SOME REMARKS ON UNIVALENT FUNCTIONS
A. Rényi (Budapest)

W. Kaplan[l]introduced the class of ,close-to-convex“ schlicht
functions. The function f(2) which is regular in the unit circle |z|<1
is called close-to-convex if there exists a function ¢ (z) which is re-
gular and univalent in |[2|<1 and which maps the unit circle on a
convex domain, and is such that

’ z)
1 Re ]:;(—— >0 for |z|<].
O] {q, (2)} |zI<
Kaplan proved that every close-to-convex function is univalent
further that every function f(2), which is regular and univalent in
z!<1 and maps z;<! on a star-like domain, is close-to-convex in
the above sense. He proved that the inequality

(2) fe’Re {1+sz,l’(g)}dﬂ> —a
61

for ©, <6, (were z=re?, r<1) is necessary and sufficient for f(2)
being close-to-convex in |z |<1.

The class of close-to-convex functions has been investigated fur-
ther by Maxwell O. Reade[2], who proved that if f(2)=2z+

+ay 224 +a, 2"+ - is close-to-convex in |z|<1 then the
Bieberbach-conjecture is valid for f(2), i. e.
3) la, <n (n=2, 3,...).

This result generalizes a former result of the author of the ‘present
paper [3], which states that the Bieberbach-conjecture is valid for fun-
ctions f(z) which map the unit circle on a domain whose boundary
rotation does not exceed 4=, i. e. for which

(4) ;[ 1+ Re {szyﬂ(-z()z—)};dﬁé‘tn.

In an other paper[4] Maxwell O. Reade proved also that. if

f)=2z+ za,. 2" is regular in |z <1 and satisfies
It
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"6,
5 2/"(@) )49 =
(5) ?!: (1+Re{ @) B > 5
for z=re!*, ¥, <y, then we have
(6) a, ="+

This result also generalizes a previous result of the author. It has been
proved namely in [3] that (6) holds if f(z) is regular in z|<l and
maps the circles 'z]=r<1 on such curves which have a boundary ro-
tation <3ax, i. e. for which

(7) ]‘ 1 I+Re{ fz,”?—}fdt9<3n.

As a matter of fact, this result is a special case of the following
general result, proved in|[3]:

Theorem 1. lff(z)=z+2a,,z" is regular in i1z'<1 and
n=2
maps the circles 22=r<1 on such curves, which have
a boundary rotation <« (27<a<<3n), i. e. if

2/ (2)
then
(9) an.sg(w“;f") (n=2,3,...)

Though the inequality (9) remains valid for 3nx < a<4x it is very
rough, and for a=4a does not give the inequality i@, <n (which has
been proved in[3] by an other method, namely by applying a theorem
of M. S. Robertson|[5]), but gives only the very rough estimation

a,,|<(-’il)€(§t2—)which coincides with a,{<n only for n=2. Thus
there is a gap beetween the inequality (9), valid if the boundary rota-
tion a is <3a, and the inequality (3) valid for a=4a.

The purpose of the present paper is to fill this gap, and estab-
lish the following result, which is a counterpart of Theorem 1.

Theorem 2. If f(z)=z+2a,,z" is regular in |z|<1 and if
n=2
f(z) maps the circles 2j=r<l on curves the boundary
rotation of which does not exceed a, where 3n<a<4a,
then we have

(10) a1+ 855 (n )

(n=2, 3,...)
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Remarks: The inequality (10) reduces clearly for a=3=n to

n4-1 . . .
ay, <’T+ and for a=4x to a, <n, i. e. Theorem 1. is a generali-

zation of these results of the paper[3]. The inequality (10) is valid also
for 22<a<3a; we excluded these cases from the formulation of the
theorem only because if «<<3x the estimation (10) is weaker then that

given by Theorem 1. As a matter of fact, putting x=(~‘€-72—n-, the fol-

lowing inequality is valid:

“ 2x . 1
(11) (1+-~-><1+(n—1)x if0sx<;
L+
and
(12) 1+(n-1)x<ﬁ(1+-2f) it Lex<
B k=12 k 2 T
as we have
2 2x : 2x 1
l+(n—l)x=g<l+§;—mk-~_2—)-)gkéz(lﬁ-z—) for & =x<1
and
S & AP~ N o J W2 !

