ON THE DIMENSION AND ENTROPY OF PROBABILITY
DISTRIBUTIONS

By
A. RENYI (Budapest), member of the Academy

Let 7 be a discrete random variable, taking on the different values yx
with the probabilities ¢ (k=1,2,...), i. e.

@
P(n—y)—q: where ¢,=0 (k=1,2,...) and X qi=1.
k=1

(Here and in what follows P(...) denotes the probability of the event in the
brackets.) The entropy of 7 (which may also be called the entropy of the
probability distribution of #) as defined by SHANNON, will be denoted by
Hy(n); i. e. we put’

& 1
(1) Ho(n) = 2, gx log—,
=1 (03

provided that the series on the right of (1) converges. (If this series is diver-
gent, we say that the entropy of # does not exist.)

Let now & be an arbitrary real-valued random variable, having the dis-
tribution function F(x). The dimension and entropy of & have been defined
in [1] as follows:

Pat &, = % [nE] where [x] denotes the integral part of x..If H,([§]) exists

and if for n— - o the following asymptotic formula holds:*
2 H,(5) =dlog n+h+o(1)
(where o(1) means a remainder term tending to O for n— -+ o0), then we
shall say that the dimension d(§) of § (of the distribution of §) is equal to
d and the d-dimensional entropy H.(§) of & is equal to /; thus we put

_ im HoG)
(©) Akl e Py
provided this limit exists; otherwise the dimension of § is not defined. If the
limit (3) exists, we put
4) Hae () = lim (H(5,)—d(5) log n),

1 Throughout the paper log denotes the logarithm with respect to the base 2.
2 Clearly, H,(5,)=Hy([n&]); we prefer to write Hy(§,) because the distribution of
£, tends to that of & for n— - oo and this shows why definition (2) is natural.
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194 A. RENYI

provided that the limit on the right of (4) exists; otherwise the entropy of
€ is not defined. In case the limit (3) does not exist, we may consider the
lower and upper limits

5 HO(EH
(5) de) z,ll—fl fog n)
and
e o HES)
o A g

and call d(§) and d(&) the lower and upper dimensions of & respectively.
Thus & has a definite dimension if and only if g(&):&(g).

The lower and upper dimensions, respectively, are not always defined
either; as a matter of fact, if the quantities H,(§.) are all infinitely large,
then d(§) and d(&) are not defined. If, however, H,([§]) is finite, then d (§)
and d (&) always exist and we have
(M 0=d@®=d@=1
This can be shown as follows: Put

®) p,,kzp(%skﬁj—l) =01 20 5

We need the well-known inequality ®

Z ay IOg by Z a; by

9 él k
) ;ak og ;ak

valid for any finite seqdences of non-negative numbers @, and b, such that
>'a,>0. It follows from (9) that
k

(+n-1

(10) 2 pnklOngplllOgL for 1=0,+1,+2,...
k=in Pk Pu

and thus, summing (10) for /, we obtain

(11) 0=H,(&) =H,(&) +log n,

which implies that if H,(&) is finite, then H,(&,) is finite for all n and (7)
holds. On the other hand, using the inequality (see [1])

(12) H,(g(§)=H.(9),
valid for any discrete random variable & and for any function g(§), as & =|[&]

3 (9) is nothing else than Jensen’s inequality applied to the concave function log x;
it may also be considered as the generalized form of the inequality between the geometric
and arithmetic means. See e. g. G. Porva and G. Szea6, Aufgaben und Lehrsdtze aus der
Analysis. I (Berlin, 1955), p. 53.
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for any k=1 we have
(13) HE)=HE) #=12,..),

and thus if Hy(§:) is finite for some £, then H,(§,) is finite and thus H,(&,)
is finite for every n.

Thus we may say that every random variable § for which H,([§]) is
finite, has upper and lower dimensions for which (7) holds. This is the case
e. g. for every bounded random variable.

It is not difficult to give an example* of a random variable & for which
H,([§]) is finite and for which the upper and lower dimensions are different.

