ON SINGULAR RADII OF POWER SERIES
by
Pauvr. ERDOS and Avrrénp RENYI

Llet #, denote the class of analytic functions
ll

co

(1) #e) = Za,z2"
n=0

which are regular and unbounded in |z| < 1. According {o D. GAIER and
W. MEYER—KONIG [1] we call the radius R, defined by 2 = reiv, 0 <r < 1
bllljlll(ll for f(2), if f(z) is unbounded in any sector z| < 1, ¢ — ¢ < arg z <
< @ + ¢ with ¢ > 0. ;\ radius which is not singular for f(z) is called regular
for f(z). In [1] it has been shown that if f(z) belongs to the class ®, and the
power series of f(z) has HADAMARD-gaps, i. e.

(1b) f(Z) — 2% Oy 2
’\’ l)
with
Wit .
‘ = >_ 2 l P = () l 3 ree
(2(1) "/\- = (I - ( s %9 )

then every radius is singular for f(z). Clearly for every f(z) € ®, there is at
least one singular radius. It is easy to see that if we suppose only that the
power series (1b) has FaBry-gaps, i. e. if instead of (2a) we suppose only

1
(2b) lim — > 1=0,
Xt oo & ppox

then it is possible that there is only one singular radius for f(z). A simple
example is furnished by

(3a) Eg) = Z 2 2Nk+j

_/t)

where Ny, 2 N, + k2 (=1, 2, ...). Clearly f,(2) is regular in 2| < 1
and if « is real, we have

lim f(x) =+ o
x—1-0
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thus f,(z) belongs to the class ®, and R, is a singular radius for f,(z). On
the other hand we have by (3a)

2

72

(3b) f1(2) 3 - for 1z <1

thus every radius R, with 0 < ¢ < 27 is regular for f,(2)
It is also clear from this example that to ensure that every radius should
be singular for f(z) it is not sufficient to preseribe the rate in which the ratio
1 y 1

v
xr nE<<x

tends to 0 for x — -+ oo, As a matter of fact,for f,(2) defined by (3a) we have

1 . 83
N1 = :
csmc 04

X nE<<x A s

where s is defined by the inequality N < < N, and thus we can choose
the sequence N, so that

1 o
\ l < &(x)
P
holds, where ¢(x) (x = 1, 2, ...) is a sequence of positive numbers, tending

to 0 arbitrary rapidly.

P. ErRDOS [2] has shown — answering a question of GAlgr and MEYER—
Kénie — that to ensure that every radius should be singular for f(z), it is
not even sufficient to suppose that the exponents n, of the lacunary power
series (1b) of f(z) € ®, satisfy the condition
(2¢) lim (ngyy — ny) = + o0

K—s oo

The question arises, for which sequences n;, does there exist a function
f(z) belonging to the class @, and having the power series expansion (1b),
which has only one singular radius? Clearly it is impossible to give a criterion,
which depends only on the rate of growth of the sequence n,, because the
number-theoretical properties of the sequence 7, come in. As a matter of
fact let the sequence n, satisfy the following condition :

D) for every m (m — 1, 2, ...) there exists an integer L, such that for
k= k, n, is divisible by 2™,

In this case if £ is a singular radius for f(z) then R,, where ¢’ — ¢ +
+ 2= 1/2™ is also sinﬂulur for any pair of positive integers I and m ; as a

matter of fact, if z; (j = 1, 2, ...) is a sequence of complex numbers with
Iyl < L p—e< (11}_{ 2; < (/ + ¢ and

.lim If(z))] = + oo,

j 4+ 0O

then putting ¢" = ¢ + 27l/2m and zj =z, exp (272 [/2™) we have ¢ — ¢ <
arg zj < ¢” 4 ¢ and as the series for f(zj) differs from that for f(z))

only in a finite number of terms, we have also

lim |f(2})] = 4 o=.
_/‘d‘ @«
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As the set of values of ¢ for which R, is singular for f(z) is clearly closed
(see [1]), it follows that every radius R, is singular for f(z). Now
the divisibility condition D) implies (2¢), but (v.\copt for this) is compa-
tible with every possible order of growth of n,; by other words if o, is
an increasing sequence of positive integers, tending arbitrarily slowly
to -+ oo, then there exists a sequence n, of integers having the property D)
and satisfying the condition ny, ; —n, < o,. Thus our question has to be
modified to some extent. We ask for which sequences n, does there exist
a sequence n; such that 0 < n; —n, < o, where o, is a sequence tending
arbitrarily slowly to + oo, and a function

