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The theory of Legendre polynomlals is one of the many toplcs to Wthh
FEJER contributed beautiful, nowadays classical results. Besides ordinary
Legendre polynomials, he also considered [1] generallzed Legendre polynomials
corresponding to an arbitrary power series with real coefficients. A1
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The aim of the present note is to point out an evident probablllstlc inter-
pretation of Legendre polynomials, which.seems. to have escaped attention
up to now, though'it has some interesting consequences.

Let us consider the tossing of a (symmetric) coin. Let &, be equal to +1or
—Tl according to whether at the n-th tossing we obtained head or tail. We denote
by P (-) the probability of the event in the brackets and by M(-) the mean
value of the random variable ifi the brackets. According to our supposition
the random variables