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Introduction

Every real number x (0<x< 1) can be expanded into Engel’s series
(called also “Engel’s series of the first kind”, see PERRON {1}).

_ 1 '

l . =———- v —— sos
) : + Chlh + +Q1¢h dan +
where the integers qn*qn(x) are defined as follows:

We denote by T,x the transformation

@ | T1x=x—ch—

—1  (@<x<1)

(Here and in what follows {z} denotes the least integer which is >z) We
define a sequence r,(x) by the recursion .

3) s R =% () =Tir(x) (1=0,1,..)
and put o ‘
@ . ha—tu® =5 @=01..).

It is easy to see that . ‘ |
2<qnfqn+1 (n=1,2,..).

vadently, if x is glven by (1), we have -

A i 1
(5_). - r,,(x)-— Gnt1 | Jriagniz
If x is rational, x——?, then Tlx—%:— with o' <a. Thus we have
for some » r,(x)=0. Thus every rational number i;- has a finite fépresen_—
V.tation . . | :
T g +Q242 T +m )

If x is irrationai, then r?,(x) >0 for all values of n. It is easy to see that
for irrational values of x one has lim g,(x) = oe. :

. N>
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In the present paper we mvestrgate the metrical properties® of the
sequence q,,(x) The results obtained may be characterized as follows. Let
us consider the interval (0,1) as the space of elementary events, and, inter-
pret the Lebesgue measure of a measurable subset of the mtervai 0,1) as its
probabllrty Then the random variables: x, = log g, xn—log (11—2 3,..)

n]-

are in a certain sense almost mdependent and almost identically drstnbuted
- and thus for .

6) , In=l0g n =Xt XoF - X0

“similar results are valid as for the partial sums of a sequence of indepen-
dent and identically distributed random variables, e. g. the central limit theo-
rem, the laws of large numbers, the law of the iterated logarithm, etc.

In §§ 1—5 we deal with Engel’s series: in § 1 some fundamental
identities are” deduced; in § 2 we prove the central limit theorem for the.

log Gn —

‘sums (6), i. e. we prove that the distribution of —=—— tends for n—oc

: to the normal distribution (Theorem 2). In §3 we prove the strong law

of large numbers for the sum (6), i. e. that for almost all X lim Vq,,—e

11-—»0)

* (Theorem 3). In § 4 we give some inequalities which are used in §5 to
prove the law of the iterated logarlthm for the sums (6), i. e.- that for almost

all x hm ,Io_gc_]:__ —41 and lim Mlzm—-l. (Theorem 4). -
o [2nloglogn > J2nloglogn |

Theorems 2, 3,and 4 are not new. Theorem 3 has been stated wrthout proof
in a short note by E. BOREL? in 1947 ([3]; see also [4]. In the same year,

in his paper [5] P. LEvy -announced Theorems 2 and 4. P. Levy sketched
also the proof of these theorems, as well as that of Theorem 3. He. pointed
out that if x is umformly distributed. in the interval (0, 1) the random vari-
ables &y — — log [(gn(X)—1)ra(®)] (n=1,2,...) are exactly exponentially -
drstrrbuted with mean 1, and they are also a most (but not exactly) indepen-
q,,+1(x}
7:(x)

for large n the same holds for these ' quantities too, and this is the' real
ground — as pomted out above — -of the vahdrty of Theorems 2,3 and 4.

dent As §n+1 is with probability. near to 1 very near to xn+1—~]og

! In a recent 'paper [2] one of the authors considered the metrical theory of a gene-
ral class of representations of real numbers, but the representatlons by means of Engel’s and
. Sylvester’s series do not belong to the class of representations considered in [2] They
belong, however, fo the class of representatrons considered by L. Bera [16]-

. 2 Borew called Engel's series of the first kind “développement unitaire normal”,
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However, P. LEvy did not go into details. It seems to us that — owing to
the fact that the variables {-mﬂ are not exactly mdependent these details
(especially in case of the law of the iterated logarithm) would be rather
~ cumbersome. Therefore we thought it worth while to work out ‘detailed proofs
of these theorems. We have chosen a way which is different from that of
Ltvy, as we made ample use of the explicit formulae given in § 1 for the
probability distribution of g, resp. the conditional probability distribution of .
Gnins When-the value of g,. is fixed.  Besides these formulae we utilised also
the remark, made in § 1 that the random' variables ¢, form a Markov chain.
"In § 6 we consider Sylvester’s series (called also “Engel’s series of the
second kind”, see the first edition of {1] , :
Sylvester’s series® of a-real number x (0 < x < 1) is

D | gttt

- where Q,, Qg_,.., ar_*e‘_posxtwe integers, defined as follows:
- We denote by T.x the transformation
(8) | ' S Tgic',—:_x—"——]—- ] | O<x<1).