(1c) 1(z) = 2 c 2™
k=0
belonging to the class ®,, which has R, as its only singular radius? We shall

prove, by using standard methods of probability theory, that if n, satisties
the condition

1
(2d) lim inf (n,—n)k 7 =1
(R—J)— +m

then there exists always such a function.
Thus we prove the following

Theorem 1. Let n, be an increasing sequence of natural numbers, satis-
fying the condition (2d). Then for any sequence o, of natural numbers for which

lim o, = + oo,
K=+ o
there exists a sequence n’, of natural numbers such that 0 < n;, — n, < w,
and an analytic function f(z), which is reqular in the wunit circle has the
power seriesV) (1c¢), is unbounded in |z < 1, but is bounded in the domain
2| < 1, |arg 2| > € for any € > 0.
Our proof of the above Theorem is not constructive ; we prove only
by using }')r()hahilimic methods, the existence of a suitable function f(z),
but can not give it explicitely.
i ho condition (2d) plays a role in other problems of a similar kind

too; e. g. P. KRpGs has proved [3] that if (2d) is satisfied, there exists a
power s(rlvs (Ib) which converges uniformly but not absolutely for |z| = 1.
Proof of theorem 1. We shall need the following
Lemma.? Lel m; < my, < ... < my, be natural numbers, vy, vy, ..., v,
independent random variables, each of which takes on the values 0,1, ..., s — 1

with the same probability 1/s. Let z be a complex number such that |z < 1 and
281 — z| = 1. Let us consider the random variable

d
(4a) Z= 2 zmtvs

j=1

1) f{z) can be chosen so that its power series has nonnegative ceoefficients.
2) A similar lemma has been used in a previous paper [4] of the authors of the
present paper.
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Then we have®
d

® Plizi 2% | <4, s
) llx g

Proof of the Lemma. Let us put z = re and denote by C resp. S
the real resp. imaginary part of Z, i.e. we put

d

(4b) == : rmityi . cos (m; + v;) @
and J,I
(4¢) 5= : rmiti . sin (m; 4 v;) @
As .

Z| < V2 max(|C],|S|)

we have evidently

2 J ,‘ '>2V"‘,“ ' 1j_l
SRS P S L g G

Now let us calculate the mean value of €€ where we shall choose the value
of the real number ¢ later. We have

M {e/€} = [ (_il M {e” " Vcos(my V;)w} -
j=1
oo s—1
11|
J=1

pN(m;+! )cos‘\'(ln +h)g ”

a0 N'(sho

As
| s—1 | | ]
1 |1 | 2
| rmithcos(m; +h)gp| < |— Zith) = —
| 8 hZO ) | | 8 20 l s'1 —zl
and
| 1 s—1 |
]--2r~<mf+h> cosN(m; + h)p | <1 N=23,... )
| 8 k=0 ’

we have for 0 < || < 1/2

_ . 2l |
(7) M{e}g(1+ I
Evidently
212 ( ) 91/9
plois 2V2) _plos 2V24) bl _ 2124)
| s/l —2f |~ s1—2z|f | 8|l —2|
3) Here and in what follows P denotes the probability of the event in the

brackets and M {f} the mean wvalue of the random variable &.



ON SINGULAR RADIT OF POWER SERIES 163

further if ¢ << 0, then

’ 212 .
(82) P.{C > :1‘-“",} < M{cC)e Fim
s |1 — 2|
and
9 1/¢ 2|2t
(8b) P{C e ;J[%d : < M{e e sl
s1—z
By choosing in (7)
P e
4s|1 — 2|

we obtain, taking into account that 8)/2 — 9 = 2 and that |1 — 2> < 4,
| 2)2d o
(9a) P:C“ > 2124} _ -

8|l —2|f
In the same way it can be shown that

')]2 d) < 9 355‘5
s|1—2|f

(9b) P{‘S =
Clearly (6), (9a) and (9b) imply (5). Thus our Lemma is proved.

Let us choose now a subsequence ny, of the sequence 7, such that
by <ky< ...<ky< ...,

(10a) lim (kypyq — kyp) = + o0
p—rtoe
and
I
(10b) plil_n‘_ (Mg 1 — Nieg,)Ror 1 Kap = 1

By (2d) this is possible. As a matter of fact, if 0 < ¢ <»11~ and
1
(g —m;)k~ < 1 + &, then either § > [ke] or j < [ke]; in the latter case
we have
1 1 1 k=i 1

&+ <1+ 3¢

(g — i) 1] < [ (my — mp)R T el < (1

+

Thus we may suppose that there exists a sequence of pairs (£, §) such that
1

k— 4 o0, j—> 4 oo, (k — j)—> + o= and (n, — n;)¥7 — 1. This implies
the existence of a sequence £, having the required properties.

