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Introduction

Let {g.} be an arbitrary sequence of positive integers subjected only
to the restriction ¢, =2 (n=1,2, ...). Then every real number x (0 =x<1)
can be represented in the form of Canior’s series

S & (X)

] x= > )

( ) 'n;l1 919'2- . q'n

where the n-th “digit” &.(x) may have the values 0, 1,...,¢,—1. The digits

&(x) can be obtained successively starting with r,(x)==x, by the algorithm

@ &(X) = [gntu-1 ()], 7(X) = (@u7n-1(x))

where [¢] denotes the integral part, and () the fractional part of the real
number 7.

In some previous papers ([1], [2], [3]) the statistical properties of the
- digits &,(x) valid for almost all x, have been discussed, for the cases when

-1- is divergent and when it is convergent. (See also [4] and [5]). In the
n=1 Yn g g ;

. i 51,
present paper we consider mainly the case when Z— is convergent.

n—l1 Yn

This case has been considered in [2] from another point of view. The point
of view adopted in the presen{ paper is to consider properties of the infinite
sequence {s.(x)} as a whole; this point of view has led to the formulation
and solution of a quite surprising number of questions, which have not been
investigated up to now. Most of these questions are interesting only in the

case, when 21 < -+ oo; some of them can be raised only under this con-

dition. !
Our main tool will be a generalization of the Borel—Cantelli lemma,
which is proved in § 1. Our results on Canfor’s series are contained in §§ 2,

3, 4, and 5.
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§ 1. Generalization of the Borel—Cantelli lemma

Let [X, &, P] be a probability space in the sense of KOLMOGOROV [6],
i. e. X an arbitrary set, whose elements are called “elementary events” and
denoted by x, & a o-algebra of subsets of X, whose elements are denoted
by capital letters (e. g. A, B, etc.), and called events, and P(4) (A€¢Q) a
probability measure in X and on . We shall denote by A+ B resp. AB
the union resp. the intersection of the sets A and B, and by A the comple-
mentary set of A. We shall denote random variables (i. e. functions defined
on X and measurable with respect to &) by greek letters, and denote by
M(E) resp. D*(£) the mean value resp. variance of the random variable
E—E(x). i e. we put M(®) = [EM)dP and D) =ME) —M Q). If A, X

X

(n=1,2,...), we denote as usual by lim A, the set consisting of those ele-

H—>+@
ments x of X which belong to infinitely many A,., and by lim A, the set of

-3+C0

those elements x of X which belong to A, for all n = n,(x).

The events A and B are called independent if P(AB)=P(4A)P(B).
A finite or infinite sequence {A.} of events such that any two events of the
sequence are independent, is called a sequence of pairwise independent
events. If moreover we have P(A,A,,...A,)=P(A,)P(4,)...P(4,) for
any r-tuple of different events A,,,..., A, chosen from the sequence A, for
all r=2,3,..., we call the sequence {A,} a sequence of completely inde-
pendent events.

We shall often use the following well-known

LEMMA A. If {A.} is an arbifrary sequence of events belonging to a
probability space [X, &, P] such that > P(A,) <+ oo, then with probability

n=1 -
I only a finite number of the events A, occur simultaneously, i. e. P(lim A,)=0.

>4

LEMMA A is nothing else as a special case of Beppo Levi’s theorem.

As a matter of fact, if «, is a random variable which is equal to 1 if A,

occurs and to O if A, does not occur, then the assertion, that only a finite

number of the A, occur with probability 1 is equivalent with the statement

_that > @, converges with probability 1 and the condition > P(4,)< - oo
n=1

n—I1

can be written in the form 2 M(e,) <+ oo.

n=1

o]
The condition > P(A,) <4 o of Lemma A is under certain restric-

=1
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n

tions not only sufficient but also necessary for P(lim A,)=0. For example

n—>+00

the following result is classical:

LEmMmA B. If ‘{An} is a sequence of completely independent events and

m

P(A,) = + oo, then with probability 1 infinitely many among the events
) .

==

A, occur simultaneously, i.e. P(lim A,) =1.
>+

Lemma A and B together are known under the name: the lemma of
Borel—Cantelli (7], [8]).
In this § we shall prove the following generalization of Lemma B.

