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Introduction

Let f(2) be regular in the circle |z|<R. Let us denote by Ni(f(2),7)
‘the number of zeros of the A-th derivative f®(2) of f(2) in the closed circle .
[z2| = r<R. In the present paper we shall investigate the asymptotic proper-
ties of the sequence Ni(f(2),r) (k=1,2,...).

In this direction several results have been obtained by G. PoLya (see
[1]). One of the results of POLYA is the following: If f(2) is an entire function
of finite order 4 = 1, then for any r >0 we have '

.. 1og Nu(f(2),r) _ A—1

o hm it = e =1

Let us denote by 9U.(f(2),7) the number of zeros of f®(z) in the real
closed interval /. Further results of POLYA are as follows: If f(2) is real on
the real axis, and it is analytic in the closed interval /, we have

) : “T inf gzi(—j;(il) < oo
if f(z) is an entire function, we have

- i ing Se0F@, D _ o
® lim inf ==22 == =0;

finally, that if f(z) is an entire function of exponential type, we have
“) lim inf 90 (f(2), I) < + oo.
k>

Recently, M. A. YEVGRAFoV [2] proved the following general result:? Lef
fla)== Zan 2 be an entire function, the coefficients of which satisfy the
n=0 )

inequality
MA"
q(1)q(2)...q (n)

1 The authors are indebted to R. P. Boas, Jr. who kindly called their attention to
this result. '

lay | =

(n=1,2;...)
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where q(x) is positive and increasing for x =1, further q'(x) exists and
7 (x) '

lim xm—:@ where 0 = o = 1. Then we have
®) tim inf Ne(/' (2)]; . g o
k>

In § 2 of the present paper we shall prove that the theorem of YEv-
GRAFOV is a consequence of the following simpler and more general theorem:

If Max |f(2)| = M(r)=e%®, further if x—H(y) denotes the inverse
|z|=r
Junction of y==G(x), we have

®) lim inf U (Z)l;’)H(") & !
k>
We shall show also that (6) can be replaced by
() lim inf (/! (z)/’cl)H(k) =¢
k—>o

(Theorem 2’). As a matter of fact, we shall prove more, namely we obtain a
theorem (Theorem 2) which is much stronger than YEVGRAFOV’s theorem.

Our theorem states that if f(z) is an entire function, M(r)=Max |f(2)| and
=
if we suppose only

<1

... log M(r)
(8) hrrrl gnf 20

where g(r) is an arbitrary continuous and monotonically increasing function
Jor which lim g(r)= - oo, then we have

9 lim inf M(f(z)lél)h(k) =

k>

where x =h(y) denotes the inverse function of y=g(x).

The results (1), (3) and (4) are included in YEVGRAFOV’s theorem and
in our Theorem 2, respectively. In § 1 we prove a theorem on functions
analytic in a circle. In § 3 we prove some results on the sequence ry =
=|z| (k=1,2,...) where 2, denotes that root of f® (z) which is nearest to
the origin; we generalize thereby some previous results, e. g. theorems of
ALANDER [3] and ERWE [8]. e
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§ 1. Functions regular in a circle

We begin by proving

THEOREM 1. Iff(z) is regular in the circle |z| <1 and 0<r <1, we have

(10) tim ing U@L - g
k>
where K==K(r) is the only positive root of the transcendental equation
an r:r-—~1£-~
(1+K) %

Theorem 1 can also be written in the following equivalent form:

1
1+}‘-.,
THEOREM 1'. If f(2) is regular in the circle |z| < (IL][?—— (K>0),

we have
(12) lim inf
k>
Let us mention the following special case of Theorem 1" (12) is valid
with K=1 if f(z) is regular in the circle |z| < 4.
Theorem 1’ implies that if f(2) is an entire function, we have

Ni(f(2), 1)
—ERE = 0

Ne(f(2), 1) _
=l s K.

lim inf
k>
for any r > 0.
The proofs of the above theorems are based on the well-known theorem
of JENSEN (see e.g. [4]): If g(2) is regular in a circle |z| < R, g(0)==0 and

21,2y,..., 2, are the zeros of g(z) in the circle |z| = o0 < R, then we have
log ——— e Jlog gloe) ?
[z [z 2. ~ 27 £(0)