Clearly we may rarify the sequence £, as much as we want ; thus it
can be supposed that besides (10a) and (10b) the following three conditions
are also satisfied :

gl Sl 1
(10c) (Migyr; — M) 2ot M0 <1 4 —2

P’
(10d) pt < oy,
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and

(10e) Ryps 3~ Hgy, = 04 p10
Now let us put

(11a) dy = kgp, 1 — ky
and

(11b) Mpj = Wiyt j — Nk, (=12,....,d)
further put

p

(11c) by =

(11d) By == G*
and
(11e) N, = (mpa, + 8p) 8, 0% p=12... )

Let us put
2nih
(12a) Zpn = € N» =01y ooy Hy—1]

p
further

(121)) 7* = ""ph f()I () \ (1 == 6 ) \

P 9 cos 2n 0p — Zpp f(,n 0<h<o N

,N,and 1—8,)N,<h<N,

(clearly in the second case 2}, is obtained by reflecting z,, on the line
Re(2) = cos 2m0,).
Evidently

(13) 2w — 1 =1 —cos2nd, =867 for p=4, h=12,...,N,
Let us denote by £, the contour consisting of 1h(‘ arc 270, < @ < 2x (1 — 9d),)
of the unit circle 2 = ¢ and of the are lp| < 279, of 111(‘ (‘11(1(\ g ==
= 2 cos 2md, — €'?; clearly the points 23, (h =1, 2, ..., N,) divide lho
llm £, into (u(s of the le nnth 27/N,. By our lemma we have, denoting by v,
i = l, 2, ... d,) independent mmlom variables, each of which takes on
the values 0, 1, ..., s, — 1 with the probability 1/s, ,
I 4d d
3 ( o
(14) P| max ‘ 2% Mpi+vpj | ~ l)’\ <4 e 32%
| | & #ph 8,02 |
1=h=N, j=1 O ¢ p
Now putting
dp
(]:)) (1),)(2) —. : 2Mpsi~ Vpj

=l
we have

(16) Q,(2)| < dp(mpq, +5,) for

[
I\
[e—



ON SINGULAR RADII OF POWER SERIES 165

and thus for any two points z, 2” of the closed unit circle
(17) 1Q,(2) — Q,(2)| < d(myg, +8,) |2 — 2|

Thus we obtain

| I d 27
(18) Izrélnc @p(2)] < max \2 2%, Mpj+ "m’ 4 - 5
P P P
and therefore by (14)
(19a) P ]mdx 1@,(2)| = ng] <4N, e 3253
| zeL, 2, 6;]
and thus with respect to (10a)—(11e) that for p = 64
(19b) P ‘ma\ Q,(2)| = I\d”] < 8p2e~P .
Lret, »*)
Thus it follows that
7d l
20 P m: >—r
(20) 2 l’:éZxQ( 2

converges, and therefore, with probability 1, only a finite number of the
inequalities
‘ 7d,
max |@,(z)| = -
€Ly 1)2
is satisfied.
This implies that the values of »,; can be chosen in such a way that
- 7d
(21) max |@,(2)| < —7
z¢L, p?
for all p = p,.
Let us put now

oy 1
(22) f2) = D) 5 2 Qf2)

p=1 7P
where the pol_\'nnmials @,(2) are chosen in such a way that (21) is satisfied
for all p > Clearly f(z) is regular in ‘:i < 1, and also unbounded, as all
its coeffic lem\ are nonnegative and ¢),(1) = d,. On the other hand, for any

¢ =0 mod 27 and any & > 0 with H ([ — e < @ + € < 27 we have for
all values of p, for which 2a/p < ¢ — ¢ and 27 (1 — 1/p) > ¢ + &, for
p —eZarg 2 < @ + ¢ |2l <1 (by the maximum principle
7 £ P ‘ : I I

1 7

—1€p(R)| = —

gy T U g
for p = p,. But this 1mp11( s, that f(z) is bounded in the sector 2| < 1, ¢ — e <
< arg 2z < ¢ + ¢, or, by ()the‘ words, £, is the only singular radius of f(z).
Taking into account that

) 4
1[,',-§ 8y = P 3 (uA,
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evidently f(z) satisfies all requirements of Theorem 1., which is therewith
proved.

