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Introduction

Let [ S 2 ,  é t ,  f t ] be a measure space. By other words, let Í 2  be an arbitrary 
abstract set, é t  a а-algebra of subsets of Í 2  and ft (A) ( A  £ 6 1) a measure 
defined in S2 and on é t .  We shall denote tne elements of é t  by capital 
letters A, B, C,-.. . .  The elements of S2 will be denoted by w. We denote by 
A + B the union and by AB  the intersection of the sets A and B.

We shall call a sequence An (n =  0, 1 ,...) of measurable sets strongly 
mixing with density a if for any В £61, such that и (В) < +  °o, we have
(1) lim fi (A, B) — a n (B)

where 0 < a < 1 and the value of a does not depend on B.
Evidently, in the case when o, we have, choosing in (1)

The term “strongly mixing” has been chosen in accordance with the well- 
known definition of a strongly mixing measure preserving transformation of 
a measure space in ergodic theory (see [1], [2]). As a matter of fact, if T  is 
a measurable transformation of the measure space [Í2, é l ,  fr] preserving the 
measure и and ft (Í2) < +  <*>, then T  is called strongly mixing if for any 
A £ é l  and В $ é l  we have

Taking into account that in this case /л(Т~пA) = {i(A) (л =  0 ,1 ,. . .)  and 
using the terminology introduced above, we may say that the measure preserv­
ing transformation T is strongly mixing if and only if for any A £ é l  the

lim ,«(A„) =  a

Thus if (Í2) < +  , (1) can also be written in the form

(3)

(4)
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This is, however, a very special way of obtaining strongly mixing sequences 
of sets, as will be seen from the examples given below.

The notion of strongly mixing sequences of sets is especially important 
in probability theory. In the present paper we shall mostly deal with these 
applications, and therefore we suppose in general that the measure space 
considered is a probability space, i. e. ,«(£) =  1. To avoid misunderstandings 
we shall denote probability measures by P (or Q). If [Í2, 6t, P] is a proba­
bility space, then, as usual, the elements of 61 will be called events. Thus a 
sequence An (л =  0 ,1 ,...)  of events will be called strongly mixing with 
density a if for any event В £ 61 we have

(5) lim P (An В) =  a P  (В )
n->-00

where 0 < « <  1. As (5) is trivially satisfied (with every value of a) for any 
sequence An of events if the event В has probability 0, it suffices to suppose 
that (5) holds if P (ß )> 0 . By using the usual notation P(Ajß) for the 
conditional probability of the event A with respect to the event B, defined 
in the case P (В) > 0 by

(6) P(A\B)  =  P̂ ± ,

we may write (5) in the following equivalent form:

(5*) lim P(A„\B) =  u
n-> 00

for every event В  for which P (В) > 0. Thus a sequence An (n =  0, 1 , . . . )  
of events is strongly mixing with density a (0 < a < 1) i f  (5*) is satisfied 
for every В which has a positive probability.

It is easy to show that the following theorem1 holds:
T h e o r e m  1. I f  [ ß ,  6 t , P] is a probability space and the sequence 

An (n =  0, 1,. ..) of events is strongly mixing with density a, then

(7) lim Q(A„) =  a.
n->  CO

holds for any probability measure Q in ß  and on 61 which is absolutely 
continuous with respect to the measure P.

P r o o f . By the Radon—Nikodym theorem there exists a non-negative 
and measurable function x(a>) on ß  which is integrable with respect to the

1 This theorem is, of course, known. (It has been used e. g. implicitly in [3].) We 
state it here for the sake of reference, as we did not find it explicitly formulated in the 
literature. For the same reason we sketch its simple proof.
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measure P and is such that for any A £ 61 we have

(8) Q (Л) = [ / ( « )  P.
A

Clearly, (7) holds if x(w)  is a step function (i. e. if %(to) takes on 
only a finite number of different values). As to any integrable /  and any 
s > 0  there can be found a step function / ,  such that | | /(u>)—/ foj) jdP<e,  
it follows easily that (7) holds in the general case too.