If Ny(g(2), r) denotes the number of zeros of g(2) in the circle [z|=r<o,
it follows from (12) that

' y 2@
(13) No(g(2), 1) log Afl‘aif log 20|

We shall always use JENSEN’s theorem in the form (13).
Some simple inequalities, which will be frequently used in this paper
are collected in the following

1*
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LEmMA. If f(z)=2akz’“-is regular in |z2| <R and for some value of :
k=0 : » . E

A=1 and B>0 we have

(14) Iawl <All;”" (i=1,2,..),
‘then for [z|=o0 <R _
®) 1
(15) ;(k—)((é%—l(éA(W——l)
(I—FJ |
and thus ,
: f) A
o=

= AL
e\
(‘ 3) |

ProOF. (14) implies lakl >0 and

k) k+] )
O e ey

Taking into account that

i NI §(k+l>(k+;'2> (k)

for |x| <1, (15) and from this (16) follows.
PROOF OF THEOREM 1’. Let us suppose that the radius of convergence

of the power series f(2)= Z a,z" is finite and equal to R >1. In this case

n

we have 11m |an1=ﬁ Thus if 1<B<R<C, we can find an infinity of
L kty

values of k for which V—l >_ and J]aw| == (1—1 2,...) and thus

o al
(18) ' |arsi| = B (=12,...).

On the other hand, if R=oc, then |/|a.| -0 and thus we can find for
any B >0 an infinity of values of k& for which

(19) | ool =12l i 2.,

BJ

!
|

AR e AR =

-
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n kN
As a matter of fact, if maxV Ja.] = V]ax]| < (which will be true for all

’ll—

sufficiently large values of N), then k—ky satxsfxes (19).
The inequalities (18) and -(19) can be combined, and it follows that if

f(e)= Zﬂanz" is regular in the circle |z| <R (R>1) (but may be regular

also in a larger circle or in the whole plane), then for any ¢ >1 and B< R
we can find an infinity of values of £ such that

*| g ; :
(20) ' | @] é% =12, ;)
It follows from our Lemma that for |z]=¢ (1< 9 <R)
: @ - ¢
@) 770)

= E+1
& &
(‘— 3)

and thus, applying (13) with r=1 and g(2)=/®(z), we obtain

-1
klogq+(k+1)log(1——%)

which implies, as ¢ may be chosen arbitrarily near to 1 and B to R, that
) -1
moe.n _ 55
w58 % y
(23) h{g 01onf % = Toge for 1<oe<R.

Now let us choose the value of ¢ so as to minimize the right hand
1
side of (23), that is, let o be equal to (1 -+ K)X where K is the positive root
1

(14+K)'E
K

of the equation R= which has a unique solution for any R >1.

Thus we have proved Theorem 1’, and therefore Theorem 1, too.

We do not know whether the bound in (10) is best possible or not.
The estimation (10) is, however, best possible in the following sense : it is clear
from the proof of Theorem 1’ that we considered only such values of k for
which f®(0)=0; thus we have obtained slightly more than is expressed by
(10), namely we proved

(10) lm inf M) < g,

£ )30
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Now (10’) is a best possible estimation; this can be shown by considering
the function ’ “

(24) g K)= >zt
. i n=0
where K is the only positive root of the equation (10) and [x] denotes the

integer part of x. Let us put k,—[(14K)"] and consider gt (2, K). We
have clearly :

g(kn)(z, K ) _ ‘
o m ~HETeE
where :
gt Db,
Pa(2) =1+ (i— k)T ©
and

- Am (kn+71).”k;l+]- k'l % ) 1
Qn(z) _‘“-7:22 (kn+]_ n)!—Z + . %

The roots of the équation P,(2)=0 are all lying on the circle
1

. Py o (kn+1_kn)! )kn+1‘kn
lzl . Qn* ((kn+ 1). . ‘kn+1
and by Stirling’s formula we obtain ,
: K
i g==itr ==

- i
(14-K)*%

If >0, we have on the circle |z|=r(1+¢)

’ ‘ & ky 1 Fy
Rz (114)

for n=n,(s). Onithe same circle we have

Tk

7 j . n+j " n

(b 1)) g yny| o | FHED O K(I“ng)l (222,38, 50,
G —F) | aam a0 .

s Wg%,‘ we have

IQ71(2)| =44-2K for |2'I =r(l+%)
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if 0<e< 4(1(‘1_'_1) It follows by ROUCHE’s theorem, that

(25) [t Nayn(g(2, k),nr(l'_g_ £)) e
o [(1+K)]

: 1

t DR Sry

Let us mention that g (2, K) has more than cn zeros (¢ >0) in |z| <7,
for some r,>r and every n=1,2,...