Let us define the measure » on the Borel subsets of the interval
I=|[0, 1) as follows: Let a,,a,,... be a sequence of positive integers which
will be specified later. Let us divide the interval / in 2“ subintervals of

length and let us attribute to the intervals /,,=— and L=

the measure % and to the other subintervals

(1=k=2"—2) (if there are such subintervals, i. e. if @, > 1) the measure 0.
Let us divide the intervals [, and [, into 2" equal subintervals and attribute
to the first and last ones which we denote by Iy, I,, and 1., /s, respectively,
the measure % and (if @, > 1) to the others the measure 0. Let us divide
each of the intervals L; (=0, 1, 2, 3) into 2" equal subintervals and attri-
bute to the first and last subintervals of each of these four intervals the

measure % and to the others (if there are any) the measure 0. Continuing

this procedure ad infinitum, we have defined the measure » for every sub-
interval of the form

(k=0,1, . :., 5s—1)

ik
‘ zsn X 2Sn

where

Ss=a;}+a+---+a. (==l 2ewr):
This measure » can be extended in the usual way to a measure defined on
all Borel subsets of the interval /; the measure » satisfies evidently the condi-
tion »(/)=1, i. e. » is a probability measure.

Let now & be a random variable the distribution function F(x) of
which is equal to »(/.,) where /. denotes the interval [0, x). (Note that in
case a,=1forall n, F(x)=x for 0=x=1, i. e. » is the ordinary Lebesgue
measure and &, is uniformly distributed in the interval [0, 1).) Clearly, putting

4 A similar example has been constructed by T. Kéviri (oral communication).

13*
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£,= — [n£], £2m takes on 2n different values each with the probability )
Yy

thus
H»(En ) .

log 2s" S,,

Thus, if we choose the sequence a, in such a manner that the limit lim

n—+ CD Sn

does not exist, the lower and upper dimensions of £ will be different, namely
we shall have

d(€)™ lim n
Sn
and
d1m Hng,
For instance, ifl *=1 for 22rrk<2 2+ and ak= 2 for 22r+1"k<22rn

(r—0,1,2,...), then
d(g)”y and d(£)i=-§-.

Evidently, by choosing the sequence an in another appropriate manner, we
can reach that d(£) and d(£) shall have any prescribed values satisfying (7).

To prove that our definition is not contradictory we have to show that if
the distribution of £ is of the discrete type, $ taking on the values xk with
the corresponding probabilities pk (xj=f=xk for j=/=k), then d(£)= 0 and

= N —
Ho®© ka IOng’

provided that the series on the right converges. This can easily be shown
as follows: Clearly, the values of £, can be arranged in such a manner that
denoting by pkl) (A= 1,2,...) the corresponding probabilities we have for

every fixed K
limpw=pk.

o} J
As by (12) we have, in case the series ﬁ_lpklogp? converges,

Ho®) = ElPtl)log Ié’). , £Pklog o
it follows that for any N

JEPK 10975 " . HIE) = i 40) " . Fclog
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and this implies
lim H,(&.) = H,(§).

n—>-w

If the distribution of & is of the discrete type and H,([§]) is finite but
H,(§) =+ oo, then still we have d(§)==0. This can be shown as follows :
We may arrange again the values of &, in such a manner that if p{» denote
the corresponding probabilities, we have for n=n,(s)
&
™ —p| == i
PP —pl=+ for k=1,2,...,N

where N is chosen so that

ZPL-<8

N+1

should hold. It follows that for n = n,(¢) Z p = 2¢. Clearly, Zp‘") log — m)
remains bounded if n— -+ oo, further by (10)

Z P log (n) = H,([&]) + 2¢log n -+ O(1)

k=N+1

which implies that

iim Ho()

n—->+0w 1

=2¢;

as £>0 is arbitrary, it follows that d (&) =0.
Now we turn to the investigation of absolutely continuous distributions
and prove the following

THEOREM 1. If & is a random variable having an absolutely continuous
distribution with the density function f(x) and if H,([&]) is finite, then d(§)=1
and we have

(14) H© — | /) l0g - 0

provided that the integral on the right of (14) exists.