Thus Theorem 1 is proved.
In § 1 of the present paper we shall give the following necessary and 

sufficient condition for a sequence of events being strongly mixing:
Theorem 2. The sequence A„ of events, such that A0 =  Í2 and P(A „)>0 

(n — 1, 2, . .  .),2 is strongly mixing with density a if (and only if)
(9) lim P (A„ I A*) =  a

n —>-00

for k =  0, 1, . . .  where 0 < a < 1 and a does not depend on k.
Thus the strongly mixing property of the sequence A„ depends on the 

relative positions of the sets A„ only.
Theorem 2 will be proved in § 1 by means of Lemma 1, relating to 

sequences of elements of an arbitrary Hilbert space.
Theorem 2 is fairly general and when applied to different types of 

sequences of events, leads to some interesting special cases. One of these 
is the following:

T heorem 4. Let be a sequence of independent random
variables on the probability space [Í2, Я, P] and let us suppose that there can 
be found a sequence Cn of real numbers and another sequence Dn of positive 
numbers such that lim D„ =  -f , further a distribution function F(x) such

n->- 00

that putting £n =  & +  & -f------b {n — 1, 2, . . . )  we have

(10) lim p f e ^ < * W ( x )
n-> CO V U n  J

for every real x which is a point o f continuity of the distribution function 
F(x). Let Q be an arbitrary probability measure in £2 and on 61 which is

2 The supposition P (A„) >  0 for every n ü; 1 is made only to make a simple for­
mulation of our result possible; it is not an essential restriction. As a matter of fact, 
according to the definition, in a strongly mixing sequence of events there can occur only 
a finite number of events having the probability 0, and these may be omitted as the 
strongly mixing character of a sequence of events is not influenced by the change of a finite 
number of elements of the sequence. The condition A0 =  Q  is not a restriction either; it 
has been supposed only to include the condition lim P  (A„) =  a into (9).
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absolutely continuous with respect to P. Then we have

( 11) Hm Q ( C- c  s) =  F (x)

in every point of continuity x of F(x).
r _c

Thus the fact that the distribution of — - —- tends to a limiting distrib-Jb'n
útion as well as this limiting distribution itself, are invariant against the 
change of the underlying probability measure, provided that this measure P 
is replaced by a probability measure Q which is absolutely continuous with 
respect to P.

Note that with respect to the measure Q the random variables are, 
in general, not independent. Thus Theorem 3 may be considered as a result 
extending the validity of the limit theorems of probability theory, valid for 
independent random variables, to certain sequences of “almost independent” 
random variables.

The first result of the type of Theorem 4 has been given by the author 
of the present paper in [3] where there were two restrictions: it has been 
supposed that the random variables have discrete distributions and that 
the probability space [Í2, 61, PJ is isomorphic to the probability space for 
which Í2 is the interval (0, 1) and P the ordinary Lebesgue measure. In a 
subsequent paper [4] A. N. Kolm ogorov  has proved a more general result. 
He dropped the supposition that the variables §„ are discrete, and concern­
ing the probability space he supposed that the measure P is perfect (for 
the definition of perfect measures see [5]). Theorem 4 does not contain any 
restriction concerning the probability space, thus it is more general than the 
result of Kolm ogorov  mentioned above. It has been pointed out by
E. M arczew ski (oral communication) that Theorem 4 can be deduced also 
from certain results of E. S parre-A n d e r s e n  and B. Je sse n  [6]. P. R évész 
(oral communication) has shown that Theorem 3 can be proved also by 
using certain limit theorems of J. L. D o o b  on martingales [7]. However, 
the proof given in § 2 of the present paper, which shows that Theorem 4 
is a special case of Theorem 2, is in some sense the most natural approach. 
As a matter of fact, Theorem 2 is a source of a large number of similar 
results which can not all be obtained by the other methods mentioned. We 
can obtain e. g. by means of Theorem 2 results similar to Theorem 4 for 
general Markov chains instead of the special Markov chains formed by par­
tial sums of independent random variables.3

3 This question will be discussed in a forthcoming joint paper ofP. Révész and the 
author.
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Theorem 2 when applied to ergodic theory leads to a criterion (Theo­
rem 3) for a measure preserving transformation defined on the measure space 
[Q, ŰL, [л] being strongly mixing.