§ 2. Entire functions

As it has been mentioned in § 1, it follows from Theorem 1 that if
f(2) is an entire function, we have

(26) lim inf N’”—(f(kz)’—l) ==,

k—>o

(26) can not be improved, i. e. no relation of the form

e N(f@), 1)
holds with lim &(k)=0 (s(k) >0) for all entire functions. (26) can, however,
’ k> :

be strengthened if we put some restriction on the rate of growth of f(z). This
is expressed by the following

THEOREM 2. Let g(r) denofe an arbitrary function, monotonically increas-
ing in O<r<+oo for which llmg(r)— oo, Let x=~h(y) denote the

inverse funchon of y=g(x). Let us suppose that f(z) is an entire function
for which, putting M(r)— Max|f(z)|, we have
, fel=

lim inf OB M@
il
Then we have
(27) lim inf Nk(f(z)) l)h(k) - 2
k—>m k =

PROOF OF THEOREM 2. Let ¢ >0 denote an arbitrary small positive
number. Let us denote by »(r) (0 <r < - oo) the central index of the series

@)= a2

=0
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for [z2|=r, i. e. suppose

and thus @ = @y | 7 (n=0,1,2,...)
\ ‘ Qe .
¥ - laul= rf()! (=1,2..)

Let us consider such a value r>0 for which

(29) ' | log M(re) = g(re).
By our supposition we can find arbitrarily large values of r satisfying

(29). :

Applying our Lemma with A — l, B=r, k=v»(r), R>r, o=e, we

obtain

2@ 1 :
= for |z]|=e,
v (r) v(r)+1
S
‘ r
and thus by JENSEN’s theorem
G0 MU D=0+ g 1 < 20+
. -
o r

if r=r,(e) o
Now, taking into account that for every n=1,2,... and every R>0
we have |ay|RY = M(R), and using (29), we have '

|au|(re)* = M(re) < esro)
and thus \
; |@,| r = estro-n (n=1,2,..)).
Therefore
' lau|r =1 if n=g(re).
But it is known,? that the absolute value of the maximal term on |z| =r of the
power series of an entire function is tending to + oo for r— oo thus it
follows that if r is a sufficiently large value, satisfying (29), we have
v(r) = g(re), and thus h(v(r)) = re. It follows from (30) that
| =Y (1+e)
(31) NV(T)(f(Z); 1) = /z(w(r))
Thus, taking into account that v(r)— oo for r— co and that ¢ >0 is arbit-
rary, (27) follows. ‘ o
We can prove quite similarly also the following

2 See e. g. [7], p. 2, Problem No. 9.
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THEOREM 2. If f(2) is an arbitrary entire function, M(r) = Max |f(2)|, and
) S =T .
x= H(y) denotes the inverse function of y=—1log M(r), then we have
lim inf -V (z)’ DAEW)

k—>o .

Proor. Clearly, the condition lim inf logG]E/I)(r)

of Theorem 2 only to ensure the existence of arbitrary large values of r for
which (29) is valid. Now for g(r) = G(r) (29) is valid for all values of r,
thus Theorem 2’ follows.