REMARK. It should be mentioned that the existence of the integral on
the right of (14) does not make unnecessary the condition that Hy([§]) should

+o

be finite, as there exist distributions for which jf(x) logT(lﬁdx exists, but
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nevertheless H,([]) is not finite. For instance, if f(x)= logi‘-’n for n=x=n+ %

© =1
{n—=23,...) where .C= (Z rﬁgln) and f(x) =0 for all other values of

x, then clearly

L 2 1 . 2loglogn+log—é~
Jf(x) 1ogW arxzc“%2 o
exists, but as
X

the series

1
2 pulog—
Pu

l

is divergent and thus H,([§]) is not finite. Thus Theorem 1 does not justify

+@

the use of the value jf(x) log—ﬁl—)dx as the entropy of the distribution

having the density function f(x) always when it exists, but only in the case
when H,([g]) is finite.
PrOOF OF THEOREM 1. Let us first prove that d(§)= 1. Let us put

k+1

lIA

(15) gon(x)zerf(t)dtznpnk for % e kn+1.
k

n

We have clearly
+o

+o
(16) | guyax= | f@yat=1.
Then evidently

+o
+ o 1 J 1
17) . kZZ_m P log o f(x) 1og——% ® dx.

Let us first consider the case in which

(18) §e ff(x) 1og7(Lde
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exists. We use the well-known inequality ®

_fg(x) log h(x)dx .‘[g(x)h(x) dx

(19) s =log =~
[ g(x)dx Efg(x) dx

valid for any non-negative measurable functions g(x) and £(x) and for any
measurable set E for which the integrals in question exist and fg(x) dx>0.
We obtain by (19) and (16) 3

+0
20 J— 2 Dok log — ff(x) log (;’(‘()) dx =log fcpn(x) dx=0
and thus Ty
(21) I+ log n =H,(&,).
It follows from (11) and (21) that
lim HO(.En) e

n-—>+o lOgn

In the general case put for every A>0
f(x) if f(x)=A,

22) Ja() = ; it f(0)> A
Evidently we have, putting

+@
(23) | f1(x)ax = s(a),
(24) lim S(A)= 1.

A>+

Let us put
Eﬂ
(25) pu(A) = | fa(x)dx
k
and :
(26) q’n (A, x) == npuk (A) fOl’ % é X < k—n-{—l“ .
Then we have
+0

27) [ 9u(A, %) dx=S(A).

-

5 See e.g. G. H. Haroy, ]. E. Lirttewoop and G. PoLva, Inequalities (Cambridge,
1934), p. 167.
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Let us choose n so large that for every k we have

(28) p nk é L

=
This is clearly possible. Taking into account that xloo% is increasing for
0§x§% and that p,.(A) = p.x, the series Z Pax (A) log —
ges and we have

conver-
D (A)

+

1 1
(29) HO(E,,)—S(A) lOg = Z p,l;.(A) lOg W—A—) :_J fA(X) ]Og m ax
According to the inequality (19), we have®
(30) Jf,;(x) log—F—— ( fﬂ(x) logf @ )dx_S(A) log — A

It follows that

| fa(x) log }Tlx—) dx

H(E) _ )
Eh) logn — S log n
and thus
d@©=S(A).

As A can be choosen arbitrarily large, this and (24) imply that d(§)=1
and thus d(§) =1.

Let us now turn to the proof of the second part of Theorem 1.

We distinguish here also two cases, according to whether f(x) is
bounded or not. If f(x) is bounded, f(x) =B say, let us put

(32) 2.(X)=np.. log . for £§x< e (=010
npu n n
Then we have
npnk § B
Thus it follows that g.(x) is bounded
(33) g ()] = max(log ¢, Bllog B|)

+o
6 (30) implies that the integral J fa(x) logﬁdx is convergent.
A
-
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On the other hand, if F(x) denotes the distribution function of §, i. e.

F(x):J‘f(t)dt’ then for %§x<k%i

[

89— ——" |tog :
R

As F'(x)=f(x) almost everywhere, we have
1
35 lim g,.(x) = f(x)log =
(35) ,lim g0 =/(x)log 5
almost everywhere.
Now, clearly, for any integer L >0

+L
(36) Z Pk lOg ! = jgn(X)dx.
npnk s

~-In=k<+Ln

Thus by the theorem of Lebesgue it follows that

.

