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Introduction

We shall consider representations of a real number si by infinite iteration
of a positive function y —f(x) in the form of the “/-expansion”

(1) x — D+/([I+[(*s+/(**H )eey)
where the “digits” i,,= é,x) (n 0,1,...) and the “remainders”
(2) r,(xX) =/(&,H-1-/(s, 2+ [ (S Ks-i-—-)o o) (n 0,1...}

are defined by the following recursive relations:

o) = [x], mx) (),
) = L)), riH(x) = (7>(.(x)) (h 0.1,..)

where [r] denotes the integral part and (r) the fractional part of the real
number z and x  y(y) is the inverse function of y=1f(x). In § 1we shall
investigate what conditions imposed on the function f(x) are sufficient to
ensure that every real number x should have a representation in the form of
the /-expansion (1).1

The representation (1) reduces for /(x) 2,3,...) to the -adic

expansion x = and for /(x) — to the continued fraction repre-
n=to Q X

sentation of x. The case when /(x) is a general decreasing function has been
considered previously by B. H. Bissinger [1]. Our treatment is still more
general than his, since we do not suppose the unnecessary condition that
f(x) is positive for any x 1 (i. e. that rp(0)= + =»). The case when /(X)
is a general increasing function has been considered previously by C. 1 Eve-
rett [2]. He supposed the unnecessary condition that (1) is an integer.
We shall not need this restriction. The principal aim of the present paper,
however, is not this generalization of the conditions ensuring the validity of

1 If for some n we have F{ X ) o, then rmHaX) and *+do(x) are not defined for
K 1,2,..., and x has the finite representation X {0+ /(ei+ + eee+ f(en) mmw)
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the representation (1). but to prove some theorems on the ergodic properties
of the digits ?,,(x) and the remainders r,,(x) which contain as special cases
the well-known theorems on ~-adic expansions and on continued fractions,
respectively (see [5]—[15]). To obtain such theorems we have to impose
some additional restrictions on f(x).

The mentioned ergodic properties of an “/-expansion (1) with indepen-
dent digits” will be investigated in 8 2. In § 3 we consider some examples
in which our general theorem is applicable; g-adic expansions, continued
fractions and the algorithm of W. Bolyai (see [2], [3], [4]). In 8 4 we con-
sider a class of /-expansions, called /i-adic expansions (8> 1 not an inte-
ger), to which our theorem can not be applied, but another method leads to
the same conclusion. -

8 1. Representation theorems

A) We consider first the case when f(x) is a decreasing function. We
suppose
A) /()= 1-

We suppose further

A2) /(f) is positive, continuous and strictly decreasing for 1 f T
and f(t) Ofor t LUT where 2<T" f° (in case I - +°°> this means
that lim/(f)  0).

We distinguish three subcases:

A2) T =+ op; A2)2< T<+ and Tisan integer; A2) 2<T<+ °C
and T is not an integer.

Let us mention that B. H. Bissinger considered only the case A2,).

Following Bissinger, we suppose further that the following condition
is also satisfied: 1

A3) fit,)—/(f,); = |/ —f, for 1- /, </ and there is aconstant | such
that 0 < A< 1 and

TA)—I(F)IN [ —fF if 1+ /(2)</ <.
We shall prove that conditions Al), A2) and A3) imply that the repre-

sentation (1) is valid for any real x. (Clearly, it suffices to prove this for
0<x< 1 In what follows we shall always suppose therefore that 0 < x < 1)

- The assertions of Theorem 1 have been proved under somewhat more restrictive
suppositions and Theorem 2 has been announced without proof in a previous paper (in
Hungarian language) [16] of the author.

s This condition could be replaced by a less restrictive one as will be pointed out
below.
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Before proving this, we introduce some notations. Let us define

li(2.)  I(*i),
(L) z,mz) -f,-i(2,2, .. Z »Z 1+8z,))
forn 2 3,... . Let us put further
(1.2) C(a) /,(@(a),*(x) , e ()

where the digits *,(x), fAx),... are defined by the recursion (3). We shall
call C,(x) the «-th convergent of x. The validity of (1) means that either we
have r,(x) 0 for some n, in which case x /(*, +f(s-2+ eee+/(*»)...), or