Theorem 2 is best possible in the following case: i g(r) is a monoto-
nically increasing and convex function for which g(0) =0, g'(0)=0, g(1)=1

< 1 is needed in the proof

and lim&(rr—) = oo, then there can be found an entire function f(z) such that

o log M(r)
g

N (f(Z) 2) h(k) _

< -+ o and neverthéless

putting M(r) = Max |f(z)| we have lim inf
|z|]=r >0

lim mf

k>

where x==~h(y) is the inverse of y=g(x). As a matter of fact, if the
sequence n; is defined by n,—0, n,=1 and by the recursion formula

My = [nk (1 -+ h( ))], the function

© 2
fRy=2 —
- H[h(ﬂ)]’ -
has all the properties required. This can be shown again by using ROUCHE’s

theorem as follows:
Let us consider first f)(2). We have c]early

@) _ p a1 ue)

T
where
(nk+1)...nk+1( 2 )”’f“‘"k
(2)=1
P =1+—G 0T (Bt
and '

< (me+1)...n 2"k
Qi e e ey

= (ey—n)! Hh(” Yo~ 1

©os=k+1
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Clearly, all roots of Pk‘(z):O are lying on the circle

1
e (nk+] nk)! jInk-fl"’k
o= e bl [(Tmi

o () L -, .
and we have for Sk Ly () ut as A'(y) 70 is decreasing,
we have -

| = h (1) — /f'_(ﬂk)e.
= h(m) — h*(ny)

(@) g
h(y)  xg'(x)

and as g”’(x) = we have

5 Jﬁ@&—ﬁﬂ

xg w _[mg” (t)xdt

—=1

Thus it follows lim g, —1.

k>

Clearly, on the circle |z| =1-+¢ we have
& 71 +1—’Vlk )
|Pe(2)| = (1 + 7) for k= k(s).

On the other hand, on the same circle we have

(1 _l_mwn ”’f)"w-nk (1 +3s) "k |

(ﬂk + 1) ooo Mgy . 2+~ "k i "
My i— Ny | T+j =
(‘ tJ ) !!h(n )”5 Ng_ (1_ k)h(n]‘-.H)
s=k+1 Mit2

1

for sufficiently l'arge values of k. As (1+x)"=e and (l—nn—") h(nie) — 2e
k42
for k— oo, it follows that for (2] ==1 +s (O< £<%)

Q@I =125 for k= k).

- Thus f@(2) has my,y—ny roots in the circle |z2|=1+¢ for 0<e<1/2 and
k= k(e).
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ny .
e b

4h(ﬂk)

then f(N)(z) has more than 5 hlz,N) roots in the point z=0. On the other

_Let us consider now a number N, 1< N<m.. If N=

14—

ny ny 1
hand, }1f N>—T, let us have NN“M (O<l<z).

(T 1
T T h(m) TR
We have clearly

f(N)(z)
PN (1), NT 1) P +ax@)
where
5 nk+j(nk+j_‘ 1)-- '(Ilk+j— N+ ]) ) 2"k
gv(@) =2 gt
=  m(u—1)-(m—N+F1) ﬁ‘h(ns)”s‘”s—l
d s=k+1
an

M1 (e —1)- (M — N+ 1) ( 2 )nk“ ¥

- =1 .
R sy o Yo ) v T vy

The roots of pN(z)—O are all lying in the circle |z|= Ry where Ry~

A 4
~(1+z)(1+;) 5 {Bas 0<act

d)5
| 4 . But on the circle |z| — ( +7)ZV3
we have for any 0 >O, if K is sufficiently large,

Mt (Mg —1)- - - (M —N+1) 2™ _
np(ng—1)---(m—N-+1 Kt =
k(k yoo (R ﬂ/l(ns)”S‘"s-l
s=k+1
L\ My
(1+20) 25|
= ———"-2——— P ﬂnk-{“j_"k . (j.= 2, 3’ ) ._.)
. 1( 8
where §< 1 1f0<6<—( > )
' 5/5

Thus it follows by ROUCHE’S theorem that f®(2) has ny—n; roots

in the circle |z|=( 14+ ) ]/5 As nyg— combining the cases

N
= 2N’

T it follows that f@(2) has

ny

My <N= and m, =N >

e

Ry Ty 4h(m) R v
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roots in the circle |z] < 2. Thus we have

fim inf 2@, 2)’1("). =

k>

J

09—

what was to be proved.

