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Introduction

Let qug2 .. gn,... be an arbitrary sequence of positive integers, re-
stricted only by the condition gnll2. We can develop every real number X
(O ax”™1) into Cantor’s series

(1)

where the n-th “digit” s,(x) may take on the values 0,1,...,q9,—1
(n= 1,2,...). The representation (1) is clearly a straightforward generaliza-
tion of the ordinary decimal (or g-adic) representation of real numbers, to
which it reduces if all g, are equal to 10 (or to g, resp.).

In a recent paper [3] (see also [2] for a special case of the theorem)
it has been shown that the classical theorem of Bore1n [1] (according to which
for almost all real numbers x the relative frequency of the numbers 0, 1,..., 9

among the first n digits of the decimal expansion of x tends for n-*-\-oo
m

can be generalized for all those representations (1) for which r/;z'_

ign
is divergent. The generalization obtained in [2] can be formulated as follows:
Let fn(k,x) denote the number of those among the digits ~(x), s(x), ..., sn(x)
which are equal to x (k= 0,1,...), i.e. put
(2) fnk, x)= 2 L

Let us put further

(3a)
and

Then for all non-negative integers k for which
(4) lim £2,*= + @
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we have for almost all x

5) Jim P

For those values of k for which Q,,'k is bounded, f,(k,x) is bounded for
almost all x. (For other related results see [4] and [5].)
In the present paper we consider the behaviour of

(6) Mn(x) Max fn(k, x),
(00

1

i. e. of the frequency of the most frequent number among the first n digits.
We shall discuss the three most important types of behaviour of M,,(X):
M n(x)
Qn
stant or bounded, but also if e.g. g ‘'cn@ with ¢>0 and 0</?<I (see
Theorem 1).

Type 1 lim 1 for almost all x. This is the case if gn is con-

Type 2. I’\iAm Mn(x) C for almost all x where I<C<-(- 0o. This is
the case e. g. nif ;0 ~§;1 with ¢> 0 (see Theorem 2).

Type 3. lim M»(x) oo for almost all x. This is the case e. g. if
g,,~ n(log n)z;Hvrlrictoh O<”a"l (see Theorem 3).

There exist, of course, sequences gn for which lim M”\(/X) does not

n-> Q@

exist for almost all x, but we do not consider such cases in the present paper.

We shall deal with the case when 2 ?ﬂ< + 00 and with some other questions

on Cantor’s series in another paper.

All results obtained are based on the evident fact that the digits sn(x),
considered as random variables on the probability space [B, d, P], where £2
is the interval (0, 1), 61 the set of all measurable subsets of B and P(A) is
for A£R the Lebesgue measure of A, are independent and have the prob-
ability distribution

(7) P (s, (x) = *):'*'n (k=0,\,. . g,—D).

8 1. Type 1 behaviour of Mn(x)

In case gn is bounded, qn~ K, we have by (5)

lim YO g ang im NKX)

71—-00 7i->C0

1 for Arnl
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and thus, as in this case M.(x)= Max f.(k, x), we obtain for almost all x
0=k<K

e ()
8 lim
( ) N>+ Qn

We shall show that (8) is valid under more general conditions. We prove in
this direction the following

=l

THEOREM 1. [f

Qn
©) ),lir»rl) logn ST
then we have for almost all x
(10) lim le.
n—»-+4 o Qn

PrOOF OF THEOREM 1. Let & denote the set of those numbers n for
which g,<n’. Let us denote the elements of the complementary set & of &
by n; (nj<nju; j=1,2,...), then we have n;=/ and therefore ¢.,=n}=/"

Then we have for any k

o 1
2 PG (X)*k)“ZP(én (X)=k) = Z éz—s <+t
qn ]:1

ied
and therefore, by the Borel—Cantelli lemma for almost every x, every k occurs
only a finite number of times in the sequence &,(x). On the other hand, the
probability that a number k occurs more than once in the sequence &, (x)
(J=1,2,...) does not exceed