(37) 17 I N log —— f FO) log— f()

n>+o -In=k<ILn

On the other hand, using the inequality (9) we obtain

(38) 2 pmlop s > pulog b

k<-ILn or In=k n Pk l<-Lorl=L Pu

and by inequality (19)
(39) D Pulog—

k<-Ln or k=Ln

e f 765)log -5 dx= ff(x) l0g 75 @

According to our suppositions for any &>0, we can choose L=L(¢) so
large that

(40) l Jf(x) logmdx <s

|z|>L

and

1
(41) Z Pu lOg <8,
Pu

l<—-Lorl=L
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Thus we obtain from (37)—(41)
1
lim (H,(€.) —Ic =J log———d
(42) Jim (Ho(G,)—log n) - Jxylog rs-dx

The general case can be reduced to the special case in which f(x) is bounded
as follows: Let us put

(43) rnk(A) = pnk_pnk(A)y
then putting
(44) R(A)= 2 ru(A)=1—5(4)
we have _
(45) lim R(A) =0.

As>to

Now, clearly,

+® 1 J J‘
46 Bl 1 x) lo
( ) k:Z_:npk og D f(X) Og f() gf()
thus it suffices to prove
+ o
f 1
1 n SEOON -
(47) i 3 pulog : J fx) log gy

Now we have

5 o Z D (A)]Og np,.l (A) e

_,;:Z‘"m pnk(A) ]Og (1 + Tai ((i)) ) Z e (A) ]Og

As regards the first term, we obtain by what has been proved above

(48) 2 pnl log

n—>+w k=-o

(49) lim Zo? Pur(A) Iogm = JfA(x) log fAlx) dx

Regarding the second term, using the inequality log (1} x)=xloge for x>0
we have

S ra(A)
(50) 0= > pu(A) log(l 4+ ;) =R(A) loge.
=-w Puc(A)
As regards the third term, we have
+o L-1 (+1)n-1
(51) > ru(A)log Z Palog— —+ Z Z ru(A) log —

k=-o np Wk k=ln



ON THE DIMENSION AND ENTROPY OF PROBABILITY DISTRIBUTIONS 203

and thus by (9)
+@©
(52) kZ 1. (A) log

=-

1 1
T |1|>Z:Lp" g5 T
(+1)n-1 1
+ Z ( ZI’: r,.;;(A)) log e —

s (2 rua)

k=lIn
Thus, if R(A) < L, applying (9) again to the last term we have

4+

63 2 ra(A)log— p = 2 Pu 10g —+R(A) log R( A

It follows from (48), (49), (50) and (53) that

gt 1 1
(54) k:Z—'m P log o éj fa(x) log (G dx=L

: 1 , 1
+ 0,(A)+ R(A) (log 2L+ log W) +”gL pu log o
where
+m 1 ; 1
dn(A) :k;;p,,k (A) logm ——J‘f,\(X) lOg fA—(x) dx
and thus by (48) lim 0,(A)=0.
n—>+mw

Clearly
+@ +@
1 1

55 li J lo —dzf log ———d
( ) A—:Tm‘mfA(X) ng(X) X & f(x) gf(X) X
Let us now choose L so large that
(56) 21711 log_l_ <é&;

liI>L Pu
fixing L let us choose A so large that

2L
{

(57) R(A)log + R(A) <&
further

(58) } JtmfA(x) logﬁ}T)dx— Tf(x) log7(1x—)dx1=| Jf(x) logf—(l)—cy dx|<e
- - f@)>A

and finally n, so large that
(59) |0.(A)| < &
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for nLLUNO0 where n0 depends only on s; we obtain from (54), (56), (57), (58)
and (59) that

+ O

(m w  “x+r-

As s> 0 may be chosen arbitrarily small, we obtain (47). This proves Theo-
rem 1

Let us mention the following theorem which is a special case of Theo-
rem 1:

Theorem 2. Let E be a bounded and measurable set on the real axis,
having positive Lebesgue measure u(E)>0. Let Irk denote the interval

(k= 0,+1,+2,...) and putl

Pnk= p(EInk),
i. e firk denotes the Lebesgue measure of that part of the set E which lies in
the interval I,k. Then we have

lim 2 ft*log---—--- = 0

Remark. Clearly, in Theorem 2 it is irrelevant whether log denotes the
natural logarithm or the logarithm with respect to the base 2.

Proof of Theorem 2. Let us put

Ne = \im if x~Ej
( 0 otherwise.
Then, clearly, /(x) is the density function of an absolutely continuous
distribution, and thus if 2 is a random variable having /(x) as its density
function, then, as E is bounded, 8§ is bounded and thus H,([S]) exists. Thus

Theorem 1 can be applied; as
kH/n

P,,.:J fw x =

kn
it follows that

o 2 ) R, et 0n o

Thus the assertion of Theorem 2 follows.