It remains to show that lim mf log: M)

oo 8(0)

follows: let us put rk—h(n,) and

< 4 oo. This can be done as

e
‘u(r h) _——.
L 1wy
First we show that

lim sup

k—>

log u(ri) <+
ny
This can be proved. by starting from the evident formula

log u(r) _ Z (i~ ¥ log h(n)

iy m S h(n))
Let us denote by S, (r=0,1,...) the set of those values of j for which
h(n h(n;
= him) < 22

Let /. denote the greatest element of the set S,. Then we have clearly

logu(n)‘ Z(f+1)ﬂ1

ny
Now n; = (%} and g(x) is convex, therefore

g(h(n))

n; : v
4 2"

=
P =

~and thus

log w(rx) = r+1_
(7 = 2
Now u(ri) is the maximal term of the series

M(r) = SZ.: =g
I h(y)"

=

n
f;;S
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and it is easy to show that

lim log M(ri)
k> 10g xu(rk)

Taking into account that n,= g(r:), we obtain
| .. log M(r)
lim inf —=—>-~

r > ( )

By the same method it can be shown that™ lim inf log M(’)

rsw Q)
purpose this is not necessary.
The theorem of YEVGRAFOV can be deduced from Theorem 2 as follows :

=4.

=1, but for our

Let us suppose that f(z)— Z a,z" is an entire function and

n=1

mA* G
aMq@)-q( |
where g(x) is positive and monotonically increasing for x=1, lim g(x) = + oo
and lim )

x>+ q(x)

let us denote by x=1y(y) the inverse of y=gq(x), and let us for a given
r >0 determine the integer N by

—[y(24n), i.e. N=yQAr)<N+1.

| = =1,2,...)

=p where 0=¢=1; clearly it can be supposed that g(1) > 1;

Then

(32) g(N)=2Ar=q(N+1).
It follows that for |z|=r ' ’
' . (Ar)¥
‘where
(N) q(N)g(N—1) g(N)g(N—1)---q(2)
S=et Gy T
and
(Ary
= eyt T e

Clearly we have

SIZ24 24 2V 1=2 and |SS 145t =2
, | 2172
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Thus it follows that

(33) M(r) §\2M exp [N log 2Ar— I;N; log q(k)] .

As log g(k) is positive and increasing,

N
N
Dlog q(k) = flog g(x)dx
k=1
s o
and therefore, by (32),
N
log M(r)=log2M+ Nlog q(N-+ 1)—f log q(x)dx.
’ . 1

- According to our supposition log ¢q(x) is of the form

~logg(x)=e 10gx+f%t) dt
o

where lim &(f)=0; it follows that if ¢ >0, log M(r)=oN-o(N), i. e. for

t->®

an arbitrary ¢ >0 we have
(34) log M(r)=ey(2Ar)(1+-¢)

if r is sufficiently large, and thus if g(r)=2¢-7(2Ar) and x=h(y) is the
inverse of y—g(x), we obtain by Theorem 2

lim inf w& = e
k>

As

1) =pq4(5 ]

and
(5

. 2) (1Y

im 5~ (25)
it follows that

e N(f(2), (k) _ Q(L)"

(35) Ilif]_}lol';lf 7 =2Ae 20) -
Thus we have proved YEVGRAFOV’s theorem for o > 0.

If =0, we have log M(r)=o0(y(2Ar)) and thus it follows in this
case also that

(36) tim i U@ Da®

k>
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Now we shall suppose that f(z) is an entire function of order =1 for
which, puttmg M(r)—Max \f(2)|, further log M(r)= G(r), the limit

. dlog G _
7) m g r
exists; we shall show that in this case, denoting by x= H(y) the inverse
function of y= G(x), we have

(38) lim inf 20! (Z)I’CI)H ®

=1

)

and thus for entire functions of order =1 and satisfying the condition (37)
the assertion of Theorem 2’ follows® from YEVGRAFOV’s theorem. Substituting

G(r)
r==H(n) in the inequality |a,| = 87 (n=1,2,...), we obtain

(39) ] = —2
(H(n))

and thus

(40) || = e

H()H(2)---H(n)"
Now let us suppose that f(z) is such an entire function for which the finite
or infinite limit (37) exists. As

YH'(y) 1
H(y) — (a’log G(x))’
dlog x
it follows from the existence of lim egoeg ¢ that lim 222\ H'(y) _ == L3
2>® dlo og x Y>>0 H( ) «
exists. As we have supposed that G(r) is of order =1, it follows that
O=90=1.