— 1
W= 2

q“i >k qniqnj
q,,l_l«k

J>i

and we have

min (g.,, q,,
Sy iulel) S5

qn qn =

Thus, using again the Borel—Cantelli lemma, it follows that for almost all x
only a finite number of integers £ may occur more than once in the sequence
&,,(x). This, together with what has been proved above, implies that for almost
every x in the sequence &,,(x) only a finite number of values occur more
than once and these values occur also only a finite number of times. By
other words, in proving Theorem 1 we may suppose that

(11) q.<n’ for all values of n

II/\

Z f<—l—00.

without the restriction of generality.
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Clearly, we have
Mn(x) /,,(0,%)
Qn Qn

and thus, taking into account that owing to (9) condition (4) is fulfilled for
&= 0, it follows by (5) that

lim

n-y-Hco Qn
Thus to prove Theorem 1 it suffices to show that for almost all x

(12) ia vy s 1.

n-M-co
As by (4) we have for any kO
Max fn{k,x)

lim Nl
n-y+CQ Qn

(12) will be proved if we show that for any s>0 and for some kOwhich may
depend on s, putting

(13) MY (x) = Maxfn{k, x),
K > k,,
we have
- 20
(14) Tih M?°X) gy g
n->00 n
To prove (14) we start by calculating the probability P(f,,(k, x) =/*). In what
follows cxc2,... denote positive absolute constants. We evidently have
15) P(fn(k,x)=j , -
(18) P02 2 W 0ra—0 k40
Sir>kir=i,2....j Ih > k
It follows that
(16) P (fn(k,
where
17 : %
(7 4 iél]i 67:,]"1 '
QI>k
Using the well-known identity
. 1 tNe/Ndt
i=n j\ N\
. N
we obtain for 0<A<
1-J-e 0
(18) fi!
akj\ = Wi
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Thus we obtain for 0<£<1, in view of

(19) Qn= Qnitll+ 1= QnllH— 1,
that
««(E-TY
20 P(/,(Ar,x)™(I )N —
(20) (L(ATXON(I+Q.) =

8
We obtain from (20) for "=

(21) P (f,(k, X)) (I +f)Q>t)"- 16
(f.(k, x)™ (1 +F)Q>1) Ivon
This implies, putting k0= +1 and taking (11) into account,
‘o«
(22) P(M4 (x)M(I+«)Q .)s iltLX<Jn{k’x)/\{\ﬂ)Qm?ks-fQ:ne D

As by (9) we have for n*n0 Qn>§i9 logn, it follows that

(23) P(MY(x) i=(L+ 9Q) " ~ .

Thus

(24) 2 'PA?MA(x)s(l+ 9QnN< + oo
=1

and therefore by the lemma of Borel—Cantelli, the inequality Mna(x)LL(1+ €)Qn
can be satisfied for almost all x only for a finite number of values of n.
This implies (14) for almost all x which proves Theorem 1.

8 2. Type 2 behaviour of Mn{x)

In this § we shall prove the following rather surprising
Theorem 2. If

(25) LLIC3
and
@) & 270

then we have for almost all x

(27) lim "m<*> = y(cc)

n-M-o0 Vin
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where y = y(a)> 1 is the unique (real) solution of the equation
(28) y logy=1-.
Proof of Theorem 2. We start from the inequality, which follows

simply from Stirling’s formula,

<29 >

for N>R A with fixed B>\ where ci depends on R&.
Now evidently (25) and (26) imply that

(30) Onun= alogy + o (log ri).

Thus, by virtue of (16), we have, if Y>y(cc) where y(a) denotes the solution
of the equation (28), for any t with 0<£<«VTogP—1 and n”~nQ(s)

(31) ZP(fn(h,x)?"YQN"  prigy-1£
Thus
(32) P(Mn(x)>YQ,)~" for n~n(Qs)

where 6= aYlog Y—1—«>0. It follows that

(33) 2:P(MX)>YQu)< + -

and therefore by the Borel—Cantelli lemma the number of those values of s
for which MX(x) > YQX is finite for almost every x. If 2s~1<n<2s, let us
choose an arbitrary number K such that y(cc)<Y<Y1 then

M,,(x) » MZ(X) * Y, M3(X)