(1.3) lim €,(9= x

We have to consider only the latter case when /,,(x)4;0 («= 1,2,...). We
have clearly (for 0 <x< 1

(1.4) x A, (fi(x), t.,(x), 1(a), f,,(X) + 1,,(X)).
Thus it follows

(1.5) x—C,,(x)=/,,(11x),..., $,(X) + 1,,(X)) —,, & (X),. .., &,(X)),
and therefore putting

(1.6) . = «K(X)+/,,-1,A(iv,+2(X),..., i,(X) + r,(X))
d

" K H-A(x) 165+2(%), . .., #,X)

for K= o,:...., n—1 we have

(1.7) x—C,(xX) r,,x) // /(»’L’lj\ai/’)

Now each factor on the right of (1. 7) has an absolute value not exceeding 1
We shall prove that from any two numbers
f(Uk)-f(n)

Uk— Vk UK\ ot I
at least one does not exceed /. As a matter of fact, we have

Uk = sferi+ /(242+ 1(aw )i

jik+ = Mot + [ (« .+ 2),
and similarly

VK= *+1+ [ (24 /("> +2)),
M+l = 6 2 + [ (* *+2).
Three cases are possible. If «s# 2 then U -=s2> 1+ /(2) and

CMr) < L feels 1

rk&2>1 +/(2) and thus by condition A3) I UK.
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_ - . N . .
and S = 2, then similarly we obtain Uet -041 l.. Finally, if
iAH= fk.= 1, then
ihr  1-h/(l +/(«fc)) 1+/(2)
n=1+/(I+/(t")) 1+/(2).

Thus our assertion is proved. It follows from (1.7) that

and

(1.8) \X—c,(X)| '

and (1.8) clearly implies (1.3).
The above proof is essentially that of Bissinger. By the same method
m -m

it can be shown that it suffices to suppose that U—U Al < 1 holds
for &>t 1 /rFwi(l, 1,..., ,2) for some r (r 1,2,3,...), because in
this case from 2r consecutive numbers Ul— rk | at least one does
not exceed I.
B) Now we consider the case when f(x) is increasing. We suppose
first of all
BI) /(0) - O.

We suppose further that the following condition is satisfied:

B2) /(/) is continuous and strictly increasing for 0~ tWUT and f(t) —-1
if t*T where 1<7' + °°, (In case T==+ o0, this means lim/(/)=1.)

i-»+co
We distinguish again three subcases: B2,), B23, B23) accordingly as
M=+ 00 T<+ o0 and T is an integer, T<+ < and T is notan integer,
respectively. Everett considered only the case B2.).

We need here also a condition on the slope - ~ -jAIl por example,

the following condition considered already by Everett is sufficient: 4

B3) 4 <1 for OsiU<U.

to
If BI), B2) and B3) are satisfied, then the /-expansion (1) is valid for
any real x. (We may suppose again 0<x< 1) Following Everett, this can
be shown as follows:
Clearly, the sequence C,,(x) (n 1,2,...) defined by (1.2) is non-
decreasing and the sequence D,,(x), where D,,(x) is defined as the least value
of C,,(x') which is greater than C,,(x) (or 1 if such an x! does not exist), is

4 This condition can be replaced by a weaker one, cf. [2].
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non-increasing and

(1.9) C,.(x) M x< D,,(x).
Thus

(1. 10) x = 1imC,,(x)
and o

(1.11) x = limA,(x)

always exist and x " xsi x. We have to prove that x= x= x for any X
{0 <x< 1). If this would not hold for all x in (0, 1), then there would exist
a finite or denumerable sequence of non-overlapping ,,gaps” (X, X) in the
unit interval, and thus there would exist an x for which x—x is maximal.
For this value of x we would have by condition B3) putting /'I(x) =y