LEMMA C. Lef {A.} be a sequence of events such that D P(A)=4+ =

and =
2 2 P(AL4)
1n - lim =2 o ==1.
w4 (g P (Ak))

It follows that with probability 1 infinitely many among the events A, occur

simultaneously, i. e. P(lim A,) = 1.
=+ C0

PrROOF OF LEMMA C. Let us define «, as above, i.e. a¢,=1 or =0
according to which the event A. occurs or not. Then we have M(e.) =P (4;)

and M(e,e) =P (4;A) and thus putting 7,— > e, we have
k=1

D DP(ARA) M(r)

k=1 1=1
# 2 __ MQ '
(2 P(Ak)) (17.)
k=1
Thus condition (1. 1) can be written in the equivalent form
. M()
(1.2) lim =1
PO MZ (n”)
or as M(n2) = D*(n.) + M’(1.), also in the form
. D2(n)
1.3 lim ==,
( ) o Mz(fq")

Now by the inequality of Chebyshev according to which for any random
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variable 7 we have

{1.4) P(n—M@)iz D) =5 i 2>1,
we have for any ¢ with 0 <& <1
(.5 Pl = (1— M () = ek
. n = " ég M2 (nn) .
1f (1. 3) holds, we can find a sequence n; (n < ny <---) such that
o, D*,)
1.6 v < oo
-0 & W) <

It follows from (1.5) and (1.6) that

(1.7) | 2P (s, = (1—8) M) < + oo

Using Lemma A it follows that with probability 1 #,, = (1—&M(1,,) except
for a finite number of values of k. As by supposition lim M(#,,) — - oo, it
k—+co

follows that %., tends to - oo with probability 1, which implies that
P(lim A,)= 1, what was to be proved.

N>+

Remark. Clearly the condition (1.1) is satisfied if the events A, are
pairwise independent and > P(A,)- -+ o, because in this case
n==l

n n

{1.8) ::Z: Z P(A A)= (é P(Ak)) Jré; P(Ax) (1—P(Ay)

—1 I—=1

for all n. Thus condition (1. 1) can be regarded as a condition ensuring that
the events A, should be in a certain sense pairwise weakly dependent and
Lemma C contains as a particular case the following

COROLLARY 1. Ifthe events A, are pairwise independent, and >, P(A,)=--cs,
then with probability 1 infinitely many of the events A, occur simultaneously.

COorROLLARY 2. If P(A:4) =P(A)P(A) for k=1 (i. e if the events
A, are pairwise negatively correlated) and > P(A,)=-- oo then with pro-

n=1

bability 1 infinitely many of the events A, occur simultaneously.

Proor OF COROLLARY 2. If P(4x4) =P(4)PA) for ks={ we have
(1.9) é%‘pmmz) = (; 1D(Ak))'+k§1 P(A:) (1—P(AW)

thus condition (1. 1) is satisfied provided that the series >'P(A,) is divergent.

n=1
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§ 2. On the frequency of the digits in Cantor’s series

Let us consider the probability space [X, &, P] where X is the interval
[0, 1), & the family of Lebesgue measurable subsets of X and P(A) the
ordinary Lebesgue measure of A € d. Thus the Lebesgue measure of a meas-
urable subset A of the interval [0, 1) is interpreted as the probability of a
random point falling into A. With this interpretation the digits s.(x) as well
as any other measurable functions f(x) of x will be considered as random
variables. Clearly we have

@2.1) P(sn(x)=k)=£—;— for k=0,1,..., qu—1,
further if m, <n,<---<n. (r=1,2,...)
I
2.2 P, () =K, .. - 60 (X) = h) —
(2.2) (&n,(X) = () = k) q% qng... ar

if 0=4k=qmn—1 for j=1,.