In § 3 we consider weakly mixing sequences of sets and events, re­
spectively, and obtain similar results as in the case of strong mixing.

M y  t h a n k s  a r e  d u e  t o  M r .  P .  R é v é s z  f o r  h i s  v a l u a b l e  r e m a r k s  w h i c h  I 
u t i l i z e d  i n  p r e p a r i n g  t h e  p r e s e n t  p a p e r .

§ 1. A criterion for the strongly mixing property of a sequence
of events

Let % be an arbitrary Hilbert space. We denote the elements of Ж by 
small letters (e. g. f,g ). The inner product of the elements /  and g  will be 
denoted by (f,g) and the norm ( / , / ) 1/2 of /  by ||/||. We first prove the fol­
lowing

Lemma 1. Let f ,  (n =  0, 1, . . . )  be a sequence of elements o f a Hilbert 
space Ж. Let us suppose that
( 1. 1) WUW^K  (/1= 0 , 1— )

where К is a positive constant not depending on n. Let us suppose further that 
for any к =  0, 1, . . .  we have
(1. 2) Urn (/*,/„) = 0.

w->co
Then for any g  we have
(1.3) lim (£-,/„) =  0.

n - > C O

P roof. Let us denote by X  the least subspace of Ж which contains 
the elements /<,,/,, • ■ __  Clearly, (1.3) holds if g  is a finite linear

n
combination of the elements / 0, / i , ., i. e. if g =  ~£ckf k. It follows/c=1
that (1.3) holds also if g  is an arbitrary element of Ж,, because in this case

n
for any £ > 0 there exists a finite linear combination g\ =  ^ c kf k such that<c=l
||,g—gx|j < £ which implies that
(1.4) \(g,fn) — (g i,f,)\ ^  Ke 
and thus
(1.5) lim sup tCg,/n)| ^  Kr.

W—>-00
As £ > 0  is arbitrary, (1.5) implies (1.3). Now, let X  denote the set of 
those elements of % which are orthogonal to every element of the sequence
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f n. Clearly, (1.3) holds if g  £ %2. As by a well-known theorem (see [8], p. 8) 
every g  can be represented in the form g  =  g i+ g 2 where gt^iCj and

2 , it follows4 that (1.3) holds for any g ^W . Thus our lemma is 
proved.5

It should be mentioned that our lemma contains as a special case the 
well-known fact that if {/„} is an orthonormal system, the Fourier coefficients 
(g, f„) of an arbitrary g  are tending to 0 for n —*• =». This fact is usually 
proved by means of B essel’s inequality which gives, of course, much more. 
The corresponding stronger result under the supposition (1.2) will be given 
in a forthcoming paper.

We now deduce from our lemma
T heorem 2. Let [Li, 61, P] be a probability space. Let An (n 0, be 

a sequence of events such that Atí =  Li and P  (An) > 0  (n =  1 ,2 ,...). The 
sequence An of events is strongly mixing with density a ( 0 < a <  1) if (and 
only if)
(1.6) lim P  (A„|A) =  a

il—>- 00
for k =  0 , \ , ----

P roof of T heorem 2. Let denote the Hilbert space of all real ran­
dom variables £ =  £(ш) (ы £ Li) such that ) Z1 d P exists. Let us define the

f  йinner product by (£, i]) =  | £ ц d P  and, correspondingly, the norm by
1 1 5 1 1 = ( W d p ) l,\

&
Let the random variables «„ =  «,,(«) be defined as follows:

Then we have
an (a>)

1 —«
— a

if (o£A n, 
if со £ An (n =  0, 1,. . .) .