7(e.(X)+ y)- /(*L(*)+T)V
17(e.(%) yy)_y( CITV <y —y

which contradicts our assumption that x—x is maximal. Thus we have
x=x=x forall x.r

The admissible values for t,(x) (n 1,2,...) are 1,2,... in case
A2),1,2,..., 7—1 in case A2;) and 1 2,...[7] in case A23, similarly
0,1,... in case B2]), further 0,1,..., 7—1 in case B23 and 0,1,...,[7]
in case B2)). Let us call a finite sequence ensit..., s, a canonical sequence
with respect to a given function /(x), which satisfies either conditions Al),
A2) and A3) or conditions BIl), B2) and B3), if there exists a number X
(O7™ixcl) such that fi(x)= sk (k 1,2,...,n). There is an essential dif-
ference for decreasing f(x) between the case when 7 is an integer or
7= 4-00 (cases A2) and A2,)) and, on the other hand, the case with a finite
non-integral 7 (case A2Y). This difference consists in that in the case of an
integer 7 or 7= + °o all finite sequences sl1s2 ...,s,, consisting of admis-
sible digits, i. e. all sequences of positive integers < 7 are canonical, while
in the case when 7 is not an integer this is not true. The same difference

(1 12

5 J. Czipszer remarked that the above method of the proof, due to Everett, may be
combined with the method of Bissinger in the case when f(x) is decreasing, and in this
way it can be shown that condition A3) can be replaced by the following weaker condition:

A3*) li(#0) —/ft) I=512-f, | for \-Sh<U
and

\f(U)—/(ti)|<]is—til if r—E</i< &
where r is the solution of the equation 1+ /(r) r and 0< r< i is arbitrary. The only
essential difference in the proof consists in that x and x are defined as x lim C,n(x)
W-> D

and Xx = I_!l)r/n C:ll+1(x), respectively.
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exists for increasing /(x) between the case when T is an integer or ' = + 00
(cases B2,) and B2l)) and the case when T is finite but not an integer
(case B2i)). While in cases B2,) and B2,) every finite sequence tu e, of
non-negative integers < T is canonical,i this is not true in case B23. By
other words, in both cases A) and B) if T is an integer or T—-\-oot the
values of the digits s,, of a canonical sequence can be chosen independently,
but if T is finite and not an integer, there exists some dependence between
the members of a canonical sequence.

We shall call the /-expansions when one of the conditions A2)), A2)
respectively B2,), B2/ is satisfied f-expansions with independent digits,
and the /-expansions when A2)) respectively B2} are satisfied f-expan-
sions with dependent digits. It should be noted that independence is not
meant here in the sense of probability theory, but only in a weaker sense.
As a matter of fact, in some cases, (e. g., in the case of the g-adic expan-
sions) the digits s,,(x) considered as random variables (on the interval (0, 1)
with the Lebesgue measure) are also statistically independent but for most
/-expansions with independent digits this is not true. (For example, the digits
of a continued fraction are not statistically independent.)

We shall see that the investigation of ergodic properties of /-expan-
sions is much easier for /-expansions with independent digits than for /-ex-
pansions with dependent digits. The first case will be considered in § 2; in
8 3 the ergodic theory of some special /-expansions with dependent

digits, called the /3-expansions, and corresponding to f(x) Q for 0~ x R
(5S> 1 non-integral) is investigated.

8 2. Ergodic theory of /-expansions with independent digits

In this 8 we consider only /-expansions with independent digits. Let
/(x) satisfy the corresponding conditions of § 1. Then f(x) is derivable
almost everywhere and absolutely continuous. Clearly the same holds for
/,(?,,..., fn+ 0 as a function of t (0~ t " 1.

Let us put

2. 1 H,(x t)= ~ fn(f,(x),..., tn-1(x), &,(X) + 1).
Then Hu(x, t) is defined for any x, for which f,,(x)is defined,7and for almost
1 In these cases clearly D,,(x) [/« (™ (x),..., en-\(x), en(x) -f-1).

