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Introduction

In a recent paper [1] the first named author proved the following

Theorem 1 Let [£2,61, P] be a probability space (i.e. P = P (4) a prob-
ability measure defined for sets A belonging to the o-algebra 61 of subsets
of the set £2). Let C, be a sequence of sets such that Co= £2 C,£6L and
P(C,) >0 for n—1,2, If for k==0, 1, 2,... the condition1
(1) lim P(C,|G)= A (0<A<1)

n->

is fulfilled, then for any B £ 61 such that P (B) > 0 we have
(2a) lim P(CItR) = ;k

This implies that if Q is an arbitrary measure on 61 which is absolutely
continuous with respect to P, we have

(2b) lim Q(C,)= A

We shall say that a sequence {?,} of random variables defined on the
probability space [£2,61, P] has the “mixing” property (or simply: s
»mixing®) if
3) P(S,<x|B)=>F(x)
for every B £6t with P (B)> 0, where F(x) is a distribution function not
depending on B. Here ==> denotes, as usual, the weak convergence of a
sequence of distributions to a limiting distribution (i. e. that P(£n<x) tends
for n—Ke to F(X) for every X which is a continuity point of F(X)).

It has been shown in [1] that in case {£,} has the mixing property,
and Q is a measure on 61 which is absolutely continuous with respect to P,
then

4) Q(E, < X)=" F(X).

In [1] it has been proved by means of Theorem 1 that if Sj, 8, ... are
independent random variables, A, and B, sequences of real numbers such

1 P(A\B) denotes the conditional probability of A with respect to the condition B.
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that sn-*-j-00 for Nn—*0c and putting
8§ 8% ‘- Cn-A,
()

we have

(6) P(C.,<x)==>F(x)

where F(X) is a distribution function, then the sequence £, is mixing, i. e
(3) holds.

This result has been proved previously only under some restrictions
in [2] and [3].

As the random variables (5) form an (additive) Markov chain, it is
natural to ask whether general Markov chains do possess also under suitable
conditions the mixing property.

In § 1 it is shown that it is rather easy to find sufficient conditions
for a sequence of random variables being mixing. The conditions in question
are, especially, satisfied for certain Markov chains. This is shown in § 2 by
giving some examples.

8 1. Some conditions for a sequence of random variables
being mixing

Let bo>Ci, &> be a sequence of (real-valued) random variables and
suppose that for any real x and for any possible value y of £ we have for
n—*°0
(12.1) P(E« <*Ca=y)=.-F (x)
where F(X) is a distribution function.2

Putting P, (x) = P (Ca< x) we have for any real 2

z
0-2) P(C,<xCit<2)= p I—) P(Cn<x|EL= y)rfP*(y).

Thus, by the theorem of Lebesgue on the integration of bounded convergent
sequences of functions it follows from (1.2) by virtue of (1.1) that

(1.3) lim P (C,< xIGa< 2)= F(X)

for every point of continuity x of F(X). Especially we have (for 2= + »)
(L4) P(C,<x)== F(X).

2 It suffices to suppose that (1. 1) holds for yEBk where P (fa£B/,)= 1
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Thus, applying Theorem 1 to the sets Co= B, C,= {cu: £,(w) < x}
(n= 1,2,...) we obtain that if Q is a probability measure on ét which is
absolutely continuous with respect to P, we have

(1.5) Q(L<x)=>F (x).

Evidently, condition (1.3) is also necessary for the validity of (1.5).
Thus we have obtained the following

Theorem 2. The sequence {£3}(n= 0,1,2,...) of random variables
defined on the probability space \if €I, P] has the mixing property if and only

if for every k= 0, 1,2,... there exists a set Ekfor which P (k£ EK = 1and
is such that for y £ Ek we have for n—*0

(1.6) P(En<x|E*= ?)==>E(X)
where F(x) is a distribution function not depending on .
Theorem 2 can be applied, especially, to verify the mixing property of

Markov chains.

§2. Examples

Example 1. Let {£,} be a Markov chain. It follows from a well-known
theorem of Kolmogorov [4] that condition (1.6) is satisfied (moreover, the
convergence is uniform) if the following two conditions are fulfilled:

a) For any pair X,y of possible values of (K and for any measurable
set G we have

2 1 P(E*+E€G|EE= X)I="P(ETHLEG|EL= >)
for k= o0, 1,2,... where the constants are such that
2.2 =

( ) 0

b) P h<x)==>F(x) for n—=+CC.

Example 2. Let {£,} be a homogeneous Markov chain having a finite
number of possible states. Suppose that each £, can take on only the values
1,2, ...,r. Let us denote by pu the transition probabilities of the Markov
chain {?,}, i. e. put

(2.3) Pg= P (U 1=/1?« =0

and denote by N the matrix (pij). Suppose that there exists a positive inte-
ger s so that all elements of NS are positive. Then, as well known, (1.6) is
satisfied. Thus it follows from Theorem 2 that the Markov chain {£,} is
mixing.
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Example 3. Let the random variables £» (n= 0, 1,2,...) defined on the
probability space [B, d, P] form a homogeneous Markov chain. Let C, and
Dn> o be two sequences of real numbers such that for any fixed k(k=1,2,...)
we have

(2. 4) lim~ -= 1 and lim n™NK—o,
71-> CO M1 Myco Un

further

(2. 5) L-C v x o= y\=>F(x),

Dn

where F(x) is a distribution function which is independent of the value of
y where ¥ may take on any element of a set Y such that P(Cof£F) = 1
Then we have

<2.6) or / Fi-

for any probability measure Q on d which is absolutely continuous with
respect to P.

As a matter of fact, owing to the supposition that the Markov chain is
homogeneous and the supposition (2.4), it follows from (2.5) that if
n —>oc, then

(2. 7) < X ==>F(x)

for k=0, 1,2,...; thus our assertion follows from Theorem 2.
Example 4. Let us consider the Engel’s series of the real number t
(0<t<))

(2.8) f= —+ = + --Yooes Lot oo
O <iq .

where gn= gn(t) LLI2 is an integer. It is known (see [5] and for another

proof [6]) that i'r"—n is in the limit for n-u x normally distributed, that is

n
jog ¢:—n
(2.9) lim p U094
n-vco 1 Yn

- 0

where P denotes the Lebesgue measure. It has been shown in [6] that the
random variables log”,t(0 are forming a homogeneous Markov chain on the
probability space [£?, d, P] where 12 is the interval (0, 1), d the set of meas-
urable subsets of R and P(A) the Lebesgue measure of AE£d.
It is easy to see from the proof given in [6] that (2.9) remains valid also
under the condition g kK where KL 2 is an arbitrary integer. As forC,= /2,
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Dn= Yn the conditions (2. 4) of Example 3 are satisfied, it follows from
Theorem 2 that

(2. 10) (— <x<+ o0)

if Q is any probability measure in the interval (0, 1) which is absolutely
continuous with respect to the Lebesgue measure.

(Received 6 August 1958)
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