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Introduction

Let qu q2, . . qn, . . .  be an arbitrary sequence of positive integers, re
stricted only by the condition дпШ2. We can develop every real number x 
( O á x ^ l )  into Cantor’s series

where the л-th “digit” s„(x) may take on the values 0, 1, . . . , q„—1 
(л =  1 ,2 , . . . ) .  The representation (1) is clearly a straightforward generaliza
tion of the ordinary decimal (or g-adic) representation of real numbers, to 
which it reduces if all q„ are equal to 10 (or to q, resp.).

In a recent paper [3] (see also [2] for a special case of the theorem) 
it has been shown that the classical theorem of B orel [1] (according to which 
for almost all real numbers x the relative frequency of the numbers 0, 1 , . . . ,  9 
among the first n digits of the decimal expansion of x tends for n-*-\-oo

m  I

can be generalized for all those representations ( 1) for which ^  —
h= i qn

is divergent. The generalization obtained in [2] can be formulated as follows: 
Let f n(k,x)  denote the number of those among the digits ^(x), s2(x), . . . ,  sn(x) 
which are equal to к  (k =  0, 1, . . . ) ,  i. e. put

( 1)

( 2) f n(k, x) =  2  L

Let us put further 

(3a)
and

Then for all non-negative integers к for which
(4) lim £?„,* =  + OO
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we have for almost all x

(5) lim
П - М -С О

/»(£, x)
Qu, &

1.

For those values of к for which Q„!k is bounded, f , (k ,x ) is bounded for 
almost all x. (For other related results see [4] and [5].)

In the present paper we consider the behaviour of

(6) Mn(x) Max f n(k, x),
oo

i. e. of the frequency of the most frequent number among the first n digits. 
We shall discuss the three most important types of behaviour of M„(x): 

Mn(x)
Type 1. lim

Qn
1 for almost all x. This is the case if qn is con

stant or bounded, but also if e. g. q, 
Theorem 1).

Mn(x)

'cn@ with c > 0  and 0 < /?< l (see

Type 2. lim
n-M-co

the case e. g. if q, 

Type 3. lim
71—M -C O

Q n
C for almost all x where l< C < -( -  oo. This is

~ c n  with c >  0  (see Theorem 2). 
M»(x)

Q,,
oo for almost all x. This is the case e. g. if

q„ ~  n (log n)a with 0 < a ^ l  (see Theorem 3).
M (x)There exist, of course, sequences qn for which lim — ”v does not

n - >  OO

exist for almost all x, but we do not consider such cases in the present paper.

W e shall deal with the case when 2  — < +  oo and with some other questions
q n

on Cantor’s series in another paper.
All results obtained are based on the evident fact that the digits sn(x), 

considered as random variables on the probability space [ß , d ,  P], where £2 
is the interval (0 , 1), 61 the set of all measurable subsets of ß  and P(A) is 
for A £ ß  the Lebesgue measure of A, are independent and have the prob
ability distribution

(7) P (s„(x) =  * ) = -* -  ( k = 0 , \ , . . q„ — 1).
n

§ 1. Type 1 behaviour of M n(x)

In case qn is bounded, qn^ K ,  we have by (5) 
U ,(0 ,x )_  . Nn(k,x)lim

71—>- 00 Qn
1 and lim

7 i-> C 0 Q„
1 for Är^l
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and thus, as in this case Mn( x ) =  Max f n(k,x), we obtain for almost all x
0^k< К

(8) lim
?г—>-4- со

M„(x)
Qn

1.

We shall show that (8) is valid under more general conditions. We prove in 
this direction the following

T heorem 1. If

(9) lim
n - M - C O

Qn
log«

then we have for almost all x 

( 10) lim
n - M - c o

Mn(x)
Qn

1.

P roof of T heorem 1. Let 6t denote the set of those numbers n for 
which qn < ns. Let us denote the elements of the complementary set & of 61 
by tij (nj <  nJ+i ; j =  1, 2, . . . ) ,  then we have п, ^  j  and therefore q,t] Ш п] Ш p .

Then we have for any к

Z  p  (*,■ ( x ) = k ) = %  p  (4
з е в l J ■' J 1

and therefore, by the Borel—Cantelli lemma for almost every x, every к occurs 
only a finite number of times in the sequence s„.(x). On the other hand, the 
probability that a number к occurs more than once in the sequence snj(x) 
( j — 1, 2, . . . )  does not exceed

Чгц >k Qnflnj
v”j >k
J>‘

and we have

í  w,.=  z z  —  —  =  ék= 0  i < j  Q n iQ n j г= 1  j>i qnj г = 1  j=i+l J

Thus, using again the Borel—Cantelli lemma, it follows that for almost all x 
only a finite number of integers к may occur more than once in the sequence 
i ,4.(x). This, together with what has been proved above, implies that for almost 
every x in the sequence en.(x) only a finite number of values occur more 
than once and these values occur also only a finite number of times. By 
other words, in proving Theorem 1 we may suppose that