Thus (11) and (12) follows.
To prove Theorem 2. we shall introduce the classes of close-to-

convex functions of type ﬁ(O«/ﬁ( ;i these classes being subclasses

of the class of close-to-convex functions, introduced by W. Kaplan
We shall say that f(2) is close-to-convex of type p in |2 <l

(Osp’g —5—) if f(z) is regular in z <1 and there exists a function

»(2) which is regular and univalent in |z{<1, maps the unit circle on
a convex domain and is such that

(13) iarg%}%,;ﬁ.

Clearly, every function, which is close-to-convex of type 8 (0_§ﬁ<%) is
also close-to-convex of type » if ﬂ<7§%. Thus especially every

. . . T .
function which is close-to-convex of type ﬂ§-2— is close-to-convex in

sense of W. Kaplan referred to above. Clearly f(z) is close-to-con-
vex of type 0 if and only if f(2) is univalent in [2/<] and maps the

unit circle on a convex domain. ) _
We shall prove two results (Theorem 3. and 4.) which generalize

the results of W. Kaplan and Maxwell O. Reade, and after
this shall deduce Theorem 2. from Theorem 4.

8 Msmectus na MatematuueckHs HHCTHTYT, ToM III, kH. 2
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Theorem 3. The function f(2) is close-to-convex of
type g in the unit circle if and only if

(14) j<1+Re{%§)}) 49> — 25

where z=re", 0<r<l, 6,<6,.
Remark: For ﬂ=--g Theorem 3. reduces to the characterization

of close-to-convex functions given by W. Kaplan.
The proof of Theorem 3. is in every respect analogous to that

of the special case ﬂz—g given by Kaplan, and therefore may be

left to the reader.
Theorem 3. enables us to give a geometric characterization of

functions which are close-to-convex of type § (O == —3—) A function

f(2) is close-to-convex of type p in the unit circle if and only if it
is univalent in the unit circle and maps each circle z =r<I on a
simple closed curve .C, which has the property that if we go around
the curve C, in the positive (counter-clockwise) direction, the directed
tangent of the curve never turns back by more than the angle 2. By
other words if p(2)=argf’'(z) and P(r, #)=p(re’?)+9 we have for
h<ida

(15) P(r, 7)—P(r, 1)=—26
for any r<I.
As a matter of fact if z=re'?
oP(r, 9) _ 2f” (2) -
(16) GO e {6
and thus
O, Zfl/ (z) }
(17) 2;[.‘(]+Re{_f'(z) )dﬂ:P(r, Oy)—P(r, O,).
Theorem 4. lff(z)=z+2a,,z" is close-to-convex of
n==2
type ﬁ(Ogﬂg%-) in the unit circle, then
(18) aal=1+2Z (n—1).

1 4

Remark: For ﬁ=—g— and ﬁ=§- Theorem 4. reduces to the

theorems of Maxwell O. Reade [2], [4] referred to above.

Proof of Theorem 4. According to our supposition there
exists a function ¢ (2) regular and univalent in 'z|<1 which maps the
circle z|<1 on a convex domain, and for which
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A CI
?arg(})‘,'(a (‘:\:ﬁ for {Z!<1.

Now let us put

o

(19) p(2)= Zu,,z".

n=1

We may suppose without loss of generality, that «i=1. Let us put
further

(20) 1@ _ i bz

?'(2)
Then we have |b,|=1 and

() f’(2)=1+i na,z" ' = (Z by 2" )(i na, z"‘1>

n=2 n=o0
Thus we have

(22) fld,,=2 kﬂk b,,_k (ﬂ=2, 3,.. .)
k=2

As it is supposed that o (z) maps z <1 on aconvex domain, we
have (see [6], Problem IV. 162.)

(23) ap| - 1 E=2,3,...