I

We define the sequence R.(x) by the recursion

© Ro(x) =1, Ru(x)=ToR.(x) (=0, 1,."‘.1.) '
and put . o o -
'(IO) » _ .‘ Qn+1 - Qn+1 (x) —"g m (Il = O, 'lr ' )

lt is easy to.see that: Ql =2 and Q,m Q,I(Q.nw-—l)—;-l (n=12..).
—b—, then Tyx=— % with o' <a; thus
R,(x)=0 for some » énd ﬁ]e—refore'-every rational number % has a finite

Clearly, if x. is rafional, X =

' rep‘resentaﬁon —a—. Q ~|— e —— Q For irrational values of x we
. . 1 . 2! .
~ have lim Qn(x)——.—l—oo and ' |

. > ;"

(”) - o Rﬂ(x): Q: 1- + Qvlz+2"ﬂ-.;., (n=0‘,ll,...), |

Puttmg X ﬂlog Q,, X,— log—— Q”‘ (n=23,..) we shall 'see"that
’ n—l
the random variables, Xn are in a certam sense “alrhost independent and

»_3 szsmk [6] called the expansion (7) a “sontes". See also {7] for further bibliography.
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a]most identically distributed. Thus we obtain (Theorem 5.) that the central
limit theorem holds for

\ Q.
12 : Y.=log X X,.
() Q.. Qn1 1 Aa +
As regards Q, we shall prove (Theorem 6) that the limit lim lognQ_”
n->0

exists for almost all x, but its value may depend on x.
These results cencerning Q. are according to our knowledge new,
In § 7, some number-theoretic questions concerning Engel's and Syl-
vester's series are discussed, and some unsolved problems are mentioned.

§ 1. Fundamental identities for Engel’s series

In what follows we shall interpret the Lebesgue measure of the set of
those real numbers x (0 <x < 1) for which some relation concerning the
sequence ¢, = g.(x) holds, as the probability of the relation in question, and
shall denote it by P(...), where in.the bracket the relation in question will
be indicated. The conditional probability of A with respect to the condition
B will be denoted by P(A|B).

As clearly g, =qgu(x)=k (k=2,3,..) if and only if x is lying in
some interval :

. 1 -
qlqﬂL +E Qoo Quik— +q q2+ +q Q2. Gu-1(k—1)’
where 2 =G =Q=-=g,.1=k and these intervals do not overlap, we

have

—+

N - 1
1) p()=PE@a=B= p P——
D pB=PO=B =0y, cotee =2 0102 0

Similarly we obtain that the conditional probability of the joint occurrence

of quir1 =4ky, Guiree=kz, . . ., @ures =4k, under the condition that the values
of ¢1,¢s,...,qn are given, is
(1.2) | P(qnw,z—kl, 1=i=sig, .., q)=

- kI k‘? s k (k ’"""l) q,=4q ;1§;_.qn+r_h Ju1qni2+ o« Guir

f2=q=q=-=q.=h <k2 ceo= ke (For r=—0 the empty sum is
-to be replaced by 1.)

' As the conditional probability (1.2) does not depend on the values of
q1,92,...,qn-y (only on the value of ¢,) and it does not depend on the
number n either, the sequence q., considered as a sequence of random vari-



ON ENGEL’S AND SYLVESTER’S SERIES ) 11

ables on the probability space furnished by the interval (0, 1) the probability
measure being the "Lebesgue measure, is a homogeneous Markov chain. The |
transition probabilities of this Markov ohain can be obtained for r=0, s=1
from (1.2) and are given -by
. F—1
(1.3) %I»zp(qn-{-l:k‘qnzf):%-_(]k_‘_)" (I{ ]>2)
It follows that the probabilities p,.(k) can be obtained by the followmg

recursion formulae

(1.4 A= k@ G2,

1 _ ‘
. Pn(k) = m é: (—Dpua(l)  (k,n=23,...).
From (1.1) we obtain : .

- 1 LA
1.5 (k) x" 1= - .
Substituting x==1 into (1. 5) it follows that
8 1

o] - ) . ’
2 pa(k) is clearly the mean value of the number of occurrences of the digit
n=1 ’

k in the sequence ¢,¢y,...,¢n,.... It is easy to determine also the
probability ¢, that the number k occurs at least once in the sequence
Qi Ges e sy We have
1 g
1.7 = k(k— )( 1;)‘2‘:;11@ %"_1__191111170 %-1)
- 1 g1 _1
= A
J

(In (1.7).we considered the fzrst occurrence of £ in the sequence ¢,, there-
fore we supposed g..1 = k—1 instead of g, = k.) .
. We may calculate samﬂarly the probability e.(r) that the dlglt k occurs
exactly r times (r==0, 1,...) in the sequence Gn- We obtain

THEOREM ‘1. The probability . that the dzgzt k occurs exactly r times in
the sequence g.(x) is given*by

(1.8) e =5

k'l"-i—l

(r=0,1,...; k=2,3,..)).
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Usmg (1. 5) we . may obtain an explicit formula for p,,,(k) Takmg into
account that

k _2 __ 3
(1.9) Il —Zk(k 1)( )( Iy
. =g X J—x
we obtain _— 2
o —2) (—1)i2

(1. 10) ,mm_z(zyﬂ).

: = \J— J
As .

1 1
(.11) ~ DT f e -du,
it follows from (1. 10} that
(]. 12) | - pn(k) (ﬂ l)' Jun le_cm(l__e )L zdu
' Putting S _ _
(1.13) Wn(k)zz;k A0)
and . »
(1.14) ()= 2 pu(D),
we obtain from (1.12) N
(1.15) Wi () — (n 1)| J'an-le-u(lu_e-u)m-ldu
and ' |
(. 16) S,l(k) — T"EW J un-le—w[l-e.(l__e-u)t'sl—i]du.