( 11) qn< n 3 for all values of n

without the restriction of generality.
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Clearly, we have
Mn(x) /„(О,*)

Qn Qn
and thus, taking into account that owing to (9) condition (4) is fulfilled for 
& =  0, it follows by (5) that

lim
n-y-Hco Q n

Thus to prove Theorem 1 it suffices to show that for almost all x

( 12)

As by (4) we have for any k0

i a y s i.
n-M-co

Max f n{k,x)
lim ^ 1,

n -y+CQ Qn
( 12) will be proved if we show that for any s > 0  and for some k0 which may 
depend on s, putting
(13) м У ( х )  =  Max f n{k, x), 

we have
k > k „

(14) т-г  M ?°\x)  _ ,  , lim — --  ^  1 +  в.
n ->  CO n

To prove (14) we start by calculating the probability P(f„(k, x) = / ') .  In what 
follows cx,c 2, . . .  denote positive absolute constants. We evidently have

(15) P ( f n ( k ,x ) = j )

It follows that

(16) 
where 

(17)

2 {Чн O' "(Я ч—О
Sir > k ; r = i , 2, . . . , j

P (fn(k,

I J Q -h= 1
l h > k

q :, Z  1 .á l, <7,-1

Using the well-known identity

i = ni  4 i
Ql>k

j = N

1
j \  N\.

t^e^dt

we obtain for 0 < A < N
1 -J-e

fi!
á k j \  =  1Л

(N-X)*

Vn
(18)
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Thus we obtain for 0 < £ < 1 , in view of

(19) 
that

(20)

Q*. л =  Qn, it 11 +  1 =  Qn 11H— 1,

««(£-тУ
P ( / ,( A r ,x ) ^ ( l+ e)Q„ ) ^ — e

s ]/ Q„

8
We obtain from (20) for ^ =

(21) P (f,(k, x ) ^ ( l  +f)Q >t)^- 16

lYQn

This implies, putting k0 = + 1  and taking (11) into account,

(22) P (M 4 ( x ) ^ ( l + « ) Q . ) s  H V <Jn{k ,x)^{ \+s)Q n) ? k - ^ = e  »«
it=k0 s у Qn

80As by (9) we have for n ^ n 0 Qn> < , logn, it follows thatÍ

‘■Qn

(23) P (МУ(х)  i= (1 +  «) Q„) ^  ^ .
Thus

(24) 2 ’ P  (АГ?п1 ( x ) s ( l +  S) Qn) < +  oo
n=1

and therefore by the lemma of Borel—Cantelli, the inequality Mna)(x)Ш(1 +  e) Qn 
can be satisfied for almost all x only for a finite number of values of n. 
This implies (14) for almost all x which proves Theorem 1.

§ 2. Type 2 behaviour of Mn{x)

In this § we shall prove the following rather surprising 

Theorem 2. If

(25) ШС3

and

lim Qn -
n - H - c o  lOg П(26) a  > 0,

then we have for almost all x

(27) lim "■<*> ,
n - M - o o  v I n

=  y(cc)
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where y  =  y ( a ) >  1 is the unique (real) solution of the equation 

(28) у  log у  = 1 - .

Proof o f  Theorem 2. We start from the inequality, which follows 
simply from Stirling’s formula,

< 2 9 >

for N > ß A with fixed ß > \  where ci depends on ß.
Now evidently (25) and (26) imply that

(30) Qn, и =  a log у  +  о (log rí).

Thus, by virtue of (16), we have, if Y>y(cc) where у (a) denotes the solution 
of the equation (28), for any t  with 0 < £ < « V T o g P — 1 and n ^ n 0(s)

(31) Z P ( f n ( h , x ) ^ Y Q n) ^ I а Г log Y-l—£
Thus

(32) P (Mn( x ) > Y Q „ ) ^ ^  for n ^ n 0(s)

where ő =  a Y l o g  Y — 1—«> 0. It follows that

(33) 2 '  P  ( M Jx )  > YQ os) <  +  -
s= 1

and therefore by the Borel— Cantelli lemma the number of those values of s 
for which M2s(x) >  YQ2s is finite for almost every x. If 2s~1< n < 2 s, let us 
choose an arbitrary number K, such that y (c c )< Y < Y 1, then

M„(x) ^  M2s(x) ^  Y, M2s(x)
Qn Q 2s - 1 Y Q2s

if s ^ s 0. Thus, if for such an n M„(x)>Y^Qn> then M2S(x )>  YQ2$. As the 
last inequality can be valid for almost all x only for a finite number of values 
of s, it follows that Af„ (x) >  Y, QH is valid for almost all x  only for a finite 
number of values of n. As Тг may be equal to any number greater than 
y(cc), this implies that for almost all x

(34) lim ^ W ( « ) -
п->-со Цм;

If remains to prove that we have also

(35)

for almost all x.