(2.2) expresses the fact, that the random var1ables en(x) are completely
independent.
Let us suppose from now on that

. 3) ﬁ‘i<+w

except when the contrary is explicitly stated.
By (2.2) and (2. 3) it follows that for any k=0, 1,... we have

(2.4) ; P (s.(x) = k) < + co.
Moreover it follows from (2. 3) that for any positive integer N
(2.5) Z P(s.(x)< N)= Z 1 +N_,_q Nt
qn,_ n n

Thus the sequence &,(x) tends to -+ oo for almost all x. As a matter of fact,
by Lemma A for almost all x and for any N &.(x) <N only for a finite
number of values of n, which is equivalent with the assertion that lim s,(x)=- o
for almost all x. e

By Lemma A it follows from (2.4) that for almost all x each number

k occurs only a finite number of times in the sequence &,(x); thus if we
denote by »,.(x) (k=0,1,...; n=1,2,...) the number of occurrences of

the number k in the sequence &.(x), &.41(x),... then v ,.(x) is an almost
everywhere finite and measurable function, i. e. a well defined random vari-

able. We shall write for the sake of simplicity 7 1(x) == 7:(X).

7
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It is quite easy to determine the probability distribution of » ,(x).
Putting

(2.6) P, (8) = P (75, 1 (X) =)
we have evidently by (2. 2)

< 1 /7 1
2.7 P,ns:‘ (1__-)-
( ) : ( ) n§n1<n22é...<ns anQ712 e qns JFEN, 12r=s) qj
Qj>k

J=Zn

gnr>k r=1,2,...,8)

It follows from (2.7) that

1 o 1
2. 8 p: n S) = (1 — —) } .
( ) & ( ) g qj ( =N < N e el (qnl_l) v e (qns_‘l))

j=n an},k (r=1,2,...,9)

and thus we obtain for the generating function of the random variable 7, ,
the simple formula

(2.9) S e@e= 11+
=0 9>k q;
' =

(The special case n=1 of formula (2.9) is given already in [2].) Clearly

2. 10) M@ () = ZPEE—0— 3 ;j <+ oo

Thus the mean value of the occurrence of each digit ¥ (k--0,1,...) is
finite. Now let us put

(2.11) my,(x) = s(g)p Vi, 0 (%)

and '

(2.12) m(x) = lim m,(x).
) n—>4-00

(As m,(x) = M. (x) = 0 the limit (2. 12) always exists.) m,(x) and m(x) are
generalized random variables in the sense that they may take on the value
++ oo on a set of positive measure. Clearly m(x) is a Baire-function of the
independent random variables &.(x) (n=1, 2,...) which does not change its
value if a finite number of the s.(x) change their value. Thus, according to
the law of O or 1 (see [6]) the probability P(m(x)=s) is for any s=1,2,...
ecither O or 1. Similarly the probability P(m(x)=- o) is either O or 1.
Our first result decides when these two possibilities occur.
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THEOREM 1. Lef us suppose that ¢n = @y and 2, ~—<+ o and put

(213) Rn-'tzl_ (IZ:], 2,)

If Z Ry =+ o but D] R) <+ oo for some positive integer s, then we have

n=1 n=1

(2.14) P(m(x)=3s)=1.
We have
(2. 15) P(m(x)=-4 o0)=1

if and only if ZR =4 o0 for all s=1,2,.

REMARK 1. First of all, the assumption that ¢, = ¢..1 does not restrict
the generality, as clearly this condition can be fulfilled always by reordening
the ¢, according to their size, and this reordening, though affects the expan-
sion (1), does not affect the joint distribution of the random variables &.(x)
and thus does not influence such properties of the sequence s,(x) which
depend only on the values and not on the arrangement of these variables.
Especially such a reordening does not affect the distribution of the variable
m(x), because m(x)=s means that there can be found an infinity of
s-tuples of different positive integers n,, n,, ..., n, such that &, (x)=¢,,(x)=
== ... =g, (x) but only a finite number of s+ 1-tuples my, my, ..., ms1 such
that &, (X) = ém,(X) = - -+ = &m_,, (X).

REMARK 2. Let us put w(x)=Ilim»(x). It is easy to see that
Je>+4oo

P(m(x)=u(x)) = 1. As a matter of fact, if m(x) = s, there are an infinity of
s-tuplet, ny,...,n, such that &, (x)=8,(X)="+--=12¢,,(x); as we have

lim &,(x) == + oo for almost all x, this means that w(x) = s. Conversely, 1f
7>+ 00

p(x) = s then there are an infinity of s-tuples of equal digits, and so m(x) = s.
Thus the assertions of Theorem 1 hold for u(x) instead of m(x) too.

