SUMMATION METHODS AND PROBABILITY THEORY
by
A. RENYI

§ 1. Probabilistic interpretation of methods of summation

Let A = (a,,) be an infinite matrix with nonnegative elements, with
row-sums equal to 1 and such that the elements of each column tend to 0, i. e,

(].-1) anl\'zo (n,]\':“.l.z. ...)
(1.2) Na,,; =1 (n=0,1,...)
k=0
and
(1.3) lim a,, =0 k=0,1,...).
=1 ®

As well known (see [1]), the summation method which consists in form-
ing from a given sequence s, (k= 0,1,...) the transformed sequence
t, = A s, defined by

(1.4) i, = N Ay Sy n=0,1,...)
and considering the limit of ¢, (if it exists), is permanent, i.e. if lim s, = s
n—-+4 o

then lim ¢, =— s too. Such a method can be interpreted probabilistically as

n—+ o
follows: let », (n = 0,1,...) be a sequence of random variables, taking on
only nonnegative integral values, with the corresponding probabilities

(1.5) Ply, = L) = =0 4,v:}:

(Here and in what follows we denote by P(...) the probability of the event
in the brackets.) The conditions (1.1) and (1.2) clearly express only that the
sequence a,, (k = 0,1,...) is for each value of n the probability distribution
of such a random variable. Condition (1.3) expresses that », tends in proba-
bility to 4+ oo (which we denote by », = + 0); as a matter of fact by (1.5)
and (1.3) we have

(1.6) lim P(», = N) =1

n-—
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for all positive values of N, which is equivalent with », = + co. Now (1.4)
can be interpreted as follows: ¢, is the mean value of the random variable
s, that is

(1.7) = Mis,)

(Here and in what follows M(...) denotes the mean value of the random vari-
able in the brackets.) Thus the summation procedure defined by the matrix
A = (a,,) satisfying (1.1) — (1.2) — (1.3), can be interpreted as follows:
we consider the mean value of the random term s, of the sequence s, and
consider the limit of this mean value if n — - oo,

§ 2. Hausdorff-methods

For HAusporrr-summation methods, still more can be said. The summa-
tion corresponding to the matrix A is called a Hauvsporrr-method of summa-
tion if

(2.1) ZL ‘ (1 — )"k dF(x)

where F(x) is a probability distribution function in the interval [0, 1]; the
process is as well known (see [1]) permanent if F(z) is continuous in the point
x = (.

In case of a Hausdorff-method the random variables », introduced by
(1.5) can be characterized as follows: v, = B(n, &), where & is a random
variable which has the distribution function F(z), and g(n, z) is a random
variable for each fixed value of (0 < # < 1) which has a binomial distribution
of order n with parameter z, i.e.

(2.2) P(B(n, ) = k) = ': (1 —a)=*  (k=0,1,...,n).

Thus, we first choose a value of the random variable &; if this value is  we
draw with replacement » balls from an urn containing red and white balls in
the proportion z to 1 — 2, and if the number of red balls among the balls
chosen is k, we put », = k. Thus we have

(23) fn = M('sﬂ(n,f)) 2

This interpretation enables us to prove a number of known facts about
Hausporrr-summation methods in a surprisingly simple manner. For ins-
tance let us consider two Hausporrr-methods corresponding to the matrices
A = (a,,) and B = (b,,) where a,, is defined by (2.1) and b,, b

1
(2.4) b= || ECERRr
0
where G(z) is an other distribution function in [0, 1]. Let us now perform

the two transformations ¢, — A s, and v, = B¢, after another, i.e. consider
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v, = BAs,. It is well known that the resulting method is again one of the
Hausdortf type. This can be shown as follows: If 7 is a random variable having
G(x) for its distribution function, and independent of &, we have by (2.4)

(2.5) Vg == M(M(Sﬁ(ﬁ(n,rl),i))) &

Now the double mean value can be replaced according to a known theorem of
probability theory (see [2]) by a simple one, i.e.

(2.6) v, = M(Sgip0n,m.0) -

Thus we have to proceed as follows: first observe the values of the random
variables & and 7 which are in(lepen(lent and have the distribution functions
F(x) and G(2); if these values are £ = x and 1 = y, then take at random (with
replacement) n balls from an urn which contains red and white balls in the
proportion y to 1 — y. If among the balls there are k red ones, take at random
(with replacement) £ balls form an urn composed of red and white balls in the
proportion  to 1 —@; if among the balls chosen there are [ red ones, put
v, = [. Now by a well known theorem of probability, the distribution of »,
is the same as if we would have used only one urn which is composed of rea and
white balls in the proportion 2y to 1 — 2y and choose at random (with rep-
lacement) n balls.