It can be shown that the condition #n; —n, = O(w,) with o,
tending arbitrarily slowly to +4 oo can not be replaced in Theorem 1. by
ny — n, = O (1). We prove namely the following result :

Theorem 2. Let n, be an increasing sequence of natural numbers, such
that n, is divisible by 2™ for all k = k,, im =1, 2, ...). Let

(e o]

(23) f(2) = 2 g zmtte

k-0
be reqular and unbounded in the unit circle, where the sequence b, of integers
is bounded. Then every radius R, s singular with respect to f(z).

Proof of Theorem 2.Y [t suffices to show that f(z) can not be bounded
in a sector 2| < 1, a < arg z < . This will be shown by proving that if
f(z) would be bounded in such a sector, it would be bounded in the whole
unit circle. As a matter of fact, let us suppose that f(z) is given by (23) and
that |b,| = B (k=1, 2, ...) and put

(24) fi(2) :-bz;ck (lj| < B)
o
Then we may write
B
(23b) 6= 3 )
h

1
: 2ni o . g,

Let us consider the valuesz,—=e 2", where m is a fixed natural number,

such that

7 -1
(25) gm ~. 4B+ 1)
p—a
and / takes on the values 0, 1, ..., 27 — 1. Putting
(26) Fy 5lr, 9y = ( > ¢ e"”k"} (rei?)] (—B<j<+ B)
k=K
bem)
we have for 0 <r <1, 0¥ < 2rand7=0,1, ..., 2™ — 1
2B
(23¢) f(re®z) = 27B 3 Fy(r,d) 2t + 4
=0

where A denotes a term which is bounded in the unit circle, the bound de-
pending only on m .
As a matter of fact we have

(27) 4| gk% ey = A

1) It will be seen from the proof that the condition ,,nx is divisible by 2" for all
k = km (m=1, 2, ...)” could be replaced by the following more general condition :
»there exists a sequence A,; m = 1, 2, ...) of natural numbers, such that Ap—> 4 o
and 7y is divisible by A, for k > km (m=1, 2, ...).”
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Now by (25) there are at least 2B 4 1 terms of the sequence 2, ([ —

=0,1, ..., 2® — 1) lying on the arc a« —d <arg 2 < f— 9, |2 = 1.
Let us denote these numbers by 2, 2,41, - - ., 21428, let us fix the value
of ¥ and put
2B
(28a) Qulr, &) = 2 Fifr, Y
Jj= 0

We have by the interpolation formula of Lagrange

28 Q)
(28b Qy(r,§) = Z Qs(r, 21,+) . =
) ¥ =0 S Q'(z,+)) (€ — z,+)

where

(29) o = ll — Z3+5)

As by supposition there exists a constant K such that [f(z)| < K for
2| <1, @ < arg z < B we have by (23c), (27) and (28a)
(30) |@o(r,2,+)) S K+ A (1==0,1,..., 2Bj .
Thus it follows, that for |{| = 1 we have
(K+4)2B+1)

7T JZB

H/\

(31) 1@s(r, §)|
sin —
2m

It follows from (23c) for [ — 0 that
(K + 4) (2B 45

T
sin —

2m
As the bound on the right hand side of (32) does not depend on 7 or 9, it
follows that f(z) is bounded in the whole unit circle, which contradicts our
hypothesis. Thus Theorem 2. is proved.

It remains an open question, whether condition (2d) is best possible.
In other words, the following problem is still unsolved :

Let

(32) [f(re?)| < +4 for 0<r<1 and 09 < 2n.

f(z) = 2 Cy 21k
oy

be regular and unbounded in |z! < 1. Suppose that

I
lim inf (n, —n)<7 =q > 1
(k—j)—+ o

Is it true that all radii B, (0 < ¢ < 2x) are singular for f(z)?

(Received July 1, 1958.)
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HATVANYSOROK SZINGULARIS SUGARAIROL
ERDOS P. és RENYI A.

