...,Cx,... iS an arbitrary sequence of numbers, with

lim ¢, = ¢, and we put
k>

1
Z 2k C;;V
=1
) - V=T
2%y

r=1

for n=2%4-2% A ... L 2% then limy, =c.

n—>»

ProoF OF LEMMA 1. It is easy to see, that the linear summation method
by which we obtain {y.} from {c.} is a regular TOEPLITZ method; this pro-
ves Lemma 1. A direct proof is as follows:

Let us choose an arbitrary ¢ > 0; then there can be found an integer
K,= K(¢) such that |cx—c|<¢ for k= K,; we have further |c;|=C for
k=0,1,.... Now we have clearly

. Ky-1

c 2"

k=0

|yn—c| = e+— Foaal— 2s

Ko
for n= 9—2- Thus lim y,=c.
&

n—>

It follows by Lemma 1 and (7) that the first term on the right of 8)

tends to % As regards the second term, we have clearly

: 1
22"‘7((11:,—*-"'”%.1)' Zlak,,‘-zkv
=2 =
: = 1
ok 2, 2
v=1 =

As |a.| — 0, it foliows by Lemma 1 and (10) that the second term on the .

(10)

right of (8) tends to 0. Thus we have proved lim on=i and so the proof

n—>o 2

of Theorem 1 is completed.
Now we proceed to prove the following more general
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Theorem 2. The limits

n-1

—hm—ZA;j r=1,2,..)

n—>m =0

all exist if and only if the series >, a; and Za? are both convergent. The
7=0 J=0

values of the limits e, can be expressed as follows: let't denote a real number,
Q0 =1t<1, and let us consider the dyadic expansion')

t=> =0

n—1 2
-of t, where &,(f) is equal to O or 1. Let us consider the function

(11) A@:S@@Aa

IfZ,a, and Za, are convergent, then the series on the right of (11) is

J=0
convergentz) for almost every value of t and the function A(t) belongs to any
class L” (p = 1) in (0, 1). The limits «, are simply the moments of A(f), i. e.

(12) m:fmmwt r=1,2,..).

0

Before proving Theorem 2 we make some remarks.
Remark 1. ltis clear from Theorem 1 that for the existence of e, the con-

vergence ona,, is not necessary, but this condition is necessary already for
n=0

the existence of e,. It is also clear that under the conditions of Theorem 2 we
' 1

because Jsk(t) dt = —,lz(k——— A,
0

have jA(t)di = —'—%,
0

Remark 2. 1t follows from (12) for r=2 that

. r
1) If ¢ is a dyadic rational number, t:a; , we choose the finite expansion, in which

£,()=0 for n>s.
2) See H. PorLarp, Subseries of a convergent series, Bull. Amer. Math. Soc. 49

(1943), 730—1731.
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This can be expressed also in the following form:

: . n-1 ©
(13) S L > (h—ay = T2
=0

ns>o I k=

Remark 3. The functions e.(f) are connected with the well known
RADEMACHER functions Ry (f)= sg sin 2"zt as follows: sk(t)z%(l + Ri(1)).

Thus (11) can be written also in the following equivalent form:

Let us put
(14) D(t) = Zanlem(t)
Then we have
n-1
(15) lim 7 Z(A,,-—rzl) —J(D(t))’dt (r=1,2,..)
n—>o k=0

Clearly (13) is the special case r—=2 of (15). The right hand side of (15) is
evidently equal to O for odd values of r.

Remark 4. Note that if Z a; and Za, are convergent but Z |a;| diver-

=0
ges, the sequence A, is unbounded, and thus not only the ex1stence of the
n-1

limits «, but even the boundedness of the mean values—n— D' A% is not trivial.
k=0

PROOF OF THEOREM 2. We start from the formula

(16) 5 )21 AL — J.(S,,(t))’dt
where
(17) S.(f) = é; ax 8i (B).

To prove (16) it suffices to point out that the values of the function
S, (f) are the numbers A,, Ay, ..., Asy, and each of these values is taken on

v

We prove first the sufficiency part of Theorem 2.

Let us suppose that the series Zaj and > a; are convergent and put
j=0 7=0
> a;—=A and D a; = B By a well known theorem on RADEMACHER’S
i= & =0

<
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series®) the convergence of the series Z’bk implies that the series th R ()

converges almost everywhere to a functnon which belongs fo every class
L’(p=1). It is also known that for any integer m = 1 we have

1

5 k=0 k=0
where C, is a positive constant, not depending on by, by,... . We may take
e.g. Cn=m". It follows that we have for almost every ¢

lim S, () = A(?)

r—>Q

and A(f) belongs to every class L"(p = 1). We have further for r = 2

= _[ IS, (ty — Ay |dt.

(19) | sooyat— Jaaoyat

As for any pair of real numbers x and h we have for r=1,2,.
|Ge4-hy —x"| = rh((x[ | +R[T)
it follows from (19) that

1 1 1
(20) f <s,,(t>>’dt—6f(A<t)>"dt} =r (-,f 1S, () —A®)| (S +IAD]at.