This fact can be expressed by sayving that the mixture of binomial distri-
butions with the same parameter x and of different orders, with weights form-
ing also a binomial distribution with parameter y and order =, is itself a bino-
mial distribution of order n and parameter ay. This can be proved e. g. by
the symbolical calculus of distributions (see [3]. p. 129—133) as follows:

=y (7 ,
@1 DT @B+ (- @) =y By + (L )y
k=0
where E, denotes the distribution attributing the probability 1 to the value 1.
Thus it follows that
(28 ) v, = M(sﬁ(n,fn)) .

Thus v,, = C s,, where C is the Hausporrr-matrix with the elements

ny(
(29) cnk = (L ) }

0

2*¥(1 — z)**dH(x)

where H(x) is the distribution function of the random variable £ 7, that is

1 1
(2.10) Hiz) = [F 4 'rl(,(u) - J y

0 0

r
; (ZF('IL) »

Clearly the continuity of either F(z)or G(x) in =0 implies the same for
H(x).
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§ 3. Henriksson-methods
If we replace in the definition of the Havsporrr-method the binomial

k ,—Ax
distribution : " k(1 —:r)”"} by the Poisson-distribution {(lx)]:!e }
where A > 0 ,we obtain an other important class of summation methods:
Henriksson’s class of methods of summation. The definition of this class of
summation methods given below is slightly different from that given by
HENRIKSSON (see [5]).

Let F(x) be a distribution function in the interval [0, 4 oo); there
corresponds to every F(x) a method of summation which is defined as follows:
we put

(3.1) ay(A) = - (/1-27’)" e ** dF(x) IR T P,
0

form the transformed values

(3.2) ()= N ad)s,

and consider the limit =

(3.3) lim HA) == §.

It the limit (3.3) exists we shall say that the sequence {s,} is summable to
s by the Henriksson-method of summation corresponding to the distribution func-
tion F(x). If y(4) denotes a random variable having Poisson-distribution with
mean value 4, then clearly

(3.4) t(4) = M(sy0g)

where & is a random variable having the distribution function F(z). It is easy
to see that the Henriksson method corresponding to the distribution function
F(x) is permanent it and only it F(z) is continuous for = 0.

The class of Henriksson methods includes of course Borel’s methods,
which is obtained it F(z) is the distribution function of the constant 1 in which
case

Ak e
(3.5) HA) = Z‘ TRl

k=0

The class of Henriksson’s summation methods includes further Abel’s method,
which is obtained if F(2) is an exponential distribution function, F(z)=1 —e¢™

5 : . : A
for x = 0 in which case, putting v = — we have
1+ 2
(3.6) HA) = (1 —u) s, uk.
k=0

It 2— + oo then clearly « — 1 — 0, thus #1) —s means nothing else than
the Abel-summability of s, to s.
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[f we choose for F(x) the gamma-distribution of order r

X

. tl’”le t

(3.7} Pl = — dt (r > 0)

J(r—1)!

0

: ; : 4 /.
we obtain putting again U = o
—+ A
: wy [k +1r—1

(3.8) tA)= (1 —u)' uks,

which is a generalization of the Abel-method and may be called the Abel-
method of order r(r = 1 corresponds to the ordinary Abel-method of summa-
tion).

O. HexrigssoN defined his class of summation methods in a different
way, by putting

2 GB(— 4)

(3.9) t(A) = 2 8, Ak e

k=0

where he supposed that ¢(z) is a power series

(31“) q(:) Y ([” zn.
0
Clearly. putting

(3.11) q(—z2) = ‘ e N dF(x) for 2>0
0
we have
IR g®(— 4 5
(3.12) q;i ) — o).

Thus the of summations-methods defined by (3.9) is essentially the same as
the class defined by (3.2). Our treatment is somewhat more general then that
of HENRIKSSON, as we do not suppose that ¢(z) is regular in the point z =

only that it is of the form (3.11) where F(x) is a distribution function, i.e.
that ¢(—z) is the Laplace-transform of a distribution function in the interval
(0, + o). By other words we suppose that ¢(—z) is completely monotonic
for z > 0 and ¢(0) = 1 as by a well known theorem of Hausporrr (see e.g.