Slmllar formulae can be found for the cond1t10nal probabilities

- .mMM—P@m—M%—nm
(S D
A k(k—l)sz,fz,gzgl =k bl hiy 3

(pa(k|)) does not depend on m accordmg to the homogenelty of ‘the Markov

chain ¢.). .
We obtam ) ' '
(!-18‘) Zpa(klﬂx“ =1 ﬁ L
o A TRED S
. - U
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A » ' ’ A » ] s
e wE
| | (‘-*‘7{) T
we -obtain | : 5
(1.20) pn(ku) ( ) g(k—]) (thn)- |

It follows by (1. 11) that 7 | |
. | . _
(1.21) pulklf) = ( 1 = ( )J\Hu 1p- Jll(l__e—z|)k~'7du

(we have ev1dently Pulk}2)=p.(k); therefore putting j =2 (1. 20) resp. (1. 21)
reduce to (1. 10) resp. (1. 12)). :
Here. and in what follows we shall - denote by M(C) the mean value of

G, i.e. we put M) = Jﬁ(x)dx for £==C(x). - We shall further denote by

: M(Q[B) the condltlonal mean value of the random variable { with respect to
the condition B. We shall now prove

. LEMMA 1 M(log g») =n—y+ 0(1) where y is Eulers constant.*
PROOF Let us consider @,,— 1- -|- + - + . We have by (1.12)

o

(1.22) M(;n)‘ ‘U,fuu 1e~2u(2(1+ oo )(1—-_e-u)?}dt;t

As g, tends wnth probab;hty 1 to +oo and as well known
it-follows that RO
(.23~ P(lim(log g, —C)=—y)=1.

n—>wm .

(1. 22) and (1 23) together prove Lemma 1.

4 It is clear from (1. 12) that M(g,)= + .
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§ 2. The central limit theorem for Engél’s series

In this § we shall need the following
3 pa(R) (_3_)" _
. LEMMA 2. %k—l—lé T =12_.).
PROOF. Taking into account that by virtue of (1.4)
Zk+1 g1+1 o7 ) 4 =7 for =2
we obtain that ‘

Q
,,(k) - pr-1(1)
kzk+1 —T% [+1

pi(k)
As & +1
THEOREM 2 (P. LEvy). 1'or any real y we have

. log ¢n— =
limP ( "< y) j d .
n—>o - V A l/ :

= —, our Lemma follows. Now we can prove

. By other words log l‘% is in the limit normally distributed Jor n— oo,
PROOF. Let us put
(2; 1) T ox=logq, -xn#log-%l— (n=23...)
’ ‘ . -
and . _ :
(22) o yﬂ=lpgqﬂ=x1+x2+“‘+xn;
further : ’
_ o . Ty
@.3)  gult) =M(em) = [etosa g,

0
To prove Theorem 2 it suffices to show (see e. g. [8]) that

L -z
(2.4) S - lim 99,,( t__)e'“V"=e .
. N> n g
for any real £. Let us put. ‘
: [+ ]

1
First we shall show that

@6 lnO—yOn. 1(t)|<(3+2ifl)(3)m =23
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This can be obtained as folldws. We have

@.7) galt) =2 prr(DM(eE | gy 1 = 1)
and thus by (1. 3) - ,
itlo k l—l
.9 7= 3p.. l(z)emogl(g T k(k_l))-
As :
' k
T .
. itlog Z‘ 1) l o J ztlog l itlog e E
@9 lZ | k(k —¥(t) ——+ k_Z, T
_T
and as for k_l—1 éxg% and k=141 we have
R
| ‘e l_e“og é k____l g l+1 ,
it follows that _
| S oy (I—1) 3+2)t
(2.10) %e k(k ¢(t)| 1
Thus, taking into account that
(2.11) gty = ZPn 1(1)"‘“"5’
it follows from (2.8) and (2. 10) that
& el
(2.12) 7= Ou1(0)] 5 B+21t) 3 L

Applying Lemma 2 we obtain (2.6). Let us apply (2 6) for n—r mstead
of n and multiply it by w(f). It follows

f-7~1
(2.13) ¥ O Prr (O — P O s ()] = B+ 2]8]) (%)
Adding'(2. 13) for r=0, 1, +-yR—m—1 we obtain.

(2 1-4) : I‘Pn(t) Y (Dt = (12+8|ﬂ) ( )m

Now we have clearly for any flxed value of m

TR n

@215 o ,]im¢(—vt:) o7 gt
‘and | | |

' ‘ . -
(2.16 . lime,|[-—=|=1
e e[
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t 3 )’" g
~iVn__ p-z2 | =< 12
9""(1/11 )e ¢ l (4 '

As we may choose the value of m arbitrarily large we obtam (2 4) Thus
Theorem 1 is proved.

4 It can be ‘seen from the proof that the random vanables x, behave app-
roximately as if they were independent and distributed according to the
exponential distribution with mean 1. The latter assertion can be expressed

and- therefore o
2.17) ~ lim sup

n— co

also by saying that 2*1 is for 71— o in the Nmit uniformly .distributed -in
y saying ™~ ‘ i y .dis

the interval (0, 1). This result can be deduced also directly from the remark
of P. LEvy mentioned in the introduction, that the random variable
(gn(x)—1)ru(x) is exactly uniformly distributed in the interval (0, 1).