Qn Q2s-1 Y Q%
if s~s0. Thus, if for such an n M,,(X)>Y~Qr> then M23x)> YQ25 As the
last inequality can be valid for almost all x only for a finite number of values
of s, it follows that Af,,(x)> Y, QHis valid for almost all x only for a finite

number of values of n. As Tr may be equal to any number greater than
y(cc), this implies that for almost all x

A i
(34) Y (<)
If remains to prove that we have also

Al (X)

(35) lim —3x s y(ce)

for almost all x.
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As for any sequence of positive numbers bu b2, . . bN we have
-X X - j-2
. c A
- bi{bie--b :
I=i'|<lzg.<ij=N PRl — 2 (1 “j L—Z)!
we obtain from (15)
1 2
1Qib >
n 2(7- 2)!

p c/
*:r%i>k T

and that for j= yQnand k~n?

(36) p(/,,(A x)=;)s cefn

Taking into account that

J
Q2= "2
if I<y<y(«) where y(ci) denotes the solution of (28) and 0<«<1 —ay logy,
it follows that

(37) |og2nzknp(fn(k'X)AYQ'i)ACdm for nisnQ(s)

where 6 — 1—ay logy —s> 0.
Now it is easy to see that
P(fn(ku x) =j\,fn(k>, x)=1,);
(38) _ 32 _ .
=i 11 111+ Y P(fn(/Cux) =j\)P(fn(k2 x) =j_).

It follows that for Aj log3n, k>=6log3n we have for any y with \<y<y{a),
where y(cc) is the solution of the equation (28),

p (/n(kr, x) Wy Qn,fn(k2 x) wmy Qn)»
AP (fn(kLx)™yQ,,)P(fn(ki,x)?yQn) 1+ 0 (VI 4
If we define rfn—rln(x) as the number of those values of k for which

log-n~*kw n and f,,(k, x)*yQ,,, we have, denoting by M(?y,) the mean value
and by D2(/;,,) the variance of rjn,

(39) M(rln)LLic9ng
and
(40) D-(y.) A coR A8

'I092/7 '
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It follows by the inequality of Chebyshev

(41) P(U.= 0)AP(JY.-M bl |2 M bl )~ |~
and thus
(42) 2>fo*, = 0)<+ oo

n=i

It follows by the Borel—Cantelli lemma that we have for almost all x
M2(x)"yQ2n for nwnoO(x).

Thus for any e>0 and for n” nr(x, e) and 2" 7V<2UW we have

(43) MN(x) LLIMy,,(x) ~ y Q,nLL(y—s) Qn.

This implies that for almost all x

(44) 2B

=0V« y

As y may be any number not exceeding y{a), we obtain from (44) that (35)
is also valid for almost all x. Thus the proof of Theorem 2 is complete.

8 3. Type 3 behaviour of Mn{x)

Now we shall prove a theorem which deals with conditions under which

M?,(X) tends to + oo for almost every x.

Theorem 3. Let us suppose that

lim —= +<»,
(45) Q0 fl ”
but at the same time
46 lim Qn= + oo.
(46) n—Mch

Then we have for almost every x

. Mn(x) _ .
47 lim = + 00
(47 Mo

Proof of Theorem 3. The proof follows the same pattern as the second
half of the proof of Theorem 2 (i. e. the proof of (35)).
We have from (45)

9 = g™ Er[g = oo,
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further for any A>0

(49) 2 —= o(logeAd) = 0(Q.,)
» AQn Qj

and thus

(50) Q..k* Q,(I—o(l)) for k~eAn

It follows from (36) that for any N>NO0> 1

(51) P (/»{k, x) &NQn) s e TRtk

Now let us choose A— 3AHog N, then we have

On the other hand, we have from (38)
P(fn(k1,x)~"N Q n,fn(k2, x) s NQ,,) ™

A P (f..(ku x) 5:NQn)P(fn(kt, x) mNQ,) 11+ 0

and thus, defining rin= rin{x) as the number of those values of k for which
Cfn~k~eA and f,,(k,x)>NQ,,, we have M(",,)->+00 and

Similarly as in the proof of Theorem 2 we obtain that

for almost all x. As N may be chosen arbitrarily large, Theorem 3 follows.

(Received 29 October 1958)
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