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Introduction

In a recent paper [1] the first named author proved the following

T heorem 1. Let [£2,61, P] be a probability space (i. e. P  =  P  (Д) a prob­
ability measure defined for sets A belonging to the o-algebra 61 of subsets 
of the set £2). Let C„ be a sequence of sets such that C0 =  £2, C„ £ 61 and 
P (C „) > 0  for n — 1 , 2 ,___ If for к == 0, 1, 2 , . . .  the condition1

(1) lim P (C „ |G )  =  A ( 0 < A < 1 )
n - >  CD

is fulfilled, then for any В £ 61 such that P  (В) > 0 we have 
(2a) lim P (C lt|ß )  =  ;k.

H —>- CD

This implies that if Q is an arbitrary measure on 61 which is absolutely 
continuous with respect to P , we have 
(2b) lim Q (C„) =  A.

t i - >  CD

We shall say that a sequence {?„} of random  variables defined on the 
probability space [£2,61, P] has the “ m ixing” property (or simply: is  
„m ixing“) if

(3) P ( S „ < x | B )= > F (x )
for every В £ 6 t with P  (В) >  0, where F(x) is a distribution function not 
depending on B. Here ==> denotes, as usual, the weak convergence of a 
sequence of distributions to a limiting distribution (i. e. that Р (£ п < х )  tends 
for n —Kx> to F(x) for every x which is a continuity point of F(x)).

It has been shown in [1] that in case {£„} has the m ixing property, 
and Q is a measure on 61 which is absolutely continuous with respect to P , 
then
(4) Q (£„ <  x )= ^  F(x).

In [1] it has been proved by means of Theorem 1 that if Sj, §2, . . .  are  
independent random variables, A, and B„ sequences of real numbers such

1 P(A\B)  denotes the conditional probability of A with respect to the condition B.

10*



390 A. RÉNYI AND P . RÉVÉSZ

that B n - * - j-oo for n —*oc and putting

§1 §2 “I-  ‘ - - Cn-- A„

P(C„<x)==>F(x)
where F(x) is a distribution function, then the sequence £„ is mixing, i. e. 
(3) holds.

This result has been proved previously only under some restrictions 
in [2] and [3].

As the random variables (5) form an (additive) Markov chain, it is 
natural to ask whether general Markov chains do possess also under suitable 
conditions the mixing property.

In § 1 it is shown that it is rather easy to find sufficient conditions 
for a sequence of random variables being mixing. The conditions in question 
are, especially, satisfied for certain M arkov chains. T his is shown in §  2 by 
giving some examples.

(5)
we have

(6)

§ 1. Some conditions for a sequence of random variables
being mixing

Let bo> Ci, &>>••• be a sequence of (real-valued) random variables and 
suppose that for any real x and for any possible value у of £* we have for
n—*°o

(1.1) P(£« < *|Ca = y )= .-F (x )
where F(x) is a distribution function.2

Putting P, (x) =  P (Ca < x) we have for any real 2

z

0-2) P (C„ < xjCit <  2 ) =  p  I — ) P(Cn < x | £ fc =  y)rfP*(y).
-  CO

Thus, by the theorem of Lebesgue on the integration of bounded convergent 
sequences of functions it follows from (1.2)  by virtue of (1.1) that

(1 .3 ) lim P (C„ < x I Ca- <  2 ) =  F(x)
?! —>- CO

for every point of continuity x of F(x). Especially we have (for 2  =  +  » )  

( L 4 )  P (C „ < x )= =  F(x).

2 It suffices to suppose that (1. 1) holds for y £ B k  where P (£a £  B/, ) =  1.
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Thus, applying Theorem  1 to the sets C0 =  ß ,  C„ =  {cu: £„(w) <  x} 
(n =  1 ,2 , . . . )  we obtain that if Q is a probability m easure on ét which is 
absolutely continuous with respect to P, we have

(1 .5 ) Q (L < x )= > F (x ) .
Evidently, condition (1 .3 )  is also necessary for the validity of (1 .5 ). 

