DIMENSION, ENTROPY AND INFORMATION

AvLFrED RENYI

BupAPEST

§1. DISCRETE PROBABILITY DISTRIBUTIONS

Let & be a random variable having a distribution of the discrete type
P& =ua,) = P, (k= 1,2, ..., n). Let us denote the distribution of & by P, i. e.
put P = {p;, Ps, ..., P»}. The simplest postulational characterization of the

entropy H(py, -- - Pn) :kg;_ ;. log %’C of the distribution P of ¢ is due to D. K.

FappEeEv [1] (the postulates of [1] are adopted also in [2]). The postulates of
FADDEEV are the following:

1. H(py, ..., pn) is for each n a symmetric function of its variables.
II. H(p, 1 — p) is a continuous function of p (0 = p = 1).
7 ' Y4 P2
III. H(py, ..., px) = H(py + P2, D3, -+, Pn H( , )
(Pr, - Pn) = HPy + Pos Pos - Pa) + (P2 +P) H \ 7 -
IV. H3,3) =L :

Faddeev has proved that if H(py, ..., p,) satisfies these four postulates, then
H(p,, ..., p,) is the entropy of the distribution P = {p,, ..., p,}, i. e. the for-
mula of Shannon

n ) 1
(1) H(Pyy <oy Pa) = 2, pilog —
k=1 P

holds. (Here and in what follows log denotes the logarithm with respect to the
base 2.)

The proof of this assertion consists of the following four steps: A) First it is

shown, that putting »
1 1 1

(2) F(’n)=H(;‘,%,...,%‘)

we have

(3) F(nm) = F(n) + F(m)
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for every natural n and m i. e. F(n) is a completely additive number-theoretical
function. '

B) After this it is'shown that ,
(4) lim (F(n + 1) — F(n)) = 0.
n—>+ 0

C) The only difficult part of the proof is the third step: the proof that (3), (4)
and F(2) = 1 (which is nothing else than IV) imply that
(5) F(n) =logn.

D) From (5) it is easy to deduce (1).

The fact that (3) and (4) together with IV imply (5) has been known pre-
viously and is due to P. Erd6s [3]. In fact, ErdSs proved the following

THEOREM 1 (Erdd8s). Let F(n) be an additive number-theoretical function, i. e.
suppose
(6) F(nm) = F(n) + F(m) i (n,m)=1
where (n, m) denotes the greatest common divisor of n and m. If (4) is fulfilled, then
we have
(7) F(n) =clogn
with some real constant c.

The proof of Theorem 1 given by Erdds is essentially the same as the proof
of step C) in [1]. Recently I have found [4] a new and simple proof of Theorem 1.

I reproduce it here because it can be given in a few lines. It runs as follows:
Let p be an arbitrary prime, « = 1 and put k¥ = p=. Put
F(k)logn
8 — Sl i o = R
(8) G(n) = F(n) logh

Clearly G(n) is also additive and putting

(9) 0, = G(n + 1) — G(n)

we have ®
(10) lim 8, = 0

further e

(11) k) =0.

Now let for any positive integer n define #’ by
[E] if p is not a divisor of [ﬁ] or if [f] =0,

[—E]—l if p divides [ﬁ] + 0.
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where [x] denotes the integral part of x. Evidently

(12) n=1Fkn +r with (k,n')=1 and 0=r <2k.
It follows that
‘ n—1
(13) G(n) = Gn') + > 6;. ,
1=kn'
Repeating the same for n’ instead of n, then for n” = (n')’ ete., we obtain,
putting n® = n, n™M = n’ and n¢*H = (n®)" (j = 1, 2, ...) that
r n0-D_1
Gn) = G0) +3 T 6.
j=1 l=kn

According to (12) we have n’ = —Z— and thus n(” < % ; thus we obtain for some

logn
< (r) —
r___[log]—}—lthatn 0, i.e.
sn
(14) G(n) = > o
j=1
log n
where b, < hy < ... < hs,and §, = ok + 1] . It follows by (10) that
(15) lim Gin) ES

n>t lOg N

and thus by (8)

. Fn) _Fk) _ F(p)
(1) ngrjlm logn  logk logp=’

Denoting the value of the limit on the left of (16) by ¢ it follows from (16) that

(17) F(p*) = clog p*
and therefore by (6) we obtain that (7) holds.

Thus Theorem 1. is proved. This enables to simplify considerably the proof
of Faddeev’s theorem that postulates I (to IV) characterize the entropy com-
pletely.