7 AB denotes the intersection of the sets A and B.
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Let us consider now the case when the distribution of & is the mixture
of a distribution of the discrete type and of an absolutely continuous distrib-
ution. For this case the following theorem holds:

THEOREM 3. Let & be a random variable such that Hy([§]) is finite and
the distribution function F(x) of § can be represented in the form

(61) F(x) = (1—d) Fo(x) + d F,(x)

where Fy(x) is a purely discontinuous distribution function, i. e. there exists
a sequence x. (k=1,2,...; x;5=x. for j5=k) and a corresponding sequence

p=0 for which > p.=1, so that
=1
Fy(x)= 2 ps,
zy <®

and F,(x) is an absolutely continuous distribution function, i. e.

F@= [ 0,

Sfurther 0<d< 1'; then the dimension of § is equal to the weight d of the ab-
solutely continuous component, i. e.

(62) : d@©—d

+o

If, further, the series Z D logH and the mtegralj fi(x) log —— AT ( ) dx are

both convergent the d-dimensional entropy of & is given by
+o

g, 1 ; i
69  MO=0—D2plogptd | fe)log gy drrt

1
1—d
REMARK. The special case of Theorem 3 in which the distribution {p;}
consists only of a finite number of terms, further f,(x) is continuous except

for a finite number of points and vanishes outside a finite interval, has been
proved in [1].

+dlog -+ (1—d) log

PrROOF OF THEOREM 3. Put

(64) pO—F (k s 1) S (%)
and

(65) p%LF(kH)——Fl(—];—),
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then we have

e W (Hl) s (’ﬁ‘)=(1—d)p$33+dp,(},3.

Now we have, in general, for a>0, 6>0

ol
g a-+b b im0
(a+b)[a+b 0g — +a+b10g b J:a+b.

Thus, if § and & denote random variables having the distribution functions
F,(x) and F(x), respectively, further putting

1
67) 0= (a logF—l—b log —(a-+b)log

y o5 LS £ 1
(68) A (p)=plog 3 +(1—p) log =
and b
d nk
(69) Zuk == pnkk y
we obtain

+o

(70) 0=dH,([n&])+ (0 —d)H,([n&E])—H,((nE]) + % (d) = ;..:Z_w T o).

Let us choose an ¢>0. Let A,(¢) denote the set of those indices 4 for which
Lx=¢ and B,(¢) the set of those indices k£ for which 1—Z.,.=e¢. Let us

choose a number N, = Nl(s) such that Zp,<e- Let us choose an N, = N,(¢)

1=N;

such that N,> N, and <|x;—x;| for 1=i<j=N,. Let C.(¢) denote the

N)
k k+1 :
set of those values of £ for which the interval = contains one of
the values x; (i=1,2,...,N,). If n=N,, clearly any interval [%, kj;l)

can contain only at most one such x;. Evidently, we can find an N;>N,
such that if n=N; k¢ C.(¢) and x; (1 =i=N,) is contained in the interval
[%, %—1) pf,l,)f L(l_d‘l)& and thus A =e. Thus, for n=3 the
set C.(¢) is a subset of A,(¢). Let D,(¢) denote the set of those integers k
which do not belong to the union of A,(¢) and B,(¢). Clearly, if k€ D.,(e),
then

iy b=

nl.<(

‘) 2a—a)
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and thus

0
pnk = pSzh)

As clearly C,(¢) = A.(¢) implies
o _

Z Pre = 6
kEED,(¢)

it follows, taking into account that #(p)=1 for O=p=1 (with equality
taking place if and only if p=1/2), that

(71) o PR ) = 2 P = Theg(s)pfggés.