Thus we have obtained the following

T heorem 2. The sequence {£,,} (n =  0, 1, 2 , . . . )  of random variables 
defined on the probability space \ í f  él, P] has the mixing property if and only 
if for every k =  0, 1 , 2 , . . .  there exists a set Ek for which P (Ck £ Ek) =  1 and 
is such that for у £ Ek we have for n—**о
( 1 . 6 ) Р (£ и < x |£* =  ? )= = > E(x)

where F(x) is a distribution function not depending on y.
Theorem 2 can be applied, especially, to verify the mixing property of 

Markov chains.

§2. Examples

Example 1. Let {£„} be a Markov chain. It follows from a well-known 
theorem of Kolmogorov [4] that condition (1 .6) is satisfied (moreover, the 
convergence is uniform) if the following two conditions are fulfilled:

a) For any pair x, у of possible values of Ck and  for any m easurable 
set G we have

(2. 1) P(£*+. € G | £ fc =  x ) i = ^ P ( £ fc+i £ G |£ fc =  >-)

for k =  0 , 1 , 2 , . . .  where the constants are such that
CO

(2 . 2) =
fc=0

b) P (Cn < x) ==> F(x) for n—ЮС.

Example 2. Let {£„} be a hom ogeneous Markov chain having a finite 
num ber of possible states. Suppose that each £„ can take on only the values
1,2 , . . . , r .  Let us denote by pu the transition probabilities of the Markov 
chain {?„}, i. e. put

(2 .3 ) P q =  P ( U 1= / I ? «  =  0
and denote by л  the m atrix (pij). Suppose that there exists a positive inte­
ger s so that all elements of л s are positive. Then, a s  well known, (1 .6 )  is 
satisfied. Thus it follows from Theorem  2 that the Markov chain {£„} is 
mixing.
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Example 3. Let the random  variables £» (n =  0, 1, 2 , . . . )  defined on the 
probability space [ß , d, P] form a hom ogeneous Markov chain. Let C„ and 
Dn >  0  be two sequences of real numbers such that for any fixed k(k=  1 , 2 ,...) 
we have

(2. 4) 

further 

(2. 5)

lim ^  -  =  1 and lim п "̂ к — 0 ,
71—>  CO M l  П-УСО U n

L - С ,,.
Dn - < x £o =  y \= > F (x ) ,

where F(x) is a distribution function which is independent of the value of 
у  where у may take on any element of a se t Y such that P(C0 £ F )  =  1. 
Then we have

< 2 . 6) 0 Г /  л- i -

for any probability measure Q  on d  which is absolutely continuous with 
respect to P .

As a m atter of fact, ow ing  to the supposition that the Markov chain is 
hom ogeneous and the supposition  (2 .4 ) , it follows from (2 .5 ) that if 
л —>oc, then

(2. 7) <  x ==>F(x)

for k =  0, 1, 2 , . . . ;  thus our assertion  follows from Theorem 2.

Example 4. Let us consider the Engel’s series of the real number t 
( 0 < t < \ )

(2 .8 )  f =  — +  — l—  +  - - Ч ---------- 1--------+ • • •
q 1 <7i qi <7. q> ■ ■ ■ q„

w here qn =  qn(t) Ш 2 is an integer. It is know n (see [5] and for another

proof [6 ]) that 4''—n is in the limit for n - и х  normally distributed, that is
In

(2 .9 ) lim P
n-vco

(jo g  q,: — n
1 Y n

-  CO

where P  denotes the Lebesgue measure. It has been shown in [6 ] that the 
random  variables lo g ^ ,t (0  are form ing a hom ogeneous M arkov chain on the 
probability space [£?, d, P] w here Í2 is the interval (0, 1), d  the set of meas­
urable subsets of ß  and P (A ) the Lebesgue m easure of A £ d .  
It is easy to see from the proof given in [6 ] that (2. 9) rem ains valid also 
un d er the condition q ^ k  where кш  2  is an arbitrary integer. As for C„ =  /2,
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D n =  Уn the conditions (2. 4) of Example 3 are satisfied, it follows from 
Theorem 2 that

( 2 . 10) ( — <  X  <  +  o o )

if Q is any probability m easure in the interval (0, 1) which is absolutely 
continuous with respect to the Lebesgue measure.

(Received 6 August 1958)
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