2

§2. ENTROPY AND INFORMATION
IN CASE OF DISCRETE CONDITIONAL PROBABILITY
DISTRIBUTIONS

Let 8§ =[2,%, B, P(4 | B)] be a conditional probablllty space. (See [5].)
If £ is a discrete random variable on S, and B e %, then the conditional distri-
bution of & under condition B is an ordinary discrete distribution and thus the
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conditional entropy H(& ] B) of & under condition B can ‘be defined as in the
case of ordinary probability spaces. Thus if xk (k=1,2, ..., n) are the possible
values of E and

PyB) =P (§ =u,|B)
then

4 ',n 1
(18) H( | B) = 2 pu(B)log o B

The question arises whether we may speak about the unconditional entropy
of &; we want to show here that this is in some cases possible in a certain sense.
Let us consider the following particular conditional probability space X
let 2 be the set of all positive integers, % the set of all subsets of 2, B the set
of all finite and non-empty subsets of 2 and put
N(AB)
N(B)
where Jt(C) denotes the number of elements of the set C. Let Q4 denote the
set {1,2,..., N} and if ¢ is an arbitrary random variable on X = [Q, ¥, B,
A|B)] (i. e. £=£&n) (n=1,2,...) an arbitrary number-theoretical
function) put
(20) H(&) = lim H(&| Qy)

Nes4 o0
provided, that the limit on the right of (20) exists. The limit may be called the
(unconditional) entropy of &.
Let us consider some examples. Let us define &, = £,(n) as the r-th binary
S

(19) P(A | B) = for A, Be®,

digit of the random integer =, i. e. if n = > &, . 2 with &, = 1 or ¢, = 0 put

k=0
&(n)=¢(r=0,1,2,...).
Then clearly
(21) lim H(&, | Q2p) (r=0,1,...).

N+ w0
Thus each binary digit of a random positive integer carries one unit of informa-
tion, exactly as each binary digit of a random real number z lying in the interval
[0, 1).
We now give an example where the limit (20) does not exist. Let & = &(n)
denote the length of the binary representation of a random integer =, i. e. if
s

n = > & . 2% with &g = 1, put &n) = 8 + 1. Then evidently if n . 27"
k=0
—14+p (0 =p=1) we have
’ 1
(22) lim  H(|Q,) = pIOg.E + (1 — p) log

N—>+ 00
-1
n,.2 [Ogn]—>1+13

Thus the limit (20) does not exist.

1 —
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If £ and 7 are two random variables on the conditional probability space X,
we may define the information content I(&, n/£2y) contained in & with respect
to 7 (or vice versa) under condition Qy, by putting

(23) I(&,n | @y) = H(& | Q) + H(y | 2n) — H(E, 1 | 2n) -
We put further
(24) - Itg, ) = lim I(g, 5 | 2y)

provided that this limit exists and call it the (unconditional) amount of infor-
mation contained in & with respect to % (or vice versa).

For example let &, = &,(n) denote the remainder of the random integer n at
the division by a, then (denoting by (@, b) the greatest common divisor of @
and b)

1(&,, &) = }Jin:ol(ffm & | Qy) =log (a, d) .

Especially if @ and b are relatively prime, we have

I(&,, &) =0
(i- e. &, and &, are independent).
In this example the limit of all three quantities on the right of (23) exist for
N — 4 oo. There are cases however in which not all these three limits exist, or

even all three are tending to --co0, nevertheless I(&, n | Q) tends to a limit
for N — + oo, i. e. I(§, ) is defined.

For instance put & = &(n) = [|/n], n = n(n) = n — [|/n]*. Then clearly
(25) H(& 7| Q) =log N
further .
[VN]-1
L 2k 41 2N | 1 logN)
H(E|Qy)=2LlogN —1+2 2 (ZVN g2k+l)]/ +0(VN :

As the second term is a Riemann-sum of the integral
1

(26) 2 [xlog%dxzéloge
0
it follows
(27) H(E| Qy) = Llog N +Lloge — 1 4 o(1).

On. the other hand

L » 2N\ 1
Hn|Qy) = LlogN + 2 ( —1 ) — +o(1).
(n| 2y) = +log N + levNo 75 oW
As the second term is again a Riemann-sum of the integral (26) it follows
(28) H(n | 2y) = 21log N + S loge + o(1).
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Thus we obtain from (25), (27) and (28)
(29) I(§,n) =loge — 1.

Therefore if we consider the unique representation of the natural number » in
the form

(30) n==Fk 4+1 where 012k

then the knowledge of k gives less than a bit information on I, et vice versa.

The remarks made in this § make it clear that the methods of information
theory may be applied with success to number theory. We hope to follow
further this line of investigations.