; I e, except for those x which have a finite representation in the form (1) of length
smaller than n.
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all . We shall suppose that/(x) satisfies also the following condition:
sup D\

0 1 -<C
ol L Ha(x,0)

where the constant Cw 1 does not depend neither on X nor on n.
We prove the following

Theorem 1 If /(x) satisfies the conditions' A]), A2,) or A2), A3) and
C); or the conditions Bl), B2,) or B22, B3) and C), respectively, then for any
fauction g(x) which is L-integrable in the interval (0, 1) we have for almost
all x

(2-2) lim = £ g(r.(x)) M),

where M(g) is a finite constant which can be represented in the form
1

(2.3) M(g)=$bg(><)h(><)dx

where h(x) is a measurable function, depending only on f(x) and satisfying
the inequality

(2.4) ¢-*h(x)rC
where C is the constant figuring in condition C). The measure
(2.5) r(E)=\h(x)dx

K

is invariant with respect to the transformation
(2.6) 7x= (X)) (0O<x<1]
where y - <p(X) is the inverse function of x=f(y).

Proof. Let Sn= (e,,*2 ...,«,) denote a canonical sequence of n terms
with respect to /(x). The intervals (f,,(eu €3 .. fnleus2 mm + 1)) do
not overlap and if $,, runs over all canonical sequences of n terms, these
intervals fill out the interval (O, 1). Therefore we have

(2.7) 281’|/|i(f1,...,i,,-i,i,,+|)— e, -1*)1 1

where the summation is to be extended over all canonical sequences $,, of
n terms.

Let us consider the mapping Tx m (y(x)) of the interval (0, 1) onto
itself. For any subset E of (0, 1) we denote by T 'E the set of those real num-
bers x (0<x< 1) for which TxEE. We define further T "E by the recur-
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sién: T JE=T'(T ¢"'€) («= 2,3,...). Clearly T E is measurable if
E is any measurable subset of (0,1). Let /, b denote the interval (a b)
(0<a<b<\) and let ,u(E) denote the Lebesgue measure of the set E. Then
we have clearly

(2. 8) W(T "T,5) = 2\M elr..., s,+ b)-f, (*,..., en+ a)|

where the summation is to be extended again over all canonical sequences
= of n terms. Let us denote by x(<S,) a number for which

(2.9) “K(X($,,) = ek k 12,... n);

such a number x($,,) exists for any canonical sequence $n by definition.
It follows from (2. 7) that

(2. 10 O<irt'n‘<1IH,,(x(é,,), N| IH n(x($,,), t):
and from (2.8) that
(2. 11) @ \H,,(x($,,), )\ “((g_ CI? ) sup |5,,(x(8,,)> 01-

Comparing (2.10) and (2. 11) we obtain by condition C) that
(2. 12 t f(E) » n(T "E) si CflI(E),

provided that E is a subinterval of (0, 1). It follows easily that (2. 12) holds
for any measurable subset E of the interval (0, 1). Thus we have

(2- 13) LA(E) 4-2KT'KE) = Cu(E) («=1,2,...)

where C = 1 does not depend on n. According to the theorem of Dunford
and Mitter ([17], [18]), it follows from the upper inequality of (2. 13) that
for any L-integrable function g'(x) the limit

@ 14 Mh 2£9(T0 = g%(9

exists for almost all x But clearly T'x rox) (k- 0,1,...) and thus we
obtain
(2.15) lim 1-2g(rt(x))=9"{)
for almost all x.