(6], p. 89, Theorem 3.5.) it follows that ¢(—=z) = f.()“z" dF(x) where F(x)

is a distribution function, further that lim ¢(—z) = (3), which implies that F(x)

o SEEIN-

is continuous at x = 0. On the other hand Henriksson did not suppose that
the coefficients ¢, in (3.10) are non-negative.

It has been already remarked by HeNRrRIkssoN (see [5]) that if one per-
forms on {s,} a Hausdorff-transformation and after this a Henriksson-
transformation, this is equivalent to a single Henriksson-transformation. As
a matter of fact if & has the distribution function F(z) (0 < # < 1) and 7 the

13 A Matematikai Kutato Intézet Kozleményei 1V/3—4.
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distribution function G(y) (0 < y < + oo) and & and 1 are independent then
putting ¢, = M(sy,) and (1) = M(l,.,)) one has

(3]3) "(;.) —_— M(M(S/‘;(Y(}-',).é))) — M(Hﬁ(".'(lh)v’t)) .

Now as well known from probability theory, the mixture of binomial distri-
butions by Poissonian weights is again a Poisson distribution. This can he
shown by the symbolical calculus as follows:

n

p M y ; -
(';]4) et (p E _‘L (] o )) 17 ().l/plF.l 01
2n! (o . )
n—0
Thus we have
(3.15) M (sp,6.0.0) = M(s,6¢,0) -
Thus putting
. . /“ Nk )
(3.16) bk — | ]") e dH(z)
o
where
1 :
(3.17) H(z) — ‘ (." ’;‘]Mm = | F ‘ : |_f/(;<.¢-)
x 2
0 0
we have
(3.18) D) = WhiA)§, .
=0

Thus o(2) is obtained by using the Henriksson-transformation corresponding
to the distribution function H(x) given by (3.17).

§ 4. Limit-distribution methods of summation

It is a natural idea to try to characterize the .sum’ of a divergent
series by a distribution instead of by a number. This can be done in different
ways. FFor instance if {s,} is a sequence of real numbers, let us put

(4.1) S(y) = lim l N

n-ten 4 1 £=n

<Y
provided that the limit on the right ot (4.1) exists. If S(y) is a distribution
function and convergence in (4.1) takes place for all points of continuity y
ot S(y), we call S(y) the (C, 1)-limiting distribution of the sequence |s,}. The
relation (4.1) can be put also in the tollowing form:

. I =
(4.2) S(y) = lim - N H(y —s,)
n— n -+ 1 )

where H(x) is the Heaviside function

Hiz) — |1 for >0
0 for <0,
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Clearly it (4.1) exists for any real y, and /(@) is an arbitrary step-function, we
have

(4.3) lim : { 8,) = ] (y)dS(y) .
Jim o Nfe) = [ fg)ds

Formula (4.3) shows the real meaning of the limit distribution function
S(y). turther shows the way of its natural generalization. If 4 is an arbitrary
linear method of summation, we may consider the limit (if it exists)

(4.4) Sy)=4— lim H(y —s,)

n— <
and it S(y) is a probability distribution function, call it the A-limiting distribu-
tion function of the sequence {s . (4.4) implies that for any step function /
we have

(4.5) A - lim f(s,) = \ f(y)d S(y)

n—
()f' course (4.3) holds also for any Riemann-integrable function f(x) for which
\ fla) d S(x) exists, as for such a function and for any >0 two step functions

fl(.(' ) and fy(x) can be found so that

fe) £ o) £ fle) and S (fo(v) — f1(®)) d S(x)

Concerning (4.5) the same holds if A is a linear method having a matrix with
nonnegative elements.

Conversely, if the limit in (4.3) resp. (4.5) exists for f(x) = ¢™ for all
real £ and if it is a continuous function of ¢ for ¢ = 0. then by the well known
theorem on characteristic functions (4.2) resp. (4.4) holds.