§3. ON THE DIMENSION AND ENTROPY
OF ABSOLUTELY CONTINUOUS PROBABILITY
DISTRIBUTIONS IN EUCLIDEAN SPACES

Let & be an arbitrary real valued random variable. Put &, = [né] (n=1,
2, ...). If the discrete random variable [&] has finite entropy H([£]) then H(&,)
is finite for every n. In this case we define

(31) d(&) = linn_1> sup Iﬁ[ni])
and
(32) d(&) = lim inf 2D

— n>iw lOgM
It can be shown [7] that d(&) < 1 and thus
(33) T0=d@E) =d) =1

If d(&) = d(&) we put
(34) | d(¢) = lim 2D

st 10g 7N
and call the number d(&) the dimension of the probability dlstrlbutlon of &.
According to what has been said 0 < d(&) < 1.
If £ has the dimension d (0 < d < 1) further if the limit

(35) lim (H([n&]) — d log n) = H 4 (&)

N—> 4 00

exists, we call H4(&) the d-dimensional entropy of & (of the distribution

of &). N
In a recent paper [7] I have shown that if H([£]) exists and if the distribution
of £ is absolutely continuous with density f(x), then it has the dimension 1,
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i.e. d(§) =1 and

(36) Hy(¢) = f Hw) logﬂix)dx

provided that the integral on the right of (36) exists. (Special cases of this
theorem have been already proved in [6]).

It is shown in [7] also that the 0-dimensional entropy is identical with the
entropy as defined by formula (1); more exactly it has been proved that if the
distribution of £ is of the discrete type, P(é = ;) = pp (k= 1,2, ...) then £ has

o)
. . : ’ 1,
the dimension 0 and if the series 2 P log 7 is convergent, we have
kel k

- 1
(37) Hoy(f) = Z pelog -

Thus our definition of entropy is in conformity with the usual one.

Tt is obvious that the converse of the above assertion holds also, i. e. though
there exist of course 0-dimensional not-discrete distributions, but if d(§) = 0
and lim H([n, £]) exist (and is finite) then & has a distribution of the discrete

N—>+ 0

type, and thus (37) holds.
As a matter of fact, if the distribution of & is not discrete, it has a continuous
component, and thus denoting by F(x) the distribution function of & we have

F(x) = p Fa@) + (1 — p) Fo(2)
with 0 < p < 1 where F,(x) is a continuous distribution function and F,(x)

a discrete distribution function. It follows as log% is monotonically increa-

’ 1
sing for 0 < o < - that

ST -
H(né) = (1 N[Fc('n) . logF(’il)_F(’“)
A - Felg

where 3’ indicates that the summation is to be extended for all values of k for

which F (’ij%;}) —F (%) < % , i. e. for all except at most two values of k.

Thus if the dimension of £ is 0 and its 0-dimensional entropy finite, then the
same holds for a random variable &, whose distribution function is F (). But
this is clearly impossible, because for any ¢ > 0 there exists an integer n(e)
such that

Och(M)~FC(—k—)§s for n = n(e).
n n
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Let k; (j = 152, s, [%] — 1) denote the uniquely determined least integer
for which

je<F, (%) < (+1)e where n = n(e).

Then we have

H(n&) = (F (’“7) —F, ("n)) log =

and thus

H([ne) = + log +

thus the supposition that H([n&]) is bounded leads to a contradiction.

Similar results hold for random vectors in euclidean spaces of any dimension.
If ¢ is an S-dimensional random vector (S = 2, 3, ...) with the components

&1 &2y -0, &g, We denote by [nC] the S-dimensional random vector with the
components [n&,], [n&,], ..., [nég]. We put as in the case S = 1
(38) 40 = lim Z[°¢D

n>i0 lOgn
provided that this limit exists; we have evidently 0 < d() < 8. We put further
in case d( y=d

(39) Hil)= Jim (H([n)) — d log n)
provided that this limit exists. EspemaHy if the distribution of ¢ is absolutely
continuous with density function f(z) where 7 = (z, .. ., Xg), we have d(C ) =8
and

. = - 1 >
40 Hy(l) = f z) log — dz

where dz stands for dx, dz, ... ds.

We restrict ourselves here to prove this result for the special case s = 1,
under the restrictions that f(z) is bounded and vanishes outside a finite interval,
let us say the interval [0, 1). (Concerning the proof for the general case we
refer the reader to [7].)

In this case we have

n—1

(41)  H([n&) —logn = Z s 10 1= = f #ale) log

where p,;, = F (k - 1) (;) (F(x) denotes the distribution function of &)
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and @,(z) = np,, for % =z < ﬁ—;:——l . Now clearly we have
(42) lim @,(z) = f(z)
N—>+ o .

for almost all . As further ¢,(x) < sup f(«), it follows by the bounded conver-
gence theorem of Lebesque that

N—+

(43) lim (H([n&]) — logn) = f () log ﬂ% dz .

In the general case the proof is somewhat more complicated, but the idea of the
proof is the same.