PrOOF OF THEOREM 1. Clearly to show that

(2. 16) D Ri< oo

n=I1

implies m(x) = s for almost all x, it suffices to prove that the series

(2 17) Z p(S”J(x) = 87,2(X) == 8""-3+1 (x))

1=Sn,<ne<l .. <ngyy

converges. As a matter of fact, if the series (2.17) converges, then by

Tx
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Lemma A for almost all x only a finite number of the events &, (x)=--- =
== &u,,;(X) will occur, which implies m(x) =s. But if n, <np < --- < 1541, then

1

2. 18 P 8;1,1 X =8/p12 X ="‘=8n X}) =
( ) ( ( ) ( ) s+1( )) qngqns . q"’ls+1
and thus the series (2.17) is equal to the series
n,—1
2.19 - -
( ) 1<112<n§.<ns+1 q'ng ‘e q778+1
Now we have clearly
no_l . 1 937
2.20 —— = R;.
( ) 1<712»in§.<f"8+1 qnz ves qn-5'+1 S! »,% R

Thus if (2.16) holds, then the series (2.17) converges, which proves our
assertion, that (2. 16) 1mp11es m(x) =s for almost all x. Let us suppose
now that

(2.21) >ﬁ Ry =+ o

7!“‘

Let us denote by Aun.., the event &, (X)=&,(x)=" - =2,(x)
(1=n<n<---<n,). Then as above, it follows that

«Q ;5 1
@2 3 Plwen) > S
1=n <np<...<ny N=2 N = Ne<Ng<o.. <Ny Qg+ o« qns
Now we use the inequality

N \E Za?
(2.23) > szlaig-..aiki%(z{li) 1——(;)_____,";1

10 i L =N =1

valid for any sequence a; of positive numbers and for £k=1,2,.... (2. 23)
is trivial for k.-..1 and X= 2 and follows for arbitrary k easily by induction.

It follows that

s-1
(2. 24a) : Ra

N=ngng<l... <nig fhg ‘e = (S_l)'

if s=2
and

[os] 1 )
R ( ) e

NS ng<ng<l... <1y nng -« + ans

As evidently
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and the series ﬁj—g— is convergent, because
7=1q;
oS3l o131 _($af
;’:qf n=1 j;nq]z - n% gn _1;9: q; - 'n;_; qn
it follows from (2.21), (2.22) and (2. 24a) resp. (2. 24b) that
(2. 25) 2 P(Anu.n)= + .

1=Sng ng<la.. <ng

We shall apply now Lemma C For this purpose we have to verify the ful-
fillment of condition (1.1).

Let us arrange the s-tuples of positive integers n, < n,<---< n, in lexi-
cographic order. We have evidently, putting
(2. 26) BY= 2 P(Aun..n),

M Mo K Ng==N

~

28—

k B(’\gfs_k)
S o0

(2.27) Z P(A.. oA ..0) = (BY)? +;§ (2) (

Ny Np. .<ns§N
oy <mgl... - mgZ=N

Thus we have

o 2; SVP(A"I“'”sAml'“ms) ‘Zﬁ‘:(s) (23___/{) ‘lls—k
e =N o BWl s Jes—at
( > P(A, ...Ans))Q - BY

<ng=N

(2. 28)

which shows, that condition (1.1) is satisfied, because by supposition
lim BY =+ oo.

N>+

Thus we may apply Lemma C and it follows, that with probability 1
an infinity of the events A,, .., occur simultaneously. But this means that
P(m(x) = s)=1. Thus if (2. 16) and (2. 21) both hold, we have P(m(x)=s)=
=P(m(x)=s)=1 and thus P(m(x) —=s)—=1.

On the other hand if (2. 21) holds, for s—2,3, ... then P(m(x)=s)=1
for s=2,3,... and thus P(m(x) =4 ~)=1.

An other question, related with Theorem 1 is the following: how many
of the first N digits &(x), ..., ex(x) are different? If we denote this number
by Dx(x) and by Cw,x(x) the number of equal k-tuples among the first N
digits, we have clearly

(2. 29) N—Cy,2(x) = Dx(x) = N.