To prove that g*(x) is (almost everywhere) equal to a constant depend-
ing only on g(x), by a well-known argument it suffices to prove that the
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transformation 7 is ergodic (indecomposable), or by other words, that if E
is a measurable invariant set of positive measure, i. e. T'E=E and
w(E) >0, then u(E)=1

According to a theorem of K. Knopp [19], if u(E) >0 and there exists
a class / of subintervals of (0, 1) such that a) every open subinterval of
(0, 1) is the union of a finite or a denumerably infinite sequence of disjoint
intervals belonging to / and b) for any /€] we have u(EI) = Adu(I) where
4 >0 does not depend on /, then u(E)=1. We shall show that the class J
of all intervals 18 =[fu(81) - s &)y ful(&r, ...,s,,—}—l)):[a8 ’bg) where

&.=(&,...,&) is a canonical sequence (n=1,2,...) has the properties
required by the mentioned theorem of Knopp. The class / has according to
the representation theorems of § 1 the property a). As regards b), let us put

(1 e B
(2.1 E :3 <
i) M=16 it seE.
Then we have
2.17) wElg )= | E(dx.
a@

©p

Introducing in the integral on the right of (2.17) the new variable ¢ defined
by x=/fu(&,...,&.+1) (i. e. putting t=r,(x)=T"x) and taking into ac-
count that by virtue of the supposition 7'E—E we have E(7 "x)= E(x),

further that % = H,(x(8,), ) where x(&,) is a number for which &.(x(8,)) = &
(k=1,2,...,n), we obtain
1
(2.18) w(EL, )= | E(t)| H.(x(8.), t)| dt.
©n (‘,
It follows by condition C) that
(2.19) w(Elg) =u(E) inf |H,.(x(8,), t)|z‘“(i) sup | Ha(x(8.), ) |.
©On O<t<1 C o<i<1
On the other hand,

1

(2. 20) sup | Hy(x(@),1)|= J 1 Hu(x(®.), O)]dt=u(lg).
4 L 0 n

Thus we obtain from (2.19) and (2. 20)

(2. 21) “(CE)

15 Acta Mathematica VIII;3—4
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i. e. the property b) of KNOPP’s theorem holds for the class /. Thus 7 is
ergodic, and therefore g”*(x)==M(g) is constant almost everywhere. It remains
to prove the existence of the function /4(x) satisfying (2. 3) and (2.4), and

the invariance of the measure 1'(E)=.| h(x)dx with respect to the transform-
? E

ation 7.
Let us put for any measurable subset £ of (0, 1)
TOr" X €L,
for x€E
and
1
n-1 n;£
(2.22) () =+ 3 u(T™E) = f(% > E(T}-x>)dx.
k=0 o Je=2l)

0

As 0=E(x) =1, it follows from the existence almost everywhere of the
limit (2.2) proved above for g(x)= E(x) and LEBESGUE’s theorem, that
(2.23) lim v,(E)=»(E)

exists for any measurable E. As by (2.13)
(2. 24) %xl(E) = 7(E) = Cu(E),

v(E) is a measure which is equivalent to the Lebesgue measure u(E); the
v-measure of the interval (0, 1) is evidently equal to 1.
It follows by (2.22)

(2. 25) vo(T'E) :”_;F_l sy By — "EZ_E)

and therefore

(2. 26) V(T"'E)=v(E),

i. e. » is invariant with respect to the transformation 7.
Let us put

(2. 27) h(x) = ﬁd{,_g_‘)_

where V(x)=»(ly, .); here I, . denotes the interval (0,x) (0=x=1).
From the invariance of the measure » with respect to 7 it follows, as

well known, that
1

(2. 28) M(g) = | g(x) h(x)dx.

0

Thus (2.3) is proved. (2. 4) follows evidently from (2. 24). Thus Theorem 1
is completely proved.
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Let us define the function ek(x) as follows: If /(x) is decreasing, put
for 1" k<T

n<r)-u '+ )< «*
I 0 otherwise.

If /(x) is increasing, put for 0"k < T
ei)=\ 1 for /(*)=*</(*+]p
I 0 otherwise.

Applying our theorem to g(x) = ek(x) it follows that the relative frequency of
every admissible digit converges to a positive limit, for almost all x, and
these limits depend only on the function f(x) and not on x. The values of
these limits can be calculated for a given f(x) if we succeed in constructing
explicitly the corresponding (uniquely determined) invariant measure V.