(1.7) (ak, an) = P (Ak An) — a P (Ak) — a P (A„) + a2.
As A0 =  Li, it follows from (1.6) that
(1. 8) Hm P ( A „ )  =  a .

??->- CO

Further it follows from (1.6) that
(1.9) lim P ( A n  A k)  =  a P  ( A k)  (k =  1 ,2 ,...) .

4 B. Sz.-Naqy kindly called my attention to the fact that the idea of the above 
proof of our lemma is the same as that of the standard proof of the theorem (see e. g. [8], 
p. 10) that if /„ is an arbitrary sequence of elements of 91 such that ||/„|| is bounded, 
then there exists a subsequence of the sequence /„ which converges weakly to an element 
f  of 91.

6 Another proof of Lemma 1 has been found independently by P. Révész.
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From (1.7), (1.8) and (1.9) we obtain
(1.10) lim (ak, «„) =  0 (A: =  0, 1,...).

Taking into account that
(1.11) ||«n||2 =  (1 —a)1 P (An) +  a2 (1 —P(A„)) Si 1,
we see that the sequence an satisfies the conditions of Lemma 1. Thus we
have for any g  £ %
(1. 12) lim (g , a„) =  0.

Choosing for g= g(co)  the random variable defined by

(1. 13) 
we have

g(°>) =
1
0

if о) £ B ,

if со £ B,

(1.14) (g, a n) =  P  (An B ) — a P ( B )

and thus by virtue of (1. 12) we obtain, provided that P (ß )> 0 ,
(1.15) lim P (A „ |ß )=  «.

« —>co
Thus Theorem 2 is proved.

By combining Theorem 2 with Theorem 1 it follows8 that if Q is any 
probability measure in Í2 and on ŰL which is absolutely continuous with 
respect to P, and An satisfies the conditions of Theorem 2, then we have
(1.16) lim Q (yl„)=«.

n-*-CD
Let us now consider the application of Theorem 2 to ergodic theory. 

Let [Í2, é t ,,«] be a measure space and suppose that f t(ß ) < -f A measure 
preserving (not necessarily one-to-one) transformation T  of this space is 
called strongly mixing if, denoting by T  l A the inverse image of the set A 
(i. e. the set of those co£i2 for which Tсо £ A) and defining T~n A by the 
recursion T n A =  T ''(Г~1А) (n =  2,3,...), we have for any A $ 61 and ß£6t

(1. 17) lim n ( T  " A  B )
В  (А) ,м ( B)

M ß )
0 It should be mentioned that (1.16) could be deduced directly from the above proof 

of Theorem 2 without making use of Theorem 1. As a matter of fact, let x =  X (bJ) be a 
function, the existence of which is ensured by the Radon—Nikodym theorem, such that

Q(A) \x(o>)dP for A £ d .
X

If X belongs to %,  i. e. if ) x2dP exists, then applying (1 .12) to this function X we directly
Q

obtain (1.16). The general case follows by remarking that to any integrable random 

variable % and any e >  0 there can be found a %\ € *K such that | x — | dP <  «.
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Applying Theorem 2 to the sequence A „ = T  nA of sets of the probability 

space \£2, ót, P] where P (4) =  -‘“y™ and taking into account that by virtuefi (ÍJ)
of the supposed measure preserving property of the transformation T 

(1. 18) p(T ~nA-T 'kA) =  p(T~k( T (n' k) A A ) )  =  g ( T ' (n-k)A A )  
for n ^ k ,  we obtain the following

Theorem 3. Let [£2, 61, /*] be a measure space, у  (L2) < -\-°° and T a 
measure preserving transformation of £2 onto itself. A necessary and sufficient 
condition for T  being strongly mixing (i. e. for the validity o f (1. 17)) is that 
for any A £ ót with y(A)>  0 we should have

(1.19) lim g ( T  nA A) P \A)
P (£2)

By other words, if (1. 17) is valid for B =  A, it is always valid.