Thus we have shown that YEVGRAFOV’s theorem is equivalent to the spe-
cial case of Theorem 2’ for entire functions satisfying (37). Thus Theorem 2’
is slightly stronger but, of course, Theorem 2 is essentially stronger than
YEVGRAFOV’s theorem.

§ 3. Remarks on the zero z. of f®(z) which is nearest to the origin

It follows from our Theorem 2 that especially if

lim inflog—ﬁw(r) <A,

>0

3 Except the numerical estimation of the left hand side of (38).
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we obtain*

lim inf Nx(f(2), 1) <€*A.
k—>o 5 .
This can be formulated as follows: If r. denotes the absolute value of |

the zero zi of f®(2) which is nearest to the origin, we have for an entire

function for which lim inf —2—-2 log M(r) <A,

7>

1
h{tliup rne= i

For entire functions of finite order 2 = 1, the behaviour of r, has been investi- ]
gated by ALANDER [3] who proved that
' log )
;o e _A—1
llg;ﬂf W = 1 |
Now we shall prove a general theorem which includes this result of AvLANDER
as a special case.

THEOREM 3. If f(2) is an entire functzon M) = Max |f(2)| and ry denotes i

the absolute value of the zero 2z of f®(2) which zs nearest fo the origin
(k=1,2,...), then denoting by x= H(y) the inverse function of y=1log M(x)
“we have '

... H(k) e
(41) ln’llgf i = fog 2

PROOF. Let us start from the inequality (38). This implies that for any

&>0

“w lim (Hl(fe))mnl-——o.

n—>w

Thus we can find arbitrary large values of k for which

(43 || = (Hl(:))j|ak| ' (G=1,2,...).

' 1

4 This implies that for A < —

e

lim inf Nx (f(2), 1) < 1,
: k—>o ) .
i.e. an infinity of derivatives of f(z) have no zeros in the unit circle. It is known that if
log M

Jf(2) is of exponential type and lim sup—o—gl_—(r2 < A, the same assertion holds for
>0

A <0,7199. (See [5])
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It follows from inequality (15) that for such values of k for which (43) holds .
and for |2| =¢ we have

@ o 1
0) ! l = L

([ pette)Ft
-fw
, H(®
and thus f®(2)==0 for [z| =0 if '

14¢\k+1 v
4

(44)

H(k) 2
i. e. for a sufficiently large k if

H(k)log 2
(45) < H®log2

But (45) implies that

. H(k) _ et
(46) ’ﬁfﬂ;“f kr, —log2
As >0 is arbitrary, Theorem 3 is proved.
Clearly, (41) implies

47 -~ limsup kry=- oo

k>0
for every entire function.
For functions, which are regular in a circle |z| < R, instead of (47) we
can. prove only

'THEOREM 4 If f(2) is regular in the circle |z| <R and is not a poly—
nomial, further z. is the root of f®(2) which is nearest to the origin, then
putting r,=|z.| we have

. (48) lim sup kr. = R log 2.
k>
PRrooF. The proof is very similar to that of Theorem 3. If f(2)=

G)j ‘ v o ",— 1 Rn,ani :
= a,z", we have lim supl/|a,| = — and thus —0 for any &> 0.

%{ 56 pVI | R (1 +8)’n y

, R'|a.| R*|a

This implies that putting 31\;;{ a {]-s)l"z(l——}—lﬁé we have for k=ky
N=1,2,..))
(49) ' }akﬂ-igﬂ‘ (=102}

[+
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Thus by inequality (15) we have for |z| = o and the mentioned values of k&
2@ | 1 o
0 T e +s))m -

ll—T :

(50)

therefore f®(2) 0 for |z| =0 if

(s

2
and thus if ’
(51)

for sufficiently large k.
The assertion of Theorem 4 follows 1mmed1ately
It should be mentioned that there exist functions f(z) regular in the

Rlog2
C=EF D F29)

unit circle for which lim sup kr; < -+ oo, for example if f(z) =+ 1 5 we have
k>
lim sup krk:?' This example is due to ERWE [8].
k—> o

It would be interesting to  determine the greatest constant by which
log 2 can be replaced in (48).
- The question may be raised: what can be said about the series

(52) gl T

It can be shown that the series (52) is divergent not only for every entire
function but also for every function which is regular in some circle |z2|< R
(except for polynomials) with R >0. As a matter of fact, this follows easily
from the results of W. GONTCHAROFF ([6], p. 34).