§ 3. The strong law of large numbers for Engel’s series

In this § we give a short proof of the following Theorem 3, which has
been announced without proof by E. BoreL [3]. Though Theorem 3 is con-
tained in Theorem 4 (the law of the iterated logarithm), we thought it worth
while to give a direct proof of Theorem 3 because the proof of Theorem 4
is rather compllcated

. THEOREM 3. (E. BOREL). For almost all x lim VE._e

">

 PROOF. Let us choose an arbitrary ¢>0. We start 'from the formula
(1. 15). We have evidently for >0 S

@ 1) Wa(k) = e-’f=’+(T_1—le J u-ievdu,
. h - . log(k-1)-¢ '
Thus if k~— e”(1+*~’) 'r,——log log k and n = n,(s) we obtam
Wn(k)___ k+( )’ J‘ L[ﬂ 1e udu

o (142)

- 1 ' n-1 : , . - .
As (n—1)1 < ( nf—l) -, and ve'™ is decreasing and <1 for v>1, it follows

- ]

RISy P

» l+—
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-_Thus we obtam ‘

LEMMA 3. There exists for any &> 0 a number ql(s) for which
0<q,(e)<1 and

32 Waem) s=(@@) for n= nl(e)..
| Clearly for g,(s) we may take any number satisfying |

maX(1 (1 + )e“‘”g)i aE <1
Similarly we prove R -

LEmMA 4. To any & (0 <E< 1) there exzsts a number qg(s) such tizati
O<qu(s) <1 and

@3  Su(et9) <gi(e) for n = m).
As a matter of . fact we - have by (1. 16) for 7> 0.
I logiute |
1 -l gt ot _- _‘
(3 4) | Sﬂ (k) = (ﬂ ])' f ue dU Je .

- Choosing ,T:E', as ,.vel"’ is increasing and < 1 for 0'< v < 1 it follows that
g 2 and. _ hat

. Nn-1 . .
- Sn (e"(1 f)) = 2en ((1 — "%) e?ﬂ)_ ‘..if n = ny(e),
~which proves (3. 3).. : S
1t follows from- Lemma 3 resp. Lemma 4 that the serles

(3.5) Z ~P,(V§fm > e+,
. —1 - .
resp. the series | ' o
(3.6) 2 P(/g.<e)

are convergent for any 2 >0 Therefore for every ¢>0 for almost all x the
inequalities - ‘

(3.7) _ | e“<V—<e“" |
“are valid, except for a finite number of values of n. T hlS proves T heorem 3.
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§ 4. Some inequalities

In what follows ¢y, ¢,, ... denote positive absolqté'constants.

-

LEMMA 5. :
- k 1 \7i-1 )
" (27) G=n
PROOF. ‘We have
| | RGN RUS S 1 1
4.2 (n—1)! (2 ) 7aj+...+2%;n-1 ol el JULER
T im== = hb.

With respect to (1. 17) this proves Lemma 5.
LEMMA 6. If k=e™V% where 0 <x<n' we have

' ¢ e_% _i-
4.3) = Wa) =25
LEMMA T7. 1f k—e" -zVn where 0 < x <n'fl, we have
. _»,;2 22 '
. - g -
A 4 . Cx <sm “i.

PROOF OF LEMMAS 6 AND 7. We have from (1. 15) resp. (1. 16)

@.5 - Gy (n—l)! Ju" 1e'“du = W (%),
o ] logk
1esp.
_ ’ Iogk '
(4 6) (n—ll)' Jun levdy < §, (k)

From (3 1) (3 4) (4.5) and 4. 6) the assertions of Lemmas 6 and 7 follow
easily taking into account th_at by the ‘method of. Laplace we obtain

11 co ] ® A
u‘n-l.e-u-du ~ — ‘e-u2/2da :
@D m~n|f | thJ- |
T ' . n+a:Yn . = . :
for n— oo and 0 <x<n', further -

m .
. e"“’/zd un~

Gatele | V_ V2_7?x

e  for x4 oco.



ON ENGEL'S AND SYLVESTER'S SERIES 19

" LEMMA 8. For log —g—'—n =Vniogn .
€y wezam(f)
 LEmMA 9. For ‘log—lj{—_’-n <Vn logn
@1 s@)=zas W(5)

PROOF OF LEMMAS 8 AND 9. By Lemma 5

(4':1 1‘) W"(k’])z" l)l pr h(h“"l) - (n_l)'

h

@iy sn(ku)g?a—f—f%)'—i‘ f ey,
3 N \ : 0 ., N

from which by (3. 4) the assertion of Lemma 9 follows. -
- The asymptottc behaviour of *p.(k) resp. pa(k|j) has been con&dered
more thoroughly by A BEKF.SSY [9]. He proved e. g. that

N . N 2 (log K"
@13 i r( = —1) e
for —2—]%—;]‘— __ q <1. For our purposes, however, the estimates given in this

§ are sufficient. -

".§’5.-The law of the iterated log‘érithm-"

"Now we are in the posmon to prove

THEOREM 4. (P LEW) For almost all-x (O<x< 1) we have
-~ log gn—N ' :
~ lim su =1
(5 no n?wp V2n]oglogn o
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- and