Dy (X)
N

It follows by what has been proved above that tends stochas-

tically to 1.
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By a somewhat more refined argument it can be proved that ——Dﬁ}(x)

tends almost everywhere to 1, i. e. the following theorem is valid:

THEOREM 2. Suppose Zu]—<—{— co. Let Dx(x) denote the number of

n—1 Yn
different numbers in the sequence &(x),...,ex(x). Then jfor almost every x
we have

(2. 30) im 2y

1.
N>+ N

Proor. With regards to (2. 29) to prove Theorem 2 it suffices to show that

. 31) lim 22 o

N+t w N
T,
for almost every x. Now we have M(Cy,:(x))= > a’-z———“NhN where
. n=1 Yn

lim Ay =0 further D*(Cy, o(x)) = KNhy where K is a constant. It follows

N>+
by the inequality of Chebyshev that if ¢ >0 and N is so large that fix < /2,
we have

(2.32) P(Cy,2(x) > eN) < szhN )

It follows that

(2.33) 2 P (Co, 2(x) > £1%) < - oo,

=1

It follows by Lemma A that

(2. 34) lim M:O
1>+ n

for almost every x, and therefore by (2.29)

(2. 35) lim LX)
>+

for almost every x. But clearly if n* <N < (n+1)* we have
(2. 36) Do (x) ( n ) - Dr(®) _

n? nt+t1/~ N
and thus it follows that (2. 30) holds for almost all x. This proves Theorem 2.

REMARK. For the validity of Theorem 2 it is sufficient — as can be

seen from the above proof — to suppose instead of the convergence of
e8] N

S Loty that lim 71\72 "o,

n—1 n No+om n=1 qn
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§ 3. Some other statistical properties of the digits

It seems plausible that if g, tends very rapidly to + oo the sequence
g.(x) of digits will be increasing from some point onwards. This is in fact
true, as is shown by the following

THEOREM 3. The necessary and sufficient condition for the sequence
£.(x) to be increasing for n = ny(x) for almost all x is that the condition

(ss]

@3.1) P T
n=1 QNH
should hold.

Proor. Clearly

2,1

—J 1
3. 2 P 0 =g, . qn .] — qn+ .
3.2) (61 (X) = 6,()) g R T

Thus if (3. 1) holds, then

(3.3) Z P(ep1(X) = e.(x)) < + o
and therefore by Lemma A for almost all x, &.41(x) > é,(x) except for a finite
number of values of n. This proves the first part of Theorem 3.

As regards the second part, let us suppose

3. 4) Sy

n==1 qn+1
In this case

v-

6.5 3 3Pl = s own () = 5u(D) = 3, Plewr (9 =0.0) +

n=1 m=1

£2 3 Plens(®) = 000 = 5100,
As

qfnlqnl k

3.6 q = &.(X)) = .
( ) p(8n+ (x) = &1 (x) s,,(x)) JZ g QnQnJl—l G2 3q"+1

II/\

it follows that condition (1. 1) of Lemma C is fulfilled. This implies that for
almost all x &.1(x) = &,(x) for an infinity of values of n; thus Theorem 3
is proved.

We have seen, that &.(x) tends for almost all x to -+ co. One may ask
what can be said about the speed with which &,(x) increases. In this direc-
tion one can easily prove resuits of the following type:
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. 1
THEOREM 4. Z oy ST ™ for almost all x if and only if
> lgd o
n=1 qu

PROOF OF THEOREM 4. The proof of the sufficiency is immediate by
the theorem of B. Levi, taking into account that

1 11

As the variables &,(x) are completely independent, the necessity follows
from the three-series theorem of Kolmogorov [6].

§ 4. On the set of all digits

In this § we consider the following question: what can be said about
the set S(x) of those positive integers, which occur at least once in the
sequence {s,(x)}. Clearly the probability that a given number & is not con-

tained in S(x) is equal to H (l—i) and is thus positive for all k. More-

k<lqy, n
over, it is not difficult to find an infinite sequence of integers k; (j—1,2,...)
such that with probability 1 only a finite number of elements of the sequence

k; are contained in the sequence &,(x). As a matter of fact

(4. 1) P(k€S(x))==1——g(1—qln)
and thus
(4. 2) 11m P(ke S(x))=0.

Therefore an infinite sequence & <k, <--- <k < .-+ can be found (depend-
ing of course on the sequence ¢,) such that

(4.3) ]é P(k; € S(x)) < + oo.