§ 2. The invariance of the limiting distribution of sums 
of independent random variables

In this § we prove
T h e o r e m  4 .  Let | 2, be a sequence of independent random

variables defined on the probability space \£2, ót, Р]. Let us suppose that there 
can be found a sequence Cn o f real numbers and another sequence D„ of 
positive numbers for which lim A , —- + ° ° >  further a distribution function

n->-CO
F (x ) such that putting S„ =  §i +  &H------ [-£„ we have

(2. 1) lim P f e ^ »  < * )  =  /=■(*)
u-> со V U n  J

in every point o f continuity x  o f the distribution function F (x). Let Q be an 
arbitrary measure in £2 and on ót which is absolutely continuous with respect 
to P. Then we have

(2. 2) lim Q f e £ < * W ( r )
n-> ao V l—'n J

i f  x is any point of continuity o f F(x).
P r o o f  o f  T h e o r e m  4 .  Let r  be a point of continuity of F(x) and 

F(x) >0. Clearly, it suffices to consider such values of x. In this case evi­

dently P 0 for n > n0. Let us put A0 =  £2 and denote by An
r _r

the event that the inequality x takes place (n = 1, 2, . . . ) .A*+»0
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According to Theorems 1 and 2, if we show that condition (1.6) is fulfilled
r _с

for these events, (2.2) follows. Let us put Thus it suffices toi-Ai
prove that
(2.3) lim P(£*«<x | £ < x) =  F ( jc)

tl-> CO
for any k>  nQ.

Now we need the following simple lemma (see e. g. [9], p. 254): 
L e m m a  2. I f  and sn are random variables such that lim P (//„< x) =

n —>-00

=  F(x) in every point o f continuity x of the distribution function F (x), and 
lim P(|e»| s  d) =  0 for any d > 0 , then we have lim P(#„ +  e„ < x) =  F(x)
• « - >  CD CO

in any point of continuity of F(x).

Applying Lemma 2 to and e„ =  — it follows from (2.1) that

(2. 4) lim P f  fe- < x) =  F(x).
n -> 0 0  V J

Ач Г*__ ■*.
A s ^ ‘ D n 

(2. 5)

£ n -£ * -C „
Dn is independent of it, we have

k -  ' 5E<x PI ^  Dn <X
and thus from (2. 4)

(2.6) lim P K j— < x«->- 00 \ J-Jn
£

Applying again Lemma 2 to the random variables # И =  £Л— yy- and 

e„ ==■ j f-  on the probability space [12, 61, P'] where Р'(Л) =  P  (A |3J < x),Ls n
we obtain (2. 3). Thus Theorem 3 is proved.

Let us call a sequence r\n (л = 1 ,2 , . . . )  of random variables a mixing 
sequence with the limiting distribution function F(x) if for every В £ ŰL with 
P (ß ) > 0 and for every real x which is a point of continuity of F(x) we have
(2.7) lim Р(/;п < x |ß ) =  F(x).

«•-»■00
The assertion of Theorem 3 can be expressed by saying that if the random 
variables are independent and putting £„ =  & +  £>-f------ b the random

r _c
variables =  where Dn~* have the limiting distribution function

F(x), then C* is a mixing sequence of random variables with the limiting 
distribution function F(x).
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Mixing sequences of random variables have remarkable properties. For 
instance, if is a mixing sequence of random variables, then r\n is in the 
limit independent of any random variable H. As a matter of fact, if 
P («9- < y) > 0, we have
{2.8) lim P (/]„ < x, H < y) =  P(,9 < y) lim P (r/„ < x|.9 < y) =  P(5- < y) F(x).

w->co w->-co

Thus we obtain the following consequence of Theorem 4:
Corollary 1. I f  the random variables §„ are independent, 'Q„ =  ̂  +  

+  d------ h , and there can be found sequences of real numbers Cn and

Dn > 0 such that D» —*■ +  and £* =  ^  has the limiting distributioni-Jn
F(x), then 'C* is in the limit independent of any random variable.