On the other hand, as Max %(/1)—— Max %(i)—?(’(s) for O<e=1/2, it
follows that (denoting b; /;XJB the union of the sets A and B)

(72) ¥ pa =R

KEAL @)U B, ()
Thus we obtain from (70), (71) and (72) that for n= N, = N;(¢)
(73) 0= (1—d)H,([n&]) + dHy([n&]) —Ho([n8]) + H(d) = & -+ U (e).
As by Theorem 1

fim Hn([ngll): i
n>+o 10g 1N
further
lim on&D __ o
n>t+o lOgn
it follows
nsto 10Z N,

o)
As further in case 2 D log‘;— is convergent, we have
=1 e

lim Hy([n&]) = Z pilog—— p

+®

and in case the integral J Fi(x) logﬁa’x exists, we have by Theorem 1

i (H,(1nE]) —log n) — j £ log - 1-d
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it follows from (73), as ¢>0 may be chosen arbitrarily small, that

(75)
1

Thus Theorem 3 is proved.
As it is well known, every probability distribution function F(x) can be
represented in the form

(76) F(x) = pFo(x) + q F1(x) +-rFu(x)

where Fy(x) is a purely discontinuous probability distributioh function, F;(x)
is an absolutely continuous probability distribution function and F,(x) is a
continuous singular probability distribution function, p=0, ¢=0, r=0 and
p-+q+r=1. Thus Theorem 2 gives a full answer concerning the dimension
and entropy of any real random variable which is such that its probability
distribution function F(x) has no singular component; i. e. is such that in
(76) r=0. The question about the existence and (if it exists) the value of
the dimension and entropy, resp., of a random variable having a singular
distribution function seems to be rather intricate. (Note that the distribution
function F,(x) mentioned above for which the lower and upper dimensions
were shown to be different is of the singular type!)

The results obtained above can be generalized to s-dimensional vector-
valued random variables or, by other words, to probability distributions in
a Euclidean space E; of s dimensions (s=2,3,...). To this purpose we have
to extend the definition of the notions “dimension” and “entropy” to the case
of a probability distribution in E,. This can be done as follows: Let us
define the symbol [] (integral part) for s-dimensional vectors as follows: if
X is an s-dimensional vector with the real components xi, Xx,, ..., Xs, denote

by [X] the vector having the components [x,], [x.], ..., [xJ]. If { is a random
s-dimensional vector, let us put E,L:%[nZ]; E is clearly a random variable
having a distribution of the discrete type and thus its entropy H(,(Z,]) is de-
fined. We restrict ourselves to the case when H,([C]) is finite, in which case
H,(%,) is finite for every n—=1,2,... .

The lower and upper “dimensions” d() and d(£) of § are defined by

-

@)
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and
(78) d(0=Hm-50M

. . n->to log n ,
respectively. If d(£) = d(£), we call this value the dimension of £ and denote
it by d(£); i. e. we put

= i He(V_
79 =
(79) d(£) lim log/?
provided that the limit on the right of (79) exists. It is easy to show that
(80) _ 0Nd(E£)Nd(Q Ms.
If d(£)= d, we put
(81) Ho(E)=HT (H)E,)—dlogn),

provided that the limit on the right-hand side of (81) exists, and call Hd(£)
the d-dimensional entropy of £

Theorem 4. Let £ be a random vector in Es (5= 2,3,...) and let us
suppose that the distribution of £ is absolutely continuous with density func-

tion f(x) where x= (xu ..., x9); by other words, let us suppose for any Borel
subset B of Es
(82) P(~fi)= J...f/(i)d3c.
B

Let us suppose, further, that HQ(£]) is finite. Then we have
(83) d(§=-s
and

H.(5=f--j/(*)log-Tjrrdx,
(84) ( J/(*) log f(;()

provided that the integral on the right-hand side of (84) exists.

Remark. Clearly, (83) can be expressed by saying that the geometrical
{or topological) and information-theoretical concepts of dimension coincide
for absolutely continuous probability distributions.

It can be shown that this coincidence is valid also for absolutely con-
tinuous probability distributions on sufficiently smooth //-dimensional mani-
folds lying in Es with //<s; e g. for an absolutely continuous probability
distribution on the surface of a sphere in 3-space the dimension as defined
above is equal to 2. It is a much more difficult question what is the topo-
logical background of a continuous distribution in Es (s=1,2,...) having
non-integral “dimension” d<s. It seems that an answer to this question can
be given by using the notion of dimension introduced by Hausdorff.