[ (4.2) holds and \ xd S(x) is finite, we may consider s = ( @ d S(x)

as the generalized limit of the sequence {.s'”}. [f moreover s, is bounded,

1 & ; ; o ;

then clearly lim N's, = | adS(x). If s, is unbounded, this is evi-
n— n -+ 1 ;‘-0 :

dently not true, as S(y) remains unchanged if s, is arbitrarily changed for a
sequence of values of n which have 0 <lensit.\. while by such an operation
the (C. 1I)-summability can be clearly destroyed.
Note that S(y) is the distribution function of a constant s, i. e.
. & »
(4.6) gt ot YEE
1 for y>s

it and only if s, is almost convergent (see | 7]. Vol. L. p. 181), i. e. the sequence
of positive mtes_m\ can be split into two disjoint sequences m, and [, (k-

1.2,...) such that lims,, = s and the sequence [, has zero (l(’n.\lt_\‘ i e
k—+

lim N 1= 0. Thus the existence of a limiting distribution of a sequence
R

N+ o | 1« N

may be considered as the generalization of almost convergence, not of

the ordinary convergence.

| 3%
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§ 5. On the sequence of generalized partial sums of a sequence

In a recent paper [3] [ considered the following problem. Let > a, be
a series, and denote by A, the sum =y

(5.1) A, = g, Gy + oo Qg
provided that
(5.2) n=2k 4 2k | 4 2Kk (ks = By o iua =)

is the I(‘pl@\(’lltdtl()ll of n in the binary number system.

The Qequvn(e A4, } contains (le(ul\‘ all finite sums formed from the
terms o{ the series X a,, arranged in lexicographic order. It has been shown in
sequence {' d,} has a (C, 1)-limiting distribution in the sense of
g 4. if (md only if both X' a, and X a} are convergent. It has been proved in [3]
dls() that the sequence { A, } is (C, 2)-summable if and only if the series
Y a, is convergent.

[ conjectured that the same holds for Abel-summability. i. e. we have

(5.3) lim (1 ¥) YA =3
x—1 0 n ”

it and only if the series Y a, is convergent and

(5.4) \‘(1/1_ —~ 928.
k=0

That (5.4) implies (5.3) is easily shown. However 1 did not succeed up to now
to prove that (5.3) implies (5.4). This would follow from the following equi-
valent statement:

lf
< WDk
= . QU ol
(5.5) lim ay - =8
x—1-0 1 -+ %

k=0

then the series N a, (s convergent and ils sum is 2 s.
k=0
This . high-indices”-type conjecture (5.5) is up to now not proved. It is
easy to prove however (5.5) if some additional Tauberian condition is supposed,
e. g. it we suppose

(5.6) i @, =0.
k— +«

As a matter of fact, if (5.6) holds then (5.5) follows from the . high-indices”
theorem (see [1]|, Theorem 114.).

As a matter of fact, if (5.5) and (5.6) hold, we have

2y 2a, 2 S " Sy i
320 S < S et ot
- ¢

k=0 k-0 k=0
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and thus, it Max | «, | =— B, then
k=n
2a 4;l'2k = > on
(5.7) - E a,x?" | < Byl — ") + B, .
1+ a2 b ’
| k=0 b k=0 |
Now let t -1 — 0 and n — -+ o0 but so that %" — 1. Then the right-

hand side of (5.7) tends to 0. Thus it follows from (5.5) that

(5.8) lim Ya, 22 =2s
x—1-0 f=0

and by the high-indices theorem it follows that M a, is convergent with the
sum 2 s. k=0

(Received October 26, 1959.)
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Remark added on March 21, 1960.

The following reference should be mentioned: D. D. Kosamsr in his
paper “Classical Tauberian theorems™ (Journal of the Indian Society of
Agricultural Statistics 10 (1958) 141-—149) makes use of the same proba-
bilistic interpretation of methods of summation as given in § 1.

SZUMMACIOS ELJARASOK VALOSZINUSEGSZAMITASI
INTERPRETACIOJA

RENYT A.

Legyen A = (a,,) (n, k = 0,1,...) egy végtelen matrix, amelyre teljesiil-
nek a kovetkezo feltételek:

(1.1) Gy = 0 (n,=0,1,...),
(1.2) :'a,l,..:l (R =0,0, v )