Kivonat

Legyen f(z) az egységkorben regularis és nem korlatos figgvény. A z = rel”
(0 < r < 1) sugarat, m(lw‘ a rovidség kedvéért R, -vel ](lolunl\, D. Gaigr
és W. MEYER—KONIG nyoman (lasd [1], [2]) s:mguhueandl\ nevezzik, ha
f(z) nem korlatos a |z2| < 1, ¢ — e < arg z < ¢ + ¢ korcikkben, akdrmilyen
kis pozitiv szam is e. A nem-szingularis sugarakat regularis sugarnak nevezziik.
A jelen dolgozatban a kovetkezd tételeket bizonyitjuk be:

1. tétel. Legyen n, természetes szamok egy novekvé sorozata, amelyre

1
. . EV. o
(1) lim inf (n, —n)k7=1.
(k -J)—+ =
Leqyen o, eqy tetszilegesen lassan végtelenhez tarté szamsorozat. Akkor létezik
[ i €9
olyan

oo
(2) fe) = 2 e
k—1
alaki hatvanysorral bire, az eqységkorben regularis és nem korlatos f(z) fiigg-
vény, amelynek csak egyetlen szinguldris sugara van, ¢és amelynek n; kitevoi
eleget tesznek a

(3) 0<n,—n,< o,

feltételnek.

Az 1. tétel a dolgozatban valdszinlségszimitisi modszerrel van be-
bizonyitva.

2. tétel. Legyen A, (m =1, 2, ...) eqy lermészeles szamokbol dllo
letszdleges novekvo sorozat és n, eqy olyan természetes szamokbol dallo sorozat,
amely azzal a tulajdonsdggal bir, hogy az n, sorozat tagjai véges sok kivétellel
oszthatok A,,-mel (m = 1, 2, ...). Legyen b, tetszileges egész szamokbol allo
korlatos sorozat. Tegyiik fel, hogy

o) = 3 i
n=1
az eqységkorben requldris és nmem korldtos fiiggvény. Akkor f(z)-re vonatkozilag
2 eqységkor minden sugara szinguldris.
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0 CUHI'YJISIPHBIX PAJJUYCAX CTEINEHHBLIX PA10B
P. ERDOS u A. RENYI

Pe3rome

[Tycre Gynkumst f(z) peryasipHa M HeorpaHuueHHa B eMHHYHOM KpyTre.
Pajuyc z =re” (0 < r < 1), o003HauaeMblit JUIsi KpaTkocT vepe3 £, cieays
D. Gaier-y 1 W. Mever—Konig-y (em. [1], [2]), HasbiBaeTcst CHHIYJISIp-
HBIM, ecJM f(2) HeOrpaHMuUeHHA B KPYTLOBOM CeKTOpe 2z < 1, p — & < argz <
< @ -+ € npu J0OOM IOJIOKUTEILHOM &. Hecunryasipuble pajuycbl Ha3bBaloTCS
peryiasipupiMi. B nacrosmuieit paboTe J0Ka3biBAIOTCST CJIEAYIOIIME TEOPEMBI :

Teopema 1. [Tycmb n, ecmb 603pacmaiolyas nocAe006ameAbHOCING Hamy pas-
HbIX  qucen, 048 Komopou

I
H \ o k—j —
(1) lim int (n, — )" 7 =1
(k—j)— =
r]}’('ﬂlb ) eCNb KAk 'y e00HO MEONCHHO crmpemaataca K 0eCKOHeUHOCMU 1UCA06aA
nocaeoosameabHocms. 1°0eoa cywecmeyem makas peeyAAPHas 1 Heoepadll4eHHA A
6 COUHUYHOM Kpyee (yHKyus f(2), pazaacaemas 6 cmeneHHol pao 6uoa

5 ~ AN S ¢ 4
(2) f2) = 2 ¢ 2™
k=1
Komopas umeem Aullb €OUHCIMEEHHbIL CUHYAAPHBIL  paouyc 1 01 Komopou
6bLNOAHEHHO Ycaoeue

(3) O, —n, <o, .

Teopema 1 jlokaspiBaeTcst B padoTe TeOPETUKO-BEPOATHOCTHBIM  METO10M.

Teopema 2. [Iycmov A, (m = 1, 2, ...)w00aqa 603pacmanwyai nocae006a-
MeAbHOCMb HAMYPAALHBIX QUCCA, A Ny NOCACOOBIMEALHOCTL HAMYPAAbHBIX Ulice,
3a UCKAy4eHUeM KoHeuH020 yucia deasyuxcsa na A, (m =1,2,...). ITycmos b,
008 02PaAHUYCHAA NOCACO06AMEALHOCML  Yeablx yuced. TIpeonoaocum, wmo
Ppynryua

f(~) — N (.]_:I”l;, bi

k=1
PeYAAPHA U HeOPAHUNEHHA 6 eOuHudHOM Kpyee. Toeoa ommuocumeavto f(z) 6ca-
KUl paouyc eOuHuuH020 Kpyea CUHYASIPeH.