Applying the inequality of SCHWARZ we obtain

(21)‘j(S,,(t))’dt——JI(A(f))"dt‘é2r[U(Sr(’)'—A("))QW)(r n ( +H) ]

because by (18)

lvl -

.“ls,r(f)lgr‘gdt =(@r—1)" (ﬁgﬁ)rﬁ
and 0 o

J(A(f))or 2t = (r—1)" 1 (A2+B2)o -1 .
Now as

J(Sa(t)—A(l‘))df—l:’ = e

3) See A. Zyomunp, T rigonometrical Series, Monografje Matematyczne, Warszawa—
Lwow 1935, pp. 123—124.
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it follows from (21) that

lim [ (S, () dt — [ (A(t) dt.

. > O
- Thus putting
' t
22 ~ off’——iZAZ;
n =o
we have proved
1
(23) lim o) = | (A()Y dt =
r—> 0

To deduce lim 0> = e, from (23), we shall need the following identity:

n->0

If n=2%+42%+ ... 2% with k, >k >-+->k =0 we have

n-1 4 ' 2 J 1
@ Gz 3] (e 4]
Thus it follows
o ) T—_l' r'
(25) o) =ul+ 2, ( )ufr’ 3
=0 e
where
; 2% g%
. (r jo= 2‘]‘
(26) , L=
. Z‘z"j
i=1
and

- o BTt
27 Ty =

' B szj
g Jj=1

It follows by (23) and Lemma 1 that

(28) lim 4 = e,..

n—»

(r,0)

As regards v,’" we shall prove that

29 . lim$?=0for 0=0,1,...,r—1; r=1,2,...

n—>»a
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As every convergent sequence is bounded, there can be found positive con-
stants Ko (¢=1, 2,...) such that

(30) 09| = Ke

It will be useful to put 0‘,‘2:1 and thus K,=1. It follows

(31) |09 = K;‘Zk (la |4+,
>

J=1

Applying the inequality’ of CAUCHY, we obtain

r-9

K o
ool K (St ) /7

n =2 =1

(32)
Now to an arbitrary & >0 there can be found an integer k,= k,(¢) such that

Zah < ¢. We may further suppose B #Z ak< 1, because if this where not
k=ky

so, we could consider the sequence {‘_‘}an} with a suitable 3 (0<-3<1)
instead of the sequence {a.}. Thus it follows, taking into account -that

k; = k,—j, that

'3

e

ooz 320

j=1

(33)

the series Z% being convergent for any « > 0.
=1

_ log2n .
Asl=k+1= log 2 we obtain
log 2n\?
2 og 2 :
(34) 1409 = C\e+ ng (e=0,1,...,r—1)
where C, is a positive constant, depending. only on r. Thus it follows that
(35) : lim 0 —0 O=o=r—1;r=12,..).

This completes the proof of lim 0"’ —q,, and thus the proof of the suffi-

ciency of the conditions of Theorem 2,
To prove the nece551ty it suffices to mention, that according to Theorem 1

the convergence of Zak is necessary already for the existence of «;, and
k=0
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according to (16)
r-1 2 -1
(Z ak) + Xai
(’(2):__ o= k=0 )

a¥ 4

@

: @ s 2

Thus lim %) = e, implies the convergence of Za;.
k=0

It follows evidently from Theorem 2 that we have under the conditions
of Theorem 2

n-1

(36) lim - S FA)— f FAQ@))dt

n—>o n

if f(x) is any polynomial. If > |a.| is also convergent, i. e. if the sequence

n—t

Ay is bounded, it follows by a well known argument that (36) is valid for

@
any continuous function. If the absolute convergence of > a, is not suppo-
n=0

sed, we can prove (36) only for continuous functions f(x) satisfying some
restrictions concerning the order of magnitude of f(x) for x — . We shall
not go into details here, and mention only that without any restriction on
J(x) the integral on the right-hand side of (36) does not exist in general.®)

For some special continuous functions f(x) the validity of (36) can be
deduced from Theorem 2. For instance if f(x)=|x—c| where ¢ is an arbi-
trary real number, then (36) is valid. This implies, that

n-1

37) fim iZ]Ak-—ml:J]D(t)ldt

n>o M =0

and as the right-hand side (37) is positive unless a,=a,=---=0, it follows
from (37) that the sequence A, is not strongly summable except if all a,
vanish.

4) A sufficient condition for the existence of the integral on the right of (36) is that
2 4

f(x) should satisfy the inequality f(x)= Ce’** where 6 < — (A2 4 B)™! (see Zvomunp,
e

loc. cit.).
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§ 2. The asymptotic distribution of generalized partial sums.

Now we shall consider the asymptotic distribution of the sequence A,.
‘We shall prove the following

: Theorem 3. Let a,,a;,...,Q.,... denote a real sequence and put
A—0 and A, —a,+ay,+ -+, if n=25+2%+ .. 2% where k,>k,>
>...> k= 0 are integers. Let N,(x) denote the number of those among the
numbers Ay, A, ..., An1 Which are <x, i.e. put

(38) Na(x)= AZ 1 (n=1,2,...).

k< n
Let us suppose that the series > a; and >, a; are convergent, and let us put
=0 J=0

again A(t)= D a,8,.1(t) where &,(t) is the n-th dyadic digit of t, i.e. &(f)
n=0 * :

isOor1and t= 2

n=1

8"2:). Let F(x) denote the measure of the set of those

points t of the interval (0, 1) for which A(f) <x. By other words F(x) is the
distribution function of A(t). (F(x) is clearly nondecreasing, continuous to the
right, lim F(x)=0 and lim F(x)=1.) Then we have ,

r—>- r—>+0

@9) lim _I\Léi) —F(%)

in all continuity points x of F(x).