To estimate the coefficients b, we need the following lemma, which is
a straight-forward generalization of a theorem of C. Carathéodory

(see [6] Problem III. 235) according to which if f(2)=1+b6,2+ +
+b,2" + - is regular in z|<'1 and Ref(2)>0 then &,/ =2.
Lemma: If g(2)=b,+b2+ - + b2+ - is regular in

z|<1, 'byl=1 and
argg(d) | =B=+5

then
4
(24) b=
Proof of the lemma: Let us put h(z)=(§§8 )T’; Then
Re {#(2)}>0 and £(0)=1. Thus if £(2)=1-+c12+4c, 22+ - then ac-
cording to the theorem of Carathéodory mentioned above we have
len| < 2, n=1,2...
As
’ 1 T ’ bt 4
¢ l="h (O)I’—:Q—ﬁlg ), = ﬁ'bll
it follows
. 4
(25) b=,

T

Now let us put
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2nik L o
(26) (1(2)———2 g(e nez )=b0+2b,,.z’
then |argG(z)| = B8 and thus by (25)

48
(27) |bn|=— e

This proves our lemma.
Applying our lemma we obtain

4
(28) INE
and thus by (22)
(29) ;na,,ién-{—i—ﬁ n(n—1) (n=2, 3,..)
which implies
(30) Ia,,|<1+ (n—l) (n=2,3,...)

Thus Theorem 4. is proved.
Let us mention that the inequality (30) is best possible for n=2.
As a matter of fact, let us consider

f‘z)ﬁfz = (15t)ae.

By choosing m(z)zl_i_z we have \argf( )’/ B; thus f(2) is close-

to-convex of type f; on the other hand f(2)= z+( 1+2-ﬁ) 224 .

For other values of n the inequality (30) can be probably improved.
Let us remark, that the inequality

Ia.,|<l+25

contains the distortion theorem for the class of close-to-convex fun-
ctions of type f. It can be brought to the usual form, expressed by

Theorem 5. If f(z)=z+2a,,z" is regular and close-to-

n=2
convex of type p (0_._.2/9:.;3) in z|<l, we have for z|=
=r<l,

(31) (l-r) = @ S(l+r)

(l+r)" B (l--r)'f—+
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Proof of Theoreimn 5. Let us consider

(&2 ~1@)
©2 Fo= /’((;)+(12 ) TN

If f(2) is close-to-convex of type g, then clearly F(¢) has the same
property. As a matter of fact

|argf(())l B lz|<1

implies
| otz (c) \—
where
{tz
. B (1+c2)—"’(z)
(dd) (p(C)_ lp' (z)(1_|zl2)

is univalent, and convex in |z |<1, by virtue of a theorem of Carathéo-
dory (7], which states that if ¢ (z) maps the circle z|<1on a convex
domain, then it maps every circle lying in the interior of the circle
jzi<1 on a convex domain too. But

F(0)=0  F'(0)=1

and
" —_— 2 _
(34) Fro)=1 (Z)f(,l(z)'zl ) 9z,
Thus we obtain
- 2f'R) 212 2]
9 ot
By a well-known argument it follows that
28 B
2)z|-2(1+% ) e 212 +2(1+%)
. g1/ ()
(36) 1=z = dlz| = l—{zl’
and thus by integration
28 28
0=0" < ra=4t0_.
(37) %1 24
(147) (1—r)

For p’=g~ (37) reduces to the ordinary distortion theorem, for

g=0 to the distorsion theorem for univalent convex functions. The
inequality (37) is clearly best possible as there is equality for

f&)= f(l c)a('*‘“)”d:.
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Now we deduce Theorem 2. from Theorem 4.
Let us suppose that f(2) is regular and univalent in 2 <1 and

f‘ 1+Re {if'l—,(g)}'dﬂéu

where 37 ==a=-4n. Then we assert that f(2) is close-to-convex of

2f’ (z)} iy

type p’:-4£n- This can be shown as follows: as 1+Re{

f(2)
harmonic in 2 <1 and takes the value 1 in 2=0, we have
. 3 zf (Z)> _
(38) 3/ (1 + Re ) ds =2n.
Thus if we put
(39) ( 14 Re if,—}??—) = u(z)
we have
(40) zf (2)dv = ZW—Ju(c)dd—— fu(z ) d — f( u (2)) dv
and thus > -
(41) 6Z(z do>—o(“=2"
Ju@rar>—2(*7)

from which by Theorem 1. it follows that f(z) is close-to-convex of
type u_;zn' Thus Theorem 2. is proved.

Finaly let us mention some unsolved problems.

A) What is the exact radius of close-to-convexity of type ;i? By
other words which is the greatest number R(p) such that any function
f(z) which is regular and univalent in 2 <1, is close-to-convex of
fype g in the circle z|<R(B)<I1?