By Lemma A our assertion follows.
Clearly we have also by the general formula

(4.4) P(AB)=P(4)+-P(B)—P(A+B)
and by (4.1) if k<j

@s  PEes@jesw 1+ I (1= (- 2]

Lqp=j —n ) j<a, dn

)

n qn P dn
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As (1——2-) = (I'—*l)“
qn qn

(4. 6) P(k € S(x),j € S(x)) =Pk € S(x)P(j € S(x))
if js&k, and therefore if {k;} is such a sequence that (4. 3) holds then by

Corollary 2 of Lemma C with probability 1 S(x) contains an infinity of ele-
ments of the sequence {k;}. Clearly if ¥ is sufficiently large so as to ensure

1 1
4.7 1 1
( ) q‘,;h qn 2
we have
1 1 1 1
4.8 Z =1— (1_._12__ .
( ) Iy >k q" Q{:)Zk- qn J 2 qnz):i qn

and thus putting
4.9) Kx)— 21
)/

with respect to (4.1) and (4.8) the series (4. 3) is convergent or divergent
according to whether the series '

o3

(4. 10) >y 1 >k@)

i
7=1 kj<qn dn n=l} dn

is convergent or divergent.

Thus we have proved the following

THEOREM 5. Let k <k, < --- <kj<--- be an arbitrary infinite sequence
of positive integers and define K(x) by (4.9). The set S(x) of all positive
integers occurring at least once in the sequence {&.(x)} contains for almost ail
X either a finite or an infinite number of elements of the sequence k; accord-
ing to whether the series

(4. 11)
converges or diverges.

i K(q.)

ExampLE. If g.==n" then S(x) contains for almost all x only a finite
number of elements of the sequence k;=j° but an infinite number of ele-

ments of the sequence k; =j*.
It follows easily from Theorem 5 that if the sequence {k;} has positive

lower density, i. e. if
(4.12) tim X&) o0
S0 X
then S(x) contains with probability 1 an infinite number of elements of the
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sequence {k;}, because in this case K{qn) does not tend to 0, and thus the

n

series (4. 11) is divergent. If ¢, does not increase too rapidly, for instance if

o1 = C where C>0 is a constant, then the same holds also under the

n

weaker assumption that
(4.13) lim ffgl =£>0
L->+10

i. e. that the sequence {k;} has positive upper density, because in this case
if g.-1 =x<q, then

K (gx) = K(x) - i@

qr n X

and thus (4. 13) implies lim K(g) ;ﬁ >0 and thus the divergence of the

>+ QW, A
series (4. 11). If however ¢.=—=2¥" and {k;} consists of the numbers
22+ 1,...,22%1 then the upper density of the sequence {k;} is 1/2 but
(4. 11) is convergent.

Now we prove the following
THEOREM 6. The density of S(x) is with probability 1 equal fo 0.

PROOF. Let ax(x) denote the number of those &.(x) (n— 1,2,...) which
are = N. Clearly if we prove that

(4.14) P( lim 9‘-%"—);0):1

N—>+o

then the assertion of Theorem 6 follows. To prove (4.14), by Lemma A is
sufficient to show that the series

is convergent for any &> 0. As a matter of fact ﬁhe convergence of the series
(4. 15) implies that for almost all x

(X
(4. 16) im —1hg—)=0
k=0 2
. i1 (X
and as for 2¥ = N < 2% we have a:l}\fx) = 2-———“;:# it follows that
(4.17) im 2% g

No>+m N.
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for almost all x. As

(4.18) M(aN(x))— Z 1+ Z N Nay
N<gy, Yo
where limdy=0 and
No+o

(4.19) D2 (ax(x)) = > — N (l — ﬂ) = Ndy

Q>N d» qn
it follows by the inequality of Chebyshev that if N is so large that dy < /2, then
(4.20) P(ay(x) = Ns) = ‘;‘;’1‘2 <2

It follows that the series (4.15) converges, which, as has been pointed out
above, proves Theorem 6.

§ 5. On the order of magnitude of ».(x)

We denote again by »,(x) the number of occurrences of the number %
(k -=0,1,...) in the sequence {&.(x)}.
In this § we prove

THEOREM 7. Let {q.} be an arbitrary sequence of integers (q.= 2) for

w

which 2—1— < 4 oo, If C is an arbitrary positive number, then for almost all x

a=1n

log k log k-logloglogk log k&
. 1) vilx) = log log k& (log log k) (log log k)

holds at most for a finite number of values of k.