Another interesting property of mixing sequences of random variables 
with a non-degenerate limiting distribution is that they can not be stochas­
tically convergent to some random variable. As a matter of fact, let us 
suppose in contrary to our statement that tjn is a mixing sequence of random 
variables with the non-degenerate limiting distribution F(x), and that qn 
tends stochastically to the random variable r/m, i. e. for any d > 0  we have

lim P(\r\n— рю\ s  d) =  0.
П-> CD

Then evidently by Lemma 2
(2.9) P (?̂ m < x) == lim P (tjn< x) =  F(x),

n-»-co

further by Theorem 4 and Lemma 2
(2. 10) P (rja < x, Tjk <y) =  Hm P < x, >ik < y) =  F(x) P (rjk < y),

V —► CO

and therefore, applying again Theorem 3 and Lemma 2,
(2. 11) P (/;„ < x, rja < y) =  lim P (rja, < x, rik <y) =  F(x) F(y).

k->- eo

Thus 1}к, would be independent of itself which is clearly impossible, as by 
(2. 9) and the supposition that F(x) is a non-degenerate distribution, is 
not a constant.

Thus we obtain the following
Corollary 2. I f  5., S, . are independent random variables,

further there can be found real sequences Cn and D„ > 0 with D„ —► +  oc
r _r

such that putting -(------ h and == —- the limiting distribution
J-Jn

of C* exists and is non-degenerate, then the random variables C* can not con­
verge stochastically to a random variable.



ON MIXING SEQUENCES OF SETS 225

A special case of Corollary 2 has been mentioned in the textbook on 
probability theory of the author ([10], p. 534, Exercise 21).

Let us consider an example. Let

( 2. 12)

be the dyadic expansion of the real number t (0 < t <  1) where each e„(t) 
is equal to 0 or 1. The functions s„ (x) may be considered as random 
variables on the probability space [£2, 61, P], where £2 is the interval (0, 1), 
61 the set of all Lebesgue measurable subsets of £2 and P the ordinary 
Lebesgue measure. The random variables e„(t) are clearly independent and each

takes on the values 0 and 1 with probability It follows by the Moivre— 
Laplace theorem that putting
(2. 13) S„ (/) =  *1 (0 +
we have

Í \
(2. 14) lim P 1 < X

l  ~2 Vn j

-*»(0

\l2y
uz
2" du.

Our Theorem 4 gives in this case the following result: If Q is any proba­
bility' measure defined on the Lebesgue measurable subsets of the interval 
(0, 1), which is absolutely continuous with respect to the Lebesgue measure, 
i. e. if
(2.15) Q (A )=J<7(0df

A

1
where q ( t) ^  0 and \ q (t) dt \, then we have

о

(2. 16) lim Q
Sn (t) — —-

< x

/

X

1
][2 71

U'2
e~*du.

Let us define the set E„(x) as the set of those t’s ( 0 < /<  1) for which

< x  ( n =  1 ,2 ,...) . Then, clearly, En(x) is a strongly mixing
&(0 —  * 15

sequence of sets. This example gives some idea about the structure of 
strongly mixing sequences of sets, as the sets En(x) can easily be constructed.