There exist probability distributions for which d(&) # d(&). This may occur
only if the distribution of £ has a singular component. For such distributions
there is clearly some connection between the Hausdorff-dimension of the set of
points of growth of the distribution function and the information-theoretical
dimension of the distribution introduced above. We restrict ourselves to the
consideration of the following example. Let us divide the interval [0, 1) into
d, = 3 equal subintervals and attribute to b, (1 < b, < d;) intervals I
(1 = 1, 2, ..., by) chosen arbitrarily among the d, subintervals, the measure bl

1
and to the remaining d, — b, subintervals the measure 0. Let us divide each of
the intervals I, into d, = 3 equal subintervals, chose b, (1 < b, << d,) among
them, denote them by I, ;, (j, = 1, 2, ..., b,) and attribute to each the measure

1
byb, , :
sequences b, and d, (1<b,<d,; n=1,2,...). Put 8, =d,d,...d, and
T, = bb, ... b,. Clearly in this way a measure » is uniquely defined in the

1
~ by, ... b,
such that P(£ e A) = »(A) for any Borel-subset 4 of the interval [0, 1). Then
clearly

and to those not chosen the measure 0. Continue this process with the two

interval [0, 1), for which »(Z;j,...3) . Let & be a random variable,

—
Q

o
(=

EN

H([S,£]) _ log T, _
log S, log S,

—

Q
o

y
=

>
I
-

Thus we have

d(¢) < lim 198 7w < fim 1087w < Gs) .

- e log S, o log S,

5 . 10g dn+1
Moreover it is easy to prove that if Tog -0
then

o log T,
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10

“and

— . log T
— lim g n
(45) (&) = T d,

As a matter of fact, if S, < N < S,+, we have
H([S,£]) = H([N¢]) = H([S.£]) + log (dp+y + 2).

Thus especially (in case d, = 3, b, = 2) we obtain that the dimension of the
log 2 %)
log 3°
By means of formulae (44) and (45) it is easy to construct distributions whose
dimension does not exist. For this purpose we have only to choose such sequen-

“uniform distribution on Cantor’s ternary set” exists and is equal to

ces b, and d, that the limit lim log T', should not exist. (Takee.g. d, =5
n—>c0 ].Og Su

b, = 3 + (— L)lles™),

Let us consider now the Hausdorff-dimension [8] of the set of those points x
which belong to an infinity of intervals I, ; ;. Clearly if |I| denotes the length
of the interval I,

T,
2 !Ijlj,... ',,I = @ g
Thus if
. logT
lim T =d(&) =«
Fosirer log Sn e

then we have for any ¢ > 0 and for an infinity of suitable chosen numbers n,
x+e[2
T"k = S":
~and thus
T, 1
x+e — qe/2°

Denoting by D(E) the Haussdorff-dimension of the set &, we obtain

2 Hstees gal®tt =

D(E) = d(£g)

where £ is a random variable constructed above, which may be called to be
uniformly distributed over the set £. Moreover it is not difficult to prove that
in this case

(46). D(E) = d(ég) -

< T log 2
Especially if E is Cantor’s set, we have D(E) = d(£g) = lo%'

*) This has been proved first by P. Erdés and later independently by Catherine Weisz
(oral communication).
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§4. INFORMATION EXPRESSED BY ENTROPY

We should like to sketch here the connection between the notion of dimen-
sion and entropy as defined in this paper and the notion of information as de-
fined by Kolmogorov, Gelfand and Jaglom [9], [10]. They define the informa-
tion I(&, n) contained in one of the random variables &, n with respect to the
other as

(47) I(&, ) = sup I(f(£), g(n))

where f(x) and g(y) run over all Borel-measurable functions taking on only
a finite number of different values. Thus especially

(48) 1(¢, ) = H([n€]) + H([nn]) — H([nl])

where Z‘ is the two-dimensional random vector with the components &, . It
follows evidently, that in case d(&) and d(n) exist, for the finiteness of I(¢, #) it is
necessary that we should have

(49) (%) = d(&) + d(y) .

As a matter of fact we have always

—

d(8) = d(&) + d(n)
and by (48) ‘
. d(Z) < d(€) + d()
would imply I(&,7n) = -+ co.

On the other hand, it can be shown by considerations similar to that used in
[7] that if the joint distribution of & and # is absolutely continuous with respect
to the direct product of the distributions of £ and # further d(&) and d(n) exist,
then (49) holds. If further not only (49) is fulfilled but putting

d=d&), &=dm), Hd&, Hel) and Hee(D)
exist, then I(&, ) exists also and we have
(50) I(&,m) = Hy(&) + Hyln) — Hara(0) .
The details will be published elsewhere.
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