+

REMARK. It is remarkable, that the growth of #.(x) depends only so
weakly on the order of magnitude of g., that such an estimate as furnished

by Theorem 7 can be given for all sequences ¢,. The result of Theorem 7
is best possible as is shown by

Tueorem 8. If g(k) is an arbitrary sequence of numbers tending to

+ oo, one can choose the sequence {g.} so that 2-1— <+ oo and

u=1 Yn

log % log k-log log log k () log k
glog & (oglog k)Y 5 (loglog &y

is satisfied for almost all x for an infinity of values of k.

6.2 wE=z=f +
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Proor OF THEOREM 7. We have by (2.7) for N=1

w 1 1
5.3) Pm(x)=N)= q ) (1___)
( ) (?}k( ) ) sgf:r %1<n§-<71’s qnl qﬂz e q"s J#Fn, A =r=s) qj

Qnr>k (r—=1,2,..,,9) qj>k

and thus putting

1
5.4 rr = -
(5.4 =2
we have

o} S

(5. 5) Pru(x) =N)= > 1k

== §!

Let & >0 be an arbitrary positive number, and choose &; so large that for
k = k; we should have r; = e-?; then we obftain for k = k;

2e-Ni
(5- 6) P(’Vk(JC) = N) = i
Thus if
- logk logk-logloglogk  Clogk

(5.7 N — log log k T (log tog k) (log log k)
we have

e~ N(k)
6.9 SR =N =23 S

As by Stirling’s formula
(5.9 logN()!=logk—

(C+1)log k 40 (log k (log log log k) )

log log k (log log k)
it follows
(O Do ()
(5. 10) P(m(x) = N(k)) = .

It follows by choosing d > C--1 that the series (5.8) converges. Thus we
may apply Lemma A, and Theorem 7 is proved.

PrROOF OF THEOREM 8. It is easy to see that for k=1
(5. 11) P@i(x) = N, n(x) = M) = P:(x) = N)P(n(x) = M).

It follows by Corollary 2 to Lemma C that if N,(k) is chosen in such a
manner that the series

(5. 12) é P (vi(x) = Ny(k))

diverges, then ».(x)= N,(k) for almost all x for an infinity of values of .
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But if
_ logk log k (log log log k) log k&
(. 13)  Ni(x) = log log ra (log log k) 2 {iog log 1 (log log k)
then
e e%?% rﬁh(k)
(5. 14) Puni(xX)=NE) =L, N@OT = L, 7

where L,, L, are positive constants. Thus the series (5.12) is divergent pro-
vided that

. 15) g(k)>2log .
k

But clearly if g(k) is given such that g(k) — - oo, the sequence {g.} can be
chosen so that rr should tend to O arbitrarily slowly, e. g. that we should

have
g(®)

(5. 16) m=e 2
which implies (5. 15). Thus Theorem 8 is proved.

References

[1] A. Rényi, A new axiomatic theory of probability, Acta Math. Acad. Sci. Hung., 6 (1955),
185—336.

[2] A. REényi, On the distribution of the digits in Cantor’s series, Matematikai Lapok, 1
(1956), 77—100. (Jn Hungarian with summaries in English and Russian.)

[3]1 P. Erp6s—A. Reényi, Some further statistical properties of the digits in Cantor’s series,
Acta Math. Acad. Sci. Hung., 10 (1959), 21—29.

[4] P. Turin, On the distribution of “digits” in Cantor-systems, Matematikai Lapek, T
(1956), 71—76. (In Hungarian with summaries in English and Russian.)

[5. E. Marczewskl, Remarks on the Cantor-expansions of real numbers, Matematikai Lapok,
7 (1956), 212—213. (In Hungarian.)

[6] A. KoLmocororr, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathe-
matik, (Springer, Berlin, 1933).

[7] E. BoreL, Sur les probabilités dénombrables et leurs applications arithmétiques, Rendi-
conti del Circolo Matematico di Palermo, 26 (1909), 247—271.

[8] F. P. CanteLui, La tendenza ad un limite nel senzo del calcolo della probabilita, Rendi-
conti del Circolo Matematico di Palermo, 16 (1916), 191—201.