14 Acta Mathematica X/I—2
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Finally, we should like to show how the theory developed in the pre-
sent paper can be generalized to random variables with values in an abstract
metric space. For such variables A. N. KOLMOGOROV [2], [3] introduced the
notion of s-entropy. We shall here sketch a theory which is nothing else but
a variant of the theory of KoLmoGoRrov and which reduces to the theory of
the present paper if the metric space in question is a compact subset of the
Euclidean space of s dimensions (s=1,2,...).°

Let X be a metric space with metric o, which is completely bounded ; by
this we mean that for any ¢>0 X can be subdivided into a finite number of
non-overlapping sets each having a diameter =e&. Let Nx(¢) denote the minimal
number of such sets (see [4]). Let Xi(¢),..., Xue(¢) be a system of non-
overlapping sets whose union is equal to X and are such that each has the
diameter =& We do not require that the system {X(¢)} be minimal, i. e. we do
not suppose n(g) = Nx(¢), only that it should be “asymptotically minimal”, in
the sense that

. logn(e)
(56) 11_?(1) log Nx (&) .
Let us suppose, further, that the sets Xi.(¢) belong to the least o-algebra of
subsets of X which contains all spheres, i. e. sets S.(r) of points x satisfying
o(a, x)<r where a€ X and r>0 are arbitrary; by other words, X(¢) is a
Borel subset of X.

Let & be a random variable with values in X, defined on a probability
space [2,d, P], and if Y X, denote by £'(Y) the set of those o ¢ R for
which &(w) € Y. We consider only such random variables & for which for any
r>0 and a € X the set &'(S.(r)) is measurable, i. e. belongs to d ; let us put

(87) pE=PE'XE@)  (*k=1,2,...,n()

8 The difference between the definition of the e-entropy given here and that given
by Kormocorov consists in that we introduce the notion of the “e-entropy with respect to
a given subdivision of the space X”. This notion enables us to define e-entropy without
using the “amount of information”

P, (dx,dy)

85 16,9 = | P;, (dx,dy)log —————
(85) 1) f 0 (@5, 40108 by
on which KoLmocorov bases the definition of the e-entropy. Thus the definition is some-
what simplified. Our e-entropy depends, of course, on the subdivision considered ; this de-
pendence is, however, as we shall show in a particular case, rather weak. Besides that,
the subdivision can always be chosen so as to simplify the evaluation of the e-entropy, and
this may be an advantage in certain cases.
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and
n(e)

(88) H(e, §) = 2 pi(e) log -5 )

We shall call H(s, §) the s-entropy of § with respect to the subdivision {X(¢)}
of X. Clearly, by (9),

H(z, &) = log n(¢).
Let us define
R vy H(z, &)
(89) D)=l sy — W SR
and
i HEY o HEH
(%) DE) = Iim {0 ey — ™ Tog Ne(@)

further put in case D (&) — D (&)

Hie) H(s, &)
) DE) = lim g ne) — 1M Tog Nxe) -
If D(§) exists, the asymptotic expansion of H(e, &) can be investigated
further. Clearly, if X is the unit cube of the Euclidean space of s dimen-
sions, and we choose for any ¢>0 the subdivision of X into cubes with sides

—VTI— (i; e. with diameter V_L
o [+

for D(§) and D(&) defined by (89) and (90), resp.,
d@) d(©)
S 5

equal to =¢), we have clearly

(92) D)= and D)=

where d(£) and d(£) are the lower and upper dimensions of & as defined
by (5) and (6), resp.

To show how weakly H(e &) depends on the choice of the set of sub-
divisions, let us consider the one-dimensional case in detail. Let X be the
interval [0,1); let us choose for any ¢>0 a sequence Xx,(¢)= O<x1(s)<
< Xy(8) <+++ < Xy (¢) =1 such that 0= xi1(8) —x:(e) =¢ (k=0, 1, ..., n(e)—1)
and

(93) lim M ST,
>0 lOg —;

As clearly [1]<N(e) [l]—l— 1, if Xi(¢) is the interval [x.-1(¢), xx(g)), then

this subdivision is admissible. Let & be an arbitrary random variable with
values in the interval (0,1) whose distribution function F(x) is absolutely

14%
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continuous. Let f(x) = F'(x) be the density function of g Then we have,
putting
dk(s) = xk(s)— Xfc-i(s) (k= 1,2, .. n(e)

and
Pk(e)= Z10 («))— F(xfxi(s)),
by (9)
(94) H 1)= pk(s) | OA 8) = log n(e)
and thus by (93)
(95) po im Hee, f) 1
log