=
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és
(1.3) lim @, =0 {lres . . ecls
n—»
legven s, a szummalando sorozat és
(14) In :‘:(lnl."sl,
k=0

a transzformalt sorozat, amelynek konvergenciaja esetén az s, sorozatot az A
matrix altal definidlt szummacios eljirissal szummilhatonak nevezziik.
A {t,} sorozat elemei a kovetkezGképpen interpretilhatok : legyven », egy
nemnegativ egész értékil valdszinlségi viltozo, amely a £ értéket a,, vald-
szinliséggel veszi fel, mely esethen az (1.3) feltétel azt fejezi ki, hogy », szto-
chasztikusan -+ oo-hez tart, ha n-— -+ oo. (, felfoghatdé, mint s, varhato
értéke. Kz az interpreticio kiillonosen a Havsporrr-féle és HeNRIKSsoN-féle
szummacios eljarasok esetében hasznos, és lehetdvé teszi ismert osszefiiggések
egyszerl bizonyitasat oly mdédon, hogy azokat jolismert hinomélis, ill. Poisson-
eloszlisok keverésére vonatkozo tételekre \e/etlwtjuk vissza. \ 4. §. egy diver-
gens sorozat hatareloszlasival foglalkozik, és az ennek s(""isc{lb\ el mtelmuheh»
szummdcios eljarasokkal. Az 5. §. a szerzd egy sor Osszes véges rész-Osszegei-
nek sorozataira vonatkozo sejtésével foglalkozik, amely a kovetkezd alakra
hozhato: ha
ok
. : x°
lim Ma, =5
i | a0k
x—=1-0= ] a2

|

létezik, akkor a X a, sor konvergens, és oOsszege 2 s. [zt az dllitast a szerzi-
nek ezideig csak a lim«a, = 0 kiegészits feltevés mellett sikeriilt bebizonyi-
tania.

METOAbI CYMMHUPOBAHUSA U UX TEOPETHKO - BEPOATHOCTHASI
WHTEPIIPETALIUSA

A. RENYI
Pe3ome

[Tyeth A = (a,,;,) OeckoHeuHast MaTpULA, UTSE JIEMEHTOB KOTOPOIT HMeoT
MECTO CJIeYIoNe COOTHOMEeHne

(1.1) an;. =0 (w5 =0,1 ...%,
@
(1.2) Say, =1 (o =0,1, iue)s
k=0
(1.3) lim @, =0.
n—+ «
[lycTh s, — MOCJHEJ0BATEILHOCTL UHCId, KOTOPYIO XOTHUM CYMMHUPOBATH

n nmocMoTpum  1ocJ1e/;10BaTeIbHOCT b

(1.4) t, = B} @, 8. -
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Ecan t, exomress K npejleay s, To Mbl CKayKeM, UT0 N0CJI1e0BATe/1bHOCTL
8, CYMMUPYEMBIH K § ¢ MeTOJIOM CYMMUPOBAHUS ONpe/IeEHHBIM MaTpuLoiil A.

ATY METOJLY MOJKHO HCTOJKOBAThL Ha 3bIKe TEOPHU BepOSITHOCTeN cJie-
Aylouwum 00pasgom @ 1ycTh », HeOTpUUATEe/IbHAST LEeJ0YnCIeHHast ciayvaiinasi
BEJIMUMHA KOTOpasi IPUHUMaeT 3Hauenue k ¢ BepositHocteit a,,. Torjaa t, paBHO
MATEMATHYECKOMY OKWIAHUN 0T §,, . ITO MCTOJKOBaHUEe 0COOCHHO T0JI€3HO MPU
PACCMOTPEHUH MeTO10B cymmupoBanusi Tuna Havsporrr u HENRIKSSON n
JIJIAeT BO3MOYKHBIM CBOJIHTH JI0KA3aTebCTBO HECKOJBLKUX TeopemM 00 9THX MeTo-
JOB CYMMUPOBAHUS HA XOPOIIO U3BECTHBIX 9JIEMEHTAPHBIX (AKTOB OTHOCHTEJILHO
cMechl OMHOMMaJIbHBIX 1 TTyacCoOHCKMX pacnpejiesieHun BeposTHocTei. § 4 3aHu-
MAEeTCst METOJIAMH CYMMUPOBaHMs ONPE/IeJIeHHBIX ¢ TTIOMOILBIO TIpe/IesIbHbIX pac-
NPeJIeIeHUH  PACXO/SIILUXCST T10C1e,10BaTeIbHOCTeH.

B § 5 gopmynupyercss nejokazaHHasi runorTesa 0 TOM UTO €CIH HMeeT
MECTOo

. i
(5.5) lim E a, L=8,
x—1-0 ’ 1 a2

k=0 {

TO psil N @, CXOJWMTCsT M UMeeT CymMmy 2 §; JIOKA3bIBACTCS, YTO 3TO BEPHO eCIIn
k=0
Kpome (5.5) npejnosiaraerest UTo @, CTPeMUTCst K HYJIO.

MTA Kbnyvtara
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