Clearly R(0) is the well-known radius of convexity (Rundungs-

schranke)2—1 3 and as every star-shaped domain is close-to-convex

evidently R(; )\ tgh;r The exact value of R(p) is not known for

0<ﬁ§—5 I succee ded to prove, by means of the rotation theorem of
Golusin [8] that

sin ;‘- +2— }3

(42) R()
14-(2—) 3)sm

for O_.p_ ; I hope to return to this question at an other occasion.
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HAKOW 3ABEJIEXKIT BbLPXY EIHOJIMCTHHUTE &YHKLUWH
A. Peun (bynmaneua)

PE3KOME
Perynsipyata B kpbra 2z <1 ¢yukuust f(2) ce Hapuuya ,noyTH
H3bKHAJMa OT THI p’“(O L p= 2), aKO CblIleCTBYBa TaKaBa (DYHKUHs

¢ (2), peryisipha H eLHONIUCTHA B Kpbra 2 ,<l, KoATO u306pa3siBa TO3H
KpbI' B eJHa M3I'bKHaJa 00J1acT M OCBeH TOBa

(N iargf'gz;kﬂ aa z, <l

B pa6oraTta e nokasaHa cleigHaTa TeopeMa, KOATO e o06006uieHHe
Ha nBe teopemMu Ha M. O. Puiin:

©o

Teopema 4. Ako f(2) ::z+z a,2" e TNOYTH H3N'bKHANA OT THN
n=2
B(0=<B=2rn) B kppra z <l, To umMame

(2) A >1—!~iﬂ(n—l), (n=2, 3,...).

Ot ToBa chenBa
Teopema 2. Ako f(2) e ennonncTHa B kpbra 2z '<l H H306pa3siBa

TO3H KPBI B 006/1aCT C KOHTYPHO BbPTEHE w, T. €.

) 27| Zf (z)
(3) f[1+R (f()) a 4a,
neto z=re'* u 0<r<l, TO UMaMe

(4) a, =1+ 2")( n—1),  (1=2 3,...).

B enHa cBost npenuuma paboTa aBTOpPBT Ha HACTOMIIATA CTATHHA
JI0Ka3Ba HepPaBeHCTBOTO

(5) anlxn(w —2 ) (n=2, 3,..)

h=12

Jlecho ce BmXJaa, Ye 33 27 =a<3m € B cuna (5), HO 3a In =
= u<4n (4) e no-cuaHo.



HEKOTOPBIE 3AMEYAHHSA Ob OAHOJIMCTHLIX ¢YHKLINUAX

A. Penbu (Bynanewr)

PE3IOME

Perynsiphas B kpyre 'z|<1 ¢yHkuus f(2) HasbnlBaeTcs ,NOYTH
BLINYKJOK THRA f* (OV\/‘\ 2 ), eC/IH  CylIecTBYeT Takas (YHKLHA

@ (2), perysspHas H ONHOJHCTHAas B kpyre |2 |<1, koropas otobpaxaer
3TOT KPYr Ha BbINYKAYI0 00JacTb M, KDOME TOro, HMeeT Mecio

(1 arg f'(( )) <f ans |z <l.

B paGoTe nokasaHa caeamyollas TeopeMa, KoTopasi aBasietcss 0606-
ieHnem aByx teopeMm M. O. Pufina:

Teopema 4. Ecau f (z)=z+z a, 2" ABNsieTCA MOYTH BHNYKJON THNA

n=2
5(0;/3;’%) B Kpyre ;2 <l, TO umeeMm
(2) a, é’l—l—f—f—;(n—l), (n=2, 3,...).

M3 aroro cnenpyer:
Teopema 2. Fcau f(2) onHoanctHa B kpyre 2z!<1 u oToGpaxaer
3TOT KPYyr Ha 06/MacTh C I'PaHHYHBIM BpallleHHeM a, T. €. AJAS KOTOpOH

3) f ( sz(()) )!da‘) <a<ia,

rne z=rei* u 0<r<l1, To UMeeT MecTo

(4) anl =14+ O 2D (1), (n=2, 3,..).

B onHoit mpexHe#i pa6oTe aBTOp HacTosllef CTaTbH 10Ka3aan He-
paBeHCTBO

(5) an|_n(1+“k42”) (n=2, 3,...).
k=2

Jlerko BumeThb, uTO s 27 = a < 3= (5), cuAbHee ueM (4), OAHAKO,
aas 3n = a<4n (4) asnsercs 6oJiee CHABHBEIM,
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