Af„ (x) . .lim — x ^ > y ( c c )
—  О ~7 l-> -  CO Q.
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As for any sequence of positive numbers bu b2, . . bN we have

2 bi. bi---bi,1 ** V— /Il = í'l<Í2<... <ij=N

we obtain from (15)

(36) p (/„(A:, x) = ; )  s c6éf ̂

Taking into account that

- X Xj

1
( l ‘‘)ß 2

1 Qib
Qn,1 2

I.'[ÍA
j-2
1

/ (J—2)!

2. 0*=n, Qi>k 4

n

1

2(7- 2)!

c7
T

and that for j  =  y Q n and k ^ n 1'

J
(Q*,*)2 =  *2

if l< y < y ( « )  where y(ci) denotes the solution of (28) and 0<«<1  — a y  logy, 
it follows that
(37) 2  P (fn(k, x ) ^ y Q , i ) ^ c dnö for n i s n0(s)

log2 n 7c < n

where ö — 1—ay  log у — s > 0.
Now it is easy to see that

P(fn(ku x ) =j\, fn(k>, x) = / , ) ;
(38)

=i 11 111 +  тЧ  P(fn(/Cux) = j \ )P ( fn (k 2, X )  =j_).J 2

^ P (fn (k1,x )^ y Q „ )P (fn (k i ,x )^ y Q n )  1 +  0

It follows that for Atj log3 n, k-> ==5 log3 n we have for any у  with \ < y < y { a ) ,  
where y(cc) is the solution of the equation (28),

p ( /n (кг, х) Шу Qn, fn(k2, x) ш у Qn)^

(й 4
If we define rjn — r]n(x) as the number of those values of к for which 
log-п ^ к ш п  and f„(k, x )^ y Q „ ,  we have, denoting by M(?y,) the mean value 
and by D 2(/;„) the variance of rjn,

(39) М(г1п)Шс9пд
and

M2(tj„)(40) D-(/y„) ^  c10 ■log2/7 '
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It follows by the inequality of Chebyshev

(41) Р (Ч . =  0 ) ^ Р ( |Ч. - М Ы | 2 М Ы ) ^ | ^  

and thus
CO

(42) 2 > f o * ,  =  0)< +  oo.
n=i

It follows by the Borel—Cantelli lemma that we have for almost all x

M2n( x ) ^ y Q 2n for п ш п 0(х).
Thus for any e > 0  and for n ^  пг(х, e) and 2" 7V<2U+1 we have

(43) MN(x) Ш M.y„ (x) ^  у Q.,n Ш ( y — s) Qn.

This implies that for almost all x

(44) 2ЙВ y.
it—>-CO V«

As у  may be any number not exceeding y{a), we obtain from (44) that (35) 
is also valid for almost all x. Thus the proof of Theorem 2 is complete.

§ 3. Type 3 behaviour of Mn{x)

Now we shall prove a theorem which deals with conditions under which
Mn(x) . , . .„ ' tends to +  oo for almost every x.

Theorem 3. Let us suppose that

(45) lim — =  + < » ,
n-»-+CO fl

but at the same time

(46) lim Qn =  +  oo.
n—M-co

Then we have for almost every x

(47) .. Mn(x) . lim =  +  oo
n—M-co

Proof of T heorem 3. The proof follows the same pattern as the second 
half of the proof of Theorem 2 (i. e. the proof of (35)).

We have from (45)

(48) Qn =  É ^ r  =  É - r ^ -  =  o(\ogn),
i—.l Qi i= 1 I Qi
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further for any A >  0 

(49) 2  — =  о (log eAQn) =  o(Q„)
, AQn  Qj

and thus
(50) Q„,k^  Q ,,(l— o(l)) for k ^ e AQn.
It follows from (36) that for any N > N 0>  1
(51) P (/» {k, x) §= NQn) s  e mogN (}\,-ATlog N -Q ,

Now let us choose A — 3AHog N, then we have

On the other hand, we have from (38)
P(fn(k1, x ) ^ N Q n,fn(k2, x) s  NQ„) ^

^  P (f„(ku x) 5 : NQn)P(fn(kt , x) rn N Q „) 1̂1 +  0

and thus, defining rin =  rin{x) as the number of those values of к for which 
C fn ^ k ^ e AQn and f„ (k ,x )> N Q „,  we have M (^„)->+oo and

for almost all x. As N  may be chosen arbitrarily large, Theorem 3 follows.
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