15 Acta Mathematica IX/t — 2
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§ 3. Weak mixing

A measure preserving transformation T  of the measure space [£2, é t ,  ,u)' 
with ju(ß)< +  oo is called weakly mixing (see [1], [2]) if for any A £ é t  

and В £ é t  we have

( 3 . 1 )
1 N - l

UrnN->-a> ГУ „̂ 0 f i ( T nA B ) f'(A)p(B) =  0,

i. e. if fi(T n A -В) is strongly (C, l)-summable to the limit Qener_
f1 \ ’2)

alizing this notion, we shall say that the sequence An (л =  0, 1, ...)  of sets 
is weakly mixing with density a  (0 < a  < 1) i f  for every B^GL we have

( 3 .  2 )
1 N - 1

lim 77 2N-> cd 'V  n =  0
fi(AnB) — a[i(B) I =  0 .

A sequence of sets in a probability space which is weakly mixing withi 
density«, will correspondingly be called a weakly mixing sequence of events 
(with density a). By the same method as used in the preceding §§ we can 
obtain analogous results for weak mixing.

The analogue of Theorem 1 runs as follows:

T h e o r e m  5 .  I f  the sequence An (n =  0 ,  1, . . . )  of events of the prob­
ability space [£2, é t ,  PJ is weakly mixing with density и ( 0 < a <  1), we have 
for any probability measure Q  in £2 and on é t ,  which is absolutely con­
tinuous with respect to P,

i -У-1
(3. 3) lim Z  IQ — «| =  0.

N - y c o  2 V  n = 0

The proof of Theorem 5 runs along the same lines as that of Theorem 1. 
Instead of Lemma 1 we need the following analogous

Le m m a  3 .  Let f n (n =  0 , 1 , . . . )  be a sequence of elements of the Hilbert 
space %. Let us suppose that

( 3 . 4 )

further that for any к =  0, 1, . . .  we have

(3.5) Н т ^ ^ | ( Л , / я)| =  0.
N - усо iV  w=o

Then we have for any g  £ %

(3.6) lim - Í Z \{g,fn)\- o.
N - y со / V  n — 0

(N — 1, 2, . .  .);
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P roof of Lemma 3. Clearly, (3.6) holds if g  is a finite linear combina­
tion of the elements of the sequence f „ ,  because

1
N

N -  I
V

n=0
2  Ck fk , f„ )fc—о / k—0 /V n—0

If %x is the least subspace of Ж containing the sequence f n and we
r

may find for any s > 0 coefficients Co, Ci, cr such that putting g, =  2 Ckfk
k =  0

we have |jg-— It follows that

and thus
I(g, f n ) ! — I( g i  , fn ) \I ^  I(g , f n )  — (gi, fn)I ^  в у / , I!

i j  2 ! (g,  f n )  I —  i r  2  I (g'  -  f n )  I/V n=0 Tv ,1=0
Ke

what proves that (3.6) holds for any g £ % ,. But if we denote again by %2 
the set of those elements % which are orthogonal to every f„, (3.6) evidently 
holds for g  too, and as every g  £ Ж can be represented in the form 
g  =  g i+ g 2 with g 1 £ and g-2 ^% >, it follows that (3.6) holds for every 
g  £ Ж. Thus Lemma 3 is proved. From Lemma 3 we may deduce the following 
result which is analogous to Theorem 2:

T heorem 6. The sequence A„ (n =  0,1, ...)  of events belonging to the 
probability space [T2, d , P], for which Au =  £2 and P(4„) > 0  (n =  1, 2, ...) , 
is weakly mixing with density a (0 < a < 1) if (and only if) we have

1 ^
(3.7) lim y r f 2  |P(A.i^*) — «1 =  0 for к 0 , 1 , ----N-> CO v=0

The analogue of Theorem 3 for weakly mixing transformations may be 
stated as follows:

T heorem 7. The measure preserving transformation T of the measure 
space [Í2, d , p], for which p (Í2) < fo e , is weakly mixing if for any A £&  
for which a. (A) > 0 we have

(3. 8) lim
N-+ co

1
N 2

k= 0
р ( Г пА - А )

fd(A)
p(L>) =  0.

The analogue of Theorem 4 for weakly mixing sequences of events is. 
evidently also valid.

(Received 6 February 1958)
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