On the other hand, as dk(s)”~s, we have, putting

(96)

(97)  H(e, g)= ZA(«) log -~ -+ J J a («) ,0S = 1© + log —e

Now, clearly, by the same argument as used in proving Theorem 1, we obtain

oo ©°
™ log

(98)

Thus from (97) and (98) we obtain that
(99) D(g) = lim Si.
E=0 log —
(95) and (99) imply D(g)= |I.
Thus we have proved

Theorem 5. Let g be a real random variable. Let us suppose that the
distribution of g is absolutely continuous with the density function f(x), and
suppose that the values of g are contained in the interval [0, 1), i. e.
1

If(x)dx = \. Let for any £>0 be given a subdivision 0= x0(s)< xt(ag <
0

<es o<* (£) = 1 of the interval [0, 1) such that xk(e)—xk-i(s) t (*—1,2,...
.., n(e)) and

(100) lim logn(g) _

log T
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Let us put
x; (€)
(101) pe)= | ftyat
.rk_l(e)
and
% - 1
(102) H({", )= k%iplc(S) log pk_(i‘) .
Then we have
(103) lim &3 g,
>0
log s
Of course, if & is an arbitrary bounded variable, |§|< B, Theorem 5 can
be applied to E’zE;BB for which 0=§& < 1. For the whole real axis the

situation is somewhat different, because the whole real axis as a metric space
with the metric o(x, y) = [x—y| is not completely bounded.

In the s-dimensional case (s=2,3,...) the situation is similar if we
restrict ourselves to subdivisions of the unit cube of E; into equal s-dimen-
sional intervals, but we encounter some geometrical difficulties which do not
present themselves in the one-dimensional case if we consider more general
subdivisions.

As regards (for s=1) the difference H(g, 5)—log%, it depends much
more closely on the choice of the subdivision {xx(¢)}.
In this direction we prove

THEOREM 6. Let & be a real random variable. Let us suppose that the
distribution of § is absolutely continuous with the density function f(x); sup-
pose that the values of § are contained in the interval [0,1) and that the
integral

(104) HE =7 l0g 75

exists. Let for any >0 be given a subdivision 0 — x,() <X,(g) <+ < Xu(e)(e) =1
of the interval [0, 1) such that

(105) limen(e)=1,
>0
Sfurther putting
(106) dk(é') = X};(S)—Xk_l(b‘) (k= 1, 2, oy H(S))
we have
(107) £ =d(e)=e
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where C>1 is a positive constant not depending on e. Let us define pk(s)
and H(f, £) by (101) and (102), respectively. Then we have

(108) lim T (s, £)— log -M = Hj(£).

E—»0 V *

Proof of Theorem 6. We evidently have, putting

»(£) .
d°9) AO0-2M 9~ W
(110) H(«,0—A((i)+4(i) + log4-

where A(s) is defined by (96). The same argument as used in proving
Theorem 1 leads to

(111) NTNA(r) = H,(E).
E-i 0
Thus to prove Theorem 5 it suffices to show that
(112) limJ(e) = 0.
£-%0
Let d>0 be arbitrary and let n,(6) denote the number of those dk(s) for

£
which dk(s)< |<+ o Then we have

1= 2 dk(s)~ n,(6) + (n(s)— M(d))e

which implies

» (V< (n(g)e—1)(I+d)
[ = s6
It follows that

+(d> ™~ n(e)s—\

Xdk®) g . d

&k (0< hs
Thus, if E(e, O) denotes the union of those intervals [x*-i(e), x*(e)) for which
dk(@) = xk(s)—xk if)y< j f ~ . we have by our supposition (105)
limp(E(e,d))= 0
where ,«(£) denotes the Lebesgue measure of the set E. As evidently
d(fy=log(1+ @+ log C | f{x)d{x),
E(t,6)
it follows by the absolute continuity of the measure v(E)= )f(x) d(x) that
E

0~ limz/(i)™og(l +d).
limz/(i)~log(l +d)
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As &> 0 is arbitrary, it follows that (112) holds, which proves Theorem 6.
We hope to return to the discussion of the s-entropy with respect to a given
subdivision of a general completely bounded metric space in another paper.

(Received 23 February 1959)
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