_ . log g.—n |
5.2 lim inf t—— == —1.
¢ ') . R+ |/2nloglogn

PROOF We prove first that for aimost all X

(6.3) | lim su log ¢, —n = 1
) _ nsup V2nloglogn
and '
N log g.—n :

ey ]L‘l’fj.?f V2nloglogn -

. For this purpose it suffices to show that the mequalltres

: o - log gn—

5.5 o = > -0
.( -,) I/anoglogn +e
resp. o

G.6) o loggn—n gy

o V2nloglogn - -

are satlsfred for almost all x for a finite number of values of n only, for -
any d > 0. The proof of this given. below follows essentially that of the paper
{10] for the ordmary law of the 1terated logarithm.” Let us put m, =[(1-¢)']

where O<ex 9. lt follows by Lemmas 6 and T that the series

27
e log G, — M,

5.7) P( AN | )
( ) ' S v;; VZmulogiogm,, ' _H?
resp. o , .
. ' ' ) e iqu'm my o ) h
5.8 ‘ : P( <—1—7n
-8 HZ: lf2m,,loglogmn "

are convergent if 1 >0.
- 'We shall prove in detail only the assertron concerning the inequality
(5.5) as the proof for (5. 6) is exactly the same. Let us denote by Ax(0) the-
log gv—k -
V2kloglogk
contrary to A put B — A, (o) further

B("’ A. (d) A 1(6) Ak(d) for k> m,.

event

>1-4-d.. Let us denote for any event A by A the event

" 5 As, however, we do not consider here for an arbltrary func’rron o(n) whether the in-

equahty log qﬂ——n > Vagln) p(n) is’ satisfied for almost all x for a finite or an infinite number

of values’ of n, but restrict ourselves to the case rp(n)—_—2(1+ d) log log n, we may take
n

m,=|(1 } &)"] instead of mn.-‘..[elb_g’?] needed in ,the general case.
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(Here and-in what follows thé product of events denotes the joint occurrence
of the events in question.) The events BY” (k= m,) clearly exclude each other,
as BY” means that k is the first index =m, for which A,(d) takes place. if
the sum of events means that at least one of the events occurs, then we have
evidently for any l>mn ~

Z B"” éj Ai(9).

. . k_.m kzmh ] _ )
If our assertion concerning (5.5) would not hold, i.e. if (5.5) would be
satisfied for an infinity of values of n for all x belonging to a set having

positive measure, we could find a constant ¢ >0 and for any positive integer
M an other integer N >M such that

o( X aw)ze>0

k—_m»{ .
(c does not depend on M). Let us denote for m,=k<m.. by D, the
event that _ '
108 @, g — Mus2 = loqu—-—k

‘-_Clearly the jdint occurrénce of the eventsv_B and ‘D, . implies the occurrence'
Of Ay o(m) if (140) > (1 4m) (1+e).

If 0 < 0 <1 and we choose 0 < & < 9 and 0 < n<— 9 then this condition

. 2 4’
is clearly satisfied and we obtain

_ ‘ My gy-l S )
6.9 PA )z 2 PO.BEN= 2 P )P (D, BY).

But, as gi is a Markov chain,
(5.10) P(D..B™= - Min P, g = ])

log j > k+(14+8) V 2k log log %

. and by Lemma 8

(5 11) : B P(D,, ;,,{q;g—j)—&WmMg k( m"‘"’ﬂ k)
‘Thus | _
(.12) h P(D,:| B =y > 0o

and therefore by (5. 9)

619 ZPun.mza S pE) (S 40)

---THH ——mﬂ[
It follows that for any M there can be found a number N such that
e

6.14). 2 Ple )= e >0,
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But this is a contradiction because the series (5.7) is convergent. Thus our
assertion that for almost all x (5.5) is satisfied-only for a finite number of
values of n is proved. :
The corresponding statement for (5 6) is proved. 31m1]ariy The. only
difference consists in that we need here Lemma 9 instead of Lemma 8.
‘Now we turn to the proof of the other part of the theorem, i. e. we
prove that

- log qn%n :
5.15 —————>]—0
(5-19) V2nloglogn - |
resp.

. logg.—n
5. 16 , —2———<—140
(5.10) V2nlog log n +

are both satisfied for any ;nfmlty of values of n, for almost all x, if 0>0, "
which 1mpi1es

(5.17) lim 28—

v

1
nso |2nloglogn
resp.
G.18) C lim B

e J/2nloglog n
for almost all x.
We choose a ¢ >1, the value of whlch will be fixed later, and put
m,=={g"]. We denote by C,,(d) the event that the 1nequa11ty

(5.19) R L L'l P S

‘ V2nloglogn
does not hold. Let us 'coriside'r ‘the probability
6.2 P(L] @)~ P(Cox® LIP(Coon @ | L] T

'If we can prove that this probability may be made arbltranly small for any
.M by choosing N sufficiently large, this 1mphes that the measure of the set
.of those x for Wthh '

- oggm—ma -
(5.21) 1l Bl <1—d for nzM,
: : V2mai1log logm,. '

-is equal to O for any M.
.As we already know that the set of those x for whlch

10g G~ |

V2m.log log m.,

<—l—0 -
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-for n>M has the measure O, 1t follows that the set for wh1ch -
log Gm,—
V2malog log m,,

for n>M has also the measure O, and this is what we want to prove
Now we have cleariy, as q,, is a Markov chain,

<1—d

G2 ( Co (a) ﬂ ka(d)) Lo,

where = . o 1

'(5. 23)_ R WEEE ]M_ax‘  P(Cory O g = 1),
" : “1-3< Bl 1s ' ' '

V2m, loglog m,, ,
We now try to obtain an es’amate from ~above for /’l,hq We have clearly,
putting _ | S
: (5 24) h - kﬂ e’”n-;-l“‘ﬂ 8yYom, 1 loglogm,, +l

(5 25) . ‘ P (Cmnﬂ(d)lqmn ]n) Wmﬁ+1 mn(k“ I] ")

We shall give an 'estimate from below for the nght hand side of (5 25).
By Lemma 8 we obtam, puttmg T = Myy1— M,

kn l o
;(5" ). M o Wl "? =6 W?'ﬂ( gn-(+0)V2my, Tog log m, )

logjp-my
el S <1
: V2mn log iog m,,

1f. q is sufﬁcxenﬂy large, then _ -
‘log kn—m, 4+ (1 —|— 6) VZmn log log M, < ¥y, + (l — %) V?Un log log v,

and in ‘this case

‘ - ' f "B T & l Uy |
6. 27) | _ }m <]——C7 Wv ( +(1 )V2 log og )
As it follows by some easy calculatlon from Lemma 6 that the series

Z W ( ﬂ+(1 ——) lDunlog log v,,)

n=1 -

is. d:vergen'r our assertlon that -

lim P( H é,,.k (d)) v

N+m

_foi!ows “This proves (5. 17); clear]y (5. 18) can be proved in the same way,
- Thus Theorem 4 is completely proved :

We do not consider “here the obvnous generahzahons of Theorem 4 -
though they may be treated in the same way (see footnote ).
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§ 6. Sylvester’s series

In this § we consider Sylvester's series (Engel’s series of the second
kind) for a real number x (0 < x<1) :

| | R S ST S
6.1) wa1 'Q+ +Q

We investigate some metrical properties of the denominators Q,. Q.,(x)
We have clearly : -

Qn}l = Qi;(Qgg—.l-) ‘I“ 1
and _ S -
. | o . |
- . p —— — '
(6 3) (Ql kl; ey Qﬂ ) kn(ku—i) 3
provided that k=2 -and km";“‘k ki—1)4-1 (i-—-l, 2,...,n—1). Thus if"
these inequalities are satisfied, o B '
' _A : P(Q“—k |Q1_k1) v ;'Qn—l‘:kn.'—l):

kn—l(kn-l_l)' B

6. 4) ' |
(- ) = P(Qn = kﬂ|-Q“‘1 = k"_l) - kﬁ (kn""l)

Thus the sequence Qu(x) is a lzomogerzeous Markov chain, whose transition
probabilities are given by '
1)

(6 5) | - JL—P(Qn"'“len 1= ]) -)égf 1)

if j=2 and k>j(j-—~1)-{—1
"It follows that putting P,(k)=P(Q.=1£k) we have the recursion rela- -

tions

©.0 PW= A= 1)) Pui(l)-

Therefore ' |

en E-3n0, 3 HEY Sl
and ‘és 3G _'_{H_ 2'2 for j:i:ZI;t follows |

‘Therefore as P, (k) m—ﬁk%l‘)ﬂ ,' we .ob‘téin_ :
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(2 )ﬂ.
: 3/
Let us put now

' O
(6. 9) ' @] (t) M(etﬂeg QI) and gD”’(t) - ( mog ~ On- 1) (n .: 2: 3, P -)..
By (6.3), putting :

LEMMA 10.

P.(k)

Mo

IIA

k

LS

i

rtlog—~
~ e
.10 ‘
(6 i ) 11”3({) 7‘>JU I)~H k(k_l)-,(] )
we have :
Fr-y
. . e;tlog————-———k‘h o
61D  PO=2 gy e O

"We obtain easily, similarly as in §2

(6.12) %m_wa o s i),

u‘ flog =

thus, putting again z,b(t) f dx, we have by Lemma 10

'(5-13) - %D(l‘)@n-l(l‘)ﬁzcu(z)(I-Hfl)

" Now we can apply the same method as in the. proof of Theorem 2, and
obtain thus - :

THEOREM 5. | _

(lOg Q QQ — ) 1 y_- u?
imP oo Xl <y )= J‘e_'_'-’-du ‘
n->® o V-n - y . Vé?[‘m

o .

for any real y, I e. iog Q is in tlze Izmzt norma[ly dzsfrzbuted 8

Qn—'
~ The result which we obtained is a consequence of the facts. which have
beer_l proved implicitly above, that the random variables X, == log Qi

n

8.Theorem 5-implies that Vﬁh&@_ tends in measure to e. More is true, namely
' S 1eeo™n-1 : - - '

.on

that V.Q'__%_f__.'mnd also almost everywhere to e. The proof will be published elsewhere.
¥ Qe @y ‘ | S :
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,Xn_log Q” (n=2,3,...) are in a certain sense almost independent and
: n-1-" :
‘the distribution of X, tends for n—oo to. the exponentlal drstrrbutron wrth
mean 1. The latter fact can be also deduced from the remark that Q.(Q.— l)R,,
s for every n exactly uniformly distributed in the interval (0, l) :

As regards Q,; 1tsell'- we can prove the followmg

THEOREM 6. TN -
' lim - log Qn(x) . : s o

) nro - 2
exzsts ana’ is fmzte and posztzve Jor almost all Xx.

PROOF We have
. log Q,.(x')_‘- v, Xa
£ A — | 2k .

M(rx,c|)<c13 ’(/c_rz )

1t follows by the theorem of B. Levi [11], that the . lrmlt in question exists
for almost all x. ‘It is easy to see that the limit is always positive. As a
“matter of fact, if the sequence Sy is defined by S, =2, 8,41 = Su(Su—1)+1,
then (as has been shown already by SYLVESTER) S,._Z"” 2 But Q,,(x) S’

and therefore g Q" ' 4 log2 (n_l 2 )

a'nd as

" '§ 7. Some number?th_eoretical' questions
Let a and b be posrtrve mtegers 0< —5<l It is well-known that '—g— '
can be represented in the form ' B | '

(7 1)

where §; <Sz< < Sy are posntrve integers. Such representatlons of rational
numbers . have been considered already by the Egyptians, more than 3500
years ago Denote by f(a, b) the smallest value of n, i.e. the length of the

.'a-

.

Sl+s+ +S’_

shortest representatron of “17 in the form (7. l) lf we- choose S, to be- the
1
3=

we have

smallest integer with 7)—,

any a4l
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with o ==aSl—b<a Thus f(a, b) a. P. ERDOS proved [12] that
: _ Cis log b
(7 3) ' “ —_ f(a b)< loglogb’
“but very llkely (7. 3) can be very much improved ; perhaps f(a,8) <culog logb
More can not be true, as it is known [8] that f(b—1, b) > log logb—1. '
It is known [13] that for infinitely many-b-s f(3, b) = 3. -STRAUSS and
ERDOS conjectured that f(4, b)<4 ad SCHINZEL and SIERP[NSKI con]ectured

- that f(e, n)=3 for all n> n,(a).
Cons1der now varlous special representatrons of the form (7 1. Fll’St

-of all consrder Sylvesters series of —b-— Denote by Ey(a, b) the ‘number of

terms occurring in this series. From (7.2) it follows that Ey(a, b)=a and it
is easy to see that this is best possible, since  Ey(a, a'—!—l)w—a We know
of .no good estimation _ of E,(a,b) in terms of b; the trivial >stxmat1on'
sz(a, b)<b is no doubt very far from being best possxble '

We remark that Ex(a, b)$f(a, b) e. g 2% TT5 5 3 _;_ + 180’

"1 e. £(9,20) =2 but-E,(9, 20)~_ ;
" In §6 we proved that g Q“ tends for almost all x to a- l1m1t where

Qn is the n-th denommator of the Sylvester S serles of x. It follows from the
' drvergence of the harmonic serles that no functlon F(x, n) can be given so

~that for any representatlon X= S + —|— i .. S ..., where S, is'a posi-
) T .

. tive’ mteger and Sn< Sn+1, we 'should have Sn = F(x, n). But it seeméd p[_)sv..t
~ sible that for any such representatlon B ' o

.4 - . =Qu(®)

| mhmtely often. Now we show that (7 4)'is not always true Let ny tend to.

) + o0 suff1c1ently fast and put L
| g; (2"7; an“l‘ 1 )

.,- l,et 2hk+ TS B - +:9_m; be the Sylvesters ‘series of -———+

N TES
2nk+1>(S;,zk) then ZZH-- is the Sylvesters series of x and clearly here

k=1i=1 Okl

| Qn(x)<Sn for all sufficiently large n. lt seems that (7 4) fails for -almost
all x.

A s:mple computahon ‘shows that I, >2 if nk>l and 1f
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It follows from the fact that a given x can not be approxxmated arbit-
ranly well by rational numbers with denominator =<y that there exists for

2]

"every.,x a function G(x, n) so that if x——_Z , then Sn< G(x, n) mfmltely-

. k=1 I

‘often. 1t is easy to find such a function G(x, n) for almost all x; e. g for
almost all x G(x,n)=(3-¢)?" has the mentioned property if ¢ >0, but it
- seems difficult to give a good estimation for the smallest such function.
Thus in partlcular we could not decide whether for almost ail x there exists

a- series x== Z y (S. pos1t_1ve integer, S, < Sp1)- So-‘that
k=l i : o

lim “log S,
Case - 2" .
_ S1m11ar algonthms like that leadmg to Sylvesters series can be defined.
by feplacmg the harmonic seriés by some other series of posmve terms (see
“e. g. [14]). For these algorithms similar questions can be asked.
Now we consider Engel’s series of the first kind of rahonal numbers,
that s’ the representation S
' a -
: b ,N + Gh(]’z + +q1q9 ‘I
Put E,(a, b)=n. We have no non-trmal estimation of El(a b). Clearly qnmb
‘and the -same value of g; can not occur too often;.in this way one can
obtain a very poor upper bound for E.(a, b). Here too it would be interest--
ing to estimate Ei(a, b) in terms of ‘both a and b E,(a, b)=a can be proved
as follows: ‘ :

.__—I—co

a "1 a

b Q1 'bql

where ¢’ - aql-wb <a.