The following conjecture® of ERWE is a 51mple consequence of this

remark: If f(2) is regular in |2| <R, |z| <R, |z.u1| = —2— |za] and f®(2,)=0 §

(n==1,2,...), then f(2) is a polynomial. As a matter of fact, we have

r. =|z,| and thus our suppositions imply > r, < --occ. More can be said
n=1

. about the sequence 7y if the power series of f(2) has Hadamard gaps. If

f(z)~Za,zz"k where 241 >q>1 and f(2) is an entire function, then

5 Erwe proved that if f(z) is regular in a circle around z=0 containing the points
z,, for which |z,41] ;élan, further f®(z,)=0 (n=1,2,...), then f(2) is a polynomial.
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lim sup . = - oo; if it is supposed only that f(z) is regular in the circle

=00

— * -
2| <R and f(2)= > a.z' with Tl o g>1, then limsup r; SR UL E
k=0 ) n; o> 28
It seems that the following conjecture is true: If f(2) is an entire func-
tion, we have :

. L ke | 0o
llﬂiup Tog =} oo,

v (Received 30 May 1956)
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O YUCJIE KOPHE [TOCJIEJOBATEJIbHBIX [MPOU3BOJHBIX AHAJIMTUYECKHUX
DYHKIMN ‘

II. 9ppéw n A Pensu (Bypanemr)

(Pesome)

Mycts f(Z) perynsipsa B HEKOTOPOHl 0OGNACTM MUIOCKOCTH KOMILIEKCHOH MepeMeHHOMN,
copepsrateit BuyTpu cebs kpyr |z| < r(r > 0), n myctb Ni(f(2), r) 03Hauaer uuc10 KOpHE#
f9 () B xpyre |z| < r(k=1, 2,...). O603naunm 4epes z; HanGonee Ganskuil Kk Touxe z=0
ropeub ot f®(2) m nycte rp=|z|. -

PaGorta wusyuaer acuMNTOTMYECKME CBOHiCTBa nocneposatensHocteir N.(f(2),7r) m
7. (k=1,2,...). B uactHocTs, B pab0oTe [JOKAa3LIBAKOTCS CAEAYIOLINE TEOPEMBI:

Teopema 1. Ilycts f(2) perynsipua B eanumuHom kpyre u mycth 0 < r < L. Torpa

lim inf —]\Mf;z)—’r) = K@),

k>

2%
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rae K—=K(r) ects eguucTBeHHbIi HOJIOKMTENbHBIT KOpPEHb TPaHCUCHAEHTHOIO YPaBHEeHHST
r= 1

T a+RE

Teopema 2. ycrs g(r) ects mobas HENPEPLIBHAST U MOHOTOHHO BO3PACTAIOWAST

B-unTepsane (0 <r << oc) ynkuus u nycrs lim g(r) =+ oo. O603naunm yepes x=h(y(

GyHsxuuio, 06patHyto dyHKIUM y=F(x). llyctp f(2) ecrp uyenas thyHxuus, M (r)=I'V}ax lf@]

s . Z|=r 4

. ¥ IPeAnoNoKuM, yTO ;

lim infM < 1.
r—>o g(r)

N(f@, Dh(K) _
=D DA e

.~

Torpa

lim inf
k—>o

Teopema 3. Mycrs f(z) ects uenéﬂ Gysxuust, M(r) = Nllax |f()|, x= H(y) 0603-
. 2|=r - i
Hauaer Qynxumio, oGpaTnyio Gynxupn y =log M(x). Torna

liminf 0 e
k>0 Kry log 2

Teopema 4. Ecu Jf(2) peryasipua B egmnnunOM Kpyre u HE MHOTOYJIEH, TO
lim sup & rx = log 2. ' )
) k> .
Hepeuncnennve Teopemsr sBastroTest 0000menusimu pesyastatos Il o i a [1], EBrpa-

boBa[2] u Ananpepa [3]. Padora copepwut Take noxasatenscTso OIHOW THIIOTE3bI
dpse [8]. ’