ProOF OF THEOREM 3. First we prove that if x is a point of continuity -
of F(x) then

Ner () _ .

(40) lim

V> @

This can be shown as follows: The function
-1
S.(H)= g) a ex11(f)

1
takes on' the values A,, A, ..., Aw_1, each on a set of measure E Thus de-

noting by F,(x) the measure of the set of those values ¢ (0 = t <t) for which
S, () <x (i. e. F,(x) is the distribution function of S,(#)) we have

(41) N—(x—) — F,(x).
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Taking into account that if > a; and > a} are convergent, S, (f) tends almost
=0 =0

everywhere to A(f), and therefore it tends also in measure to A(f), we have
lim F,(x) = F(x) in all continuity points of F(x). This proves (40).

To prove (39) we start from the formula

1
(42) Nu(x) = 2" Fg"" () ‘I‘]:Z; 24 szi(x_ah - ——akj—l)
if :
n= 2424 ... | 2N (k> ky>-+->k = 0).

Now we need the following elementary

Lemma 2. If ¢, =0 and c,—0, there can be found a monotonically
increasing sequence 1, of integers, such that liml,— + oo and

n—->w

lim(cp-14 -+« +€nr, ) =0

PROOF OF THE LEMMA. Let us put
d, = Max Cr

k=n

and

[, ==min ([n,”2], i/%”) .

Then we have

n-1 n-1
2 6= 2 d=hda,= il =V djz—0,
J=n-1,, J=n-1, Vd[n/)]
which proves the assertion of our Lemma.
To complete the proof of Theorem 3 let us choose the sequence I, in
such a way, that /,—oc for n—oc and (|a,|+|@1|+ - +|ays,|)—0

@
for »—oc. This is possible by Lemma 2 because Zaj being convergent we
=0

have Iim a,=0. For any ¢>0 we can find an integer k*=*(¢) such that
1F4,x(x) F(x)| <e if k=k". It follows that

N, (x)
n

7; *

& _szF (%) fF(x)—l—s—i——

(43)
which implies that

(44) lim sup N,E ) = F(x).

n—>»q
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Clearly we can find a value », such that if v =, then |a,|+|ay1|+ -+
+laya,| <& Thus if n = 2" we have k, = », and

Ky-Tp,,-1

> oz 32— Sy zaah,

ki Z -1y, =1 =0

We have evidently
Nu(x) 1

n - I owg=t=uk,
If we choose the integer A** so that for & = k™ we have | For(x — &) — F(x —¢)| < ¢,
it follows
(45) W (x) = (F(x—s8)—s) (1 - 2%)
provided that k,—1I, =k*. As for n— o, k,— oo and thus [, — oo, further
Kk — I, — o0, it follows from (45) that

2" Fy(x— ).

~ (46) tim int Y209 = ),
(44) and (46) together imply that
@7) 3’12 N.(x) —F)

for any continuity point x of F(x). Thus Theorem 3 is proved.

§ 3. Equivalence of the (C,2)-summability of generalized
partial sums with the convergence of a series.

It follows from Theorem 1 that if the arithmetic means of the sequence

{Ai} of generalized partial sums of a series Z a, converge to a limit «,, the
n=0

series itself is convergent and- has the sum 2e,. In this § we shall show that
the same holds for the Cesaro means of order 2 too. Thus we prove the
following

Theorem 4. If the Cesiro means of order 2 of the sequence {A,} of

generalized partial sums of the series Za,t converge fo a limit «,, then the

n=

series > a, is convergent and has the sum 2e,.
n=A_)
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PROOF OF THEOREM 4. Let us put

n-1
(48) =L S (—na
nyi=o
2
By supposition lim 6® — ,, which implies that
(49) lim O —a,.
Now it is easy to show that, putting
(50) Si=a+a+ - +a,
'we have

@7 —1)S,.1+ 3 2.8,
=0

(51) o — 2@ =)
It follows that
52) 2(2”*‘—1)053,’+1——2(2"—1)(;;32=Sy+ Sii
@2'—1) =y
By (49), we have
(53) lim (S,,+ . ):2«1.
I 2 —1
Now we shall prove that (53) implies
(54) lim S, =2e,.

7>

Clearly it suffices to show that S, is bounded. But if S, were unbounded,
'we could find a subsequence §,; such that »;— oo, 18y;|—> o and |S,| =
Svfl )
S +—=
[s+55
to (53). Thus Theorem 4 is proved. Similar results hold for other methods
of summation too. We hope to return to the question in another paper.

=|8,;-1| which would imply lim sup ==-- oo in contradiction

V>
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