As r, (%) ——%—, it is clear that E (a, b)fsa _

Often E.(a, b)= E.(qa, b) e. g E(3,4)=E@B, 4= 2 but E1(21 32)=3,
Ex(21,32) =4 and E(5,6)=3, E,(5, 6)==2; thus in general there is no
simple inequality between the two numbers - :

Denote by D(a, b) the smallest» n for‘ which % has a i'ep'reséntation s

L t'a_'_‘l B 1
(1.5). T d+d1do+ s ad;. . d,

where d,, d;, ..., d, are integers d, =2 (n--l 2 ..). Often D(a, b)< E, (a, b).
o lEx s 1rrat10nal -and’ :

' . i 1 '
@ ,"fz"_“—d,dz.,.a,u'
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where ¢, is an integer d, =2 (nvl 2,:..), it is easy to give a function
H(x, n) so that for almost all x d,d,...d. < H(x, n) for all.n>ny(x), but it
seems hard to give a good estimation for a function H(n) so that for almost'
all x and n>n, we have did,.. d,,<H(n)

1
k
can be written in the form (7.6) with 2<d,p£k—l—1

It is not d;fflcult to see that every x for which -——=x=1 (k=3 imeger)

As a matter of fact if %<x<——1— where 7 is an mteger 2< V<k

then let us "put dl(x)*v-H if #>2 or if =2 and —},_x<7+2k nd

di(x) = 2 if x=1. Then putting rl(x)—wdl(x)x——l we have always |

2+2k~

— = () =1; we define dy(x) — d,(rl(x)) and r,(x) = 4,91 and so on.

Thus -we obtam the representatlon . ,
R i 1 1 ‘
7. T X == .
.7 =a4® +d1(x) dg(x)+ ot AGRTACH +
where 2=d,(xX)=k+1. -~ | . .
A simple modlﬁcatlon of the above argument shows that every x
(0<x<1) can be written in the form

(1.8) "x=27&'—3-_d-—,with' 2‘gdn§4for_nzz.
: ) 142 . . '

n=l -

‘As a matter of fact 1f _1—<x<;~]—— where v>2 is an integer, then

—

two cases are possible: elther r=3, then as shown above ‘x has a repre-
sentation (7.8) with 2=d,=4, for n*l 2,...; on the other hand if ¥>3

then %<(2v——2)x——-1<1 and thus x has ‘the representahon ('7 8) W1th.

2=d,=4 (n=2,3,...) and d, =2v—2. .
| If we require in (7.6) d,=2 or d, =3 for n=1,2,.:. it is easy to
see that the measure of the set of those numbers for Wthh such a repre—
sentation exists, is 0. '

Let us consider namely ail numbers of the form (1.5) where dv=20r
3 (k=1,2,..). As for each x which has the representation (7.6) with -
dy=2 or 3 (n==1,2,...) where d,,d,, ..., d~ ‘are fixed, is contained in an
interval of length (24,...dx)”", the set of all numbers x which have such
a representation is covered by a set of intervals, the sum. of length of which

does not exceed (—;——!—%) . Thus this set has the measure 0.
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It would be interesting to determine the greatest value of @ such that
for almost all x and. any representatlon of x in the form (7 8), putting

D ,-—dld2 < we: have lim VD,, . A modification of the above argument

M—P(D

shows that there ex1sts stuch a 8>2; more exacﬂy& we shall show that-we
may take #=2"=.3", This can be shown as follows. The set of those-
numbers x, which have a representation of the form (7.8) where d., ..., dyer

Thus all those

are fixed, is contained in an interval of th'e length —~— 2
3‘511 dN+1

" numbers x, which have a representatlon of the above form such that d,=j
al_adl between the numbers d, ..., dy,; not more than cAN are different from 2,
where ¢ <1, are covered by a set of intervals with total length .

Lv©= 3/ (S) 2 (’2’) (173) (163)N |

Now it is easy to show (see e. g. [15] p. 405) that if 0<p<1 g=1—p
: and 0 <e<p, then

L T

) k<(pu£)N

(’:) Pz ”( =)

Thus it follows that for ¢ =

L (1) (85293) 2. .
“M\13) =\87924) '3;-
‘Thus the set of those numbers x - which - have a representatlon (7 8)

in which puttmg D =d, d2 dn, we have lim VD < 3/‘92 hs has measure 0

n—> m

It follows that for almost all x lim VD,;EZ%S % which was to be proved. -

n—)—w ,

Now we construct an x (0<x<1) for Wthh
9 7 | - »'x='Zl,'
- : ’ n=l1 £n

where D,= 2 is an mteger D, /D,,+1 and Doy =D2 i e (7. 9) is the Engel's
series and at the same time 'the Sylvesz‘ers series of x and is such that for.
every k - '

PR U 1) Ly
( ) Mll’l Eoq A'[x ZS@ - x ZD; _
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From this it will be easy to deduce that if
(7.11) x=1
: R Sn )
is any other representation of x such that the S, are mtegers S,,.H_Sn, then
S. =D, infinitely often’ (we showed previously that this is not true for all x).
We construct the D, mductwely Put” DI-—Z let Dg—le be so large

that ——+—- is much less than every —]— > ~1—- wrth a=FD, [,,much less®

means-%-}- 2 <i+%); then choose D, =D, so large that ——}——1——+—]—
1 : 8
is much less than every —+ —|—-—- —11—5--{—;) with azl:D1 or b==D,.

2

This construction clearly glves an x with the required properties.
Let : |

, - @ 1.
7'12 p——— ——
T2 =D

n

be Sylvester’s series of x and (7.11) another representation of x. Is it true
that for almost all x (7.10) holds for infinitely many £? (Our construction
gives only a set of measure O of such numbers x for which this is true.)
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