§ 3. Some examples

Example 1 Let us put

for 0™ x” q

/1 00=

for x>q

where g” 2 is an integer. Clearly conditions Bl), B23 and B3) are satis-
fied, further condition C) is also satisfied (with C=1) because Hn(x,t) is

identically equal to Thus we obtain as a special case of our Theorem 1

the theorem of Raikoff [6] and the classical theorem of Borer [5] on nor-
mal decimals, respectively. In this special case v(E) = fi(E), i. e. the Lebesgue
measure is invariant with respect to the tranformation Tx = (gx).

Example 2. Let us put /(x) =| for x” 1. Clearly conditions
Al), A2) and A3) are satisfied. To show that condition C) is also satisfied,
we need the well-known formula according to which if - denotes the
k-th convergent of the continued fraction of x, we have
). (00 )= Pl 9T 960
It follows that

not (="
HEX A = (0,-1(0)(«,(X) + 0 + Ft2(X)-

15*
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and thus

Hngx, t
oSHe, Hnx 0 Shijx) f A 4

odnE  \Ha(x.1) sn(x) )

Consequently, condition C) is satisfied with ¢ = 4 and therefore™ by (2. 12)
fi(T~nE) W 4fi(E). Thus we obtain as a special case of Theorem 1 the theo-
rem of Ry11-N ardzewski [12]

m
Example 3. Let us consider the case when /(x)= fl-fx—1 for
0™ x;£2m—1 where m” 2 is an integer. Conditions Bl), B2, and B3) are
clearly satisfied and thus every real number x can be represented in the form

where the digits s,, are generated by the recursion
fo= [x], rn= (X),
én+lr [(1+ rnr-1], JNler= ((L+N.7-1) (n==0, 1,

and thus the digits sn are capable of the values O, 1,.. .,2*—2. This algo-
rithm may be called the algorithm of W. Boiyai who used it to approximate
the roots of some equations (in the special case m 2) in his book “Ten-
tamen...” [3] published in the year 1832.

Let us verify that condition C) is fulfilled. We have clearly

follows

O<S'iBlH n(X, t) h 1 - 2
inf H,,(x,t) ;z ’
0<t<0
i. e. condition C) is satisfied with C= 2.

8 It has been shown by Hartman that more is true; we have U(T "£)"2,«(£)
(see [14] and for another proof [16]).
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§ 4. The g-expansion of real numbers

In this § we consider the case

x ]
f(x)— ( 1I0r O=x=20
1

for  B<x

where #>1 is not an integer. As conditions Bl), B2;) and B3) are clearly
satisfied, it follows that every real number x can be represented in the form

4.1 x =&+~ + L p
1) ot 3"

where the digits &, can be obtamed by the recursion formulae
& — [X], Iy =— (x),
&1 = [ﬂr,,], Ipy1 = (p)rn) (n — O, 1, .o .).

The digits &, which for n =1 are capable of the values O, 1,..., [#] can be
expressed without introducing the remainders r, as

(4.2)

&—x1;
ey ['@(x)] )
(4.3) &= [B(8(x))],

&= [8(5(B()))].

In this case Tx is the transformatlon Tx=(5x) of the interval (0, 1) onto
itself.
We shall prove

THEOREM 2. For any function U(x) which is L-integrable in (0, 1) we

have for almost all x
n—1

@.4) lim - > g (. (x)) — M(g)

N>

where the constant M(g) does not depend on x. There exists further a meas-
ure v which is equivalent to the Lebesgue measure u and invariant with
respect to the transformation Tx=(8x), and for any measurable subset E of
the interval (0,1) we have

(4.5) v(E)= | h(x)dx

where h(x) is a measurable function and

1 :
(4. 6) -5 =h() =

S
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and we have
4.7 M(g) lg(x)h(x)dx.

Proof. The ”-expansion is an expansion with dependent digits. As a
matter of fact, the admissible values for enare 0, 1,...,[/?]. But as

LLI = N 1
a Rn R - ’
there exists a value N for which

AR

This implies that the first N digits can not all be equal to [/7]

Thus not every sequence e,. . sn formed from the numbers
0, 1,...,[/7] is canonical. Let S(n) denote the number of canonical sequences
of order n for n W1 and put 5(0)= 1 Then S(n)—S(n—1) is the number
of those canonical sequences of order n for which ?,==0, because if
(«,e2 ..., £, 1) is a canonicalsequence of order n—1, then clearly
(«!, 2 o 0) is a canonical sequence of order n, and conversely. In
general, if (slt ez, e«-i,s,) is acanonical sequence of order n, then
(«, @) eee. *n-i) is a canonical sequence of order n—2L1 Let us consider all
canonical sequences 8al= («!,i2...,iKi) of order n—L1 If (ei,..., e,-i,Kk)
is canonical for K si k’@n_l but not for k> ké?n»l, then the intervals

I’&__,Jf_I'L - :‘Fﬁl S I?*gl |!3I2;+| -' /E?”i | Bn”\] are clearly disjoint, and
thus we have .

oy BO—=SM—1 = Vi il
consequently
4. 8) S(n)—5(n—1) ~ Bn (n= 1,2,...).
As 5(0) 1, we obtain

Jnl

4.9 5(n) R—1 (n 12..).

Let us arrange the S(n) numbers -<r>s/o+ ﬁg—-( ------- f'ﬁ' where $n= (f,,S2,..., &,)

is a canonical sequence, and the number 1 according to their order of mag-
nitude. Clearly the distance between any two consecutive terms does not

exceed B—. Thus we have

(4.10) S(nymR"\
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From (4.10) and (4.9) we obtain incidentally

@ 11 lim | Sa) — 4.

Now let E denote any measurable svubset of the interval (0, 1). As T
—u(E),

consists of S(n) sets, each of which has a measure not exceeding

we have
(4.12) u(T"E) = _SL’%“(L) =—
e e

On the other hand, S(n)—S(n—1) of the sets mentioned above have the
“(E)
g

measure exactly equal to and thus we obtain

—S(n—1))u(E)

on
o

(4.13) w(TEy= 5%

It follows by (4. 10) that

LS a2 L1y $ 6O=S6=0),6) - (1 Du)

Thus we have

- = &

1 1 ot K 1
(4. 14) ﬁ—ﬁmméyguwfr:~7ﬂw>

k=0 ] S XneS
9

M

Applying again the theorem of DUNFORD and MILLER, Theorem 2 follows
exactly in the same way as Theorem 1 in § 2. As regards the ergodicity of
the transformation 7°x=(@x), it can be proved in the same way by using
KNOPP’s theorem as the ergodicity of the transformations 7x= (f(x)) con-
sidered in § 2. The only difference consists in that we choose now for J the
&, & & &n - |—1
% +ﬂ,,,,‘d+p,+ L )for
which not only the sequence (&, ¢,...,&) but also (el,sg,...,s,,—l—l) is
canonical.
Let us consider an example.

class of those intervals [%—i—

B e
EXAMPLE 4. Let us take ﬂ:—vézi—l— ! 15 . . Then

and put ¢ -— S e

we have ¢+ «*=1. This implies that each digit ¢, =1 is followed by a digit



492 A. RENYI

&1 =0 and there does not exist any other dependence of the digits on
each other.” This makes it easy to obtain in this special case a complete
insight into the set of canonical sequences. It can be shown that in this case

ﬁlg’ﬂ fof O=x< I/F)T_] "
h(x) = = S
e R I T e
10 2 e
and thus the limiting frequencies of the digits O and 1 are #01/3 and
b L8 respectivel
10 ) p y'

We hope to return to the explicit determination for an arbitrary g > 1
of the measure which is invariant with respect to the transformation 7Tx=—(6x)
and is equivalent to the Lebesgue measure (the proof of the existence of
which is contained in Theorem 2) at another occasion.

(Received 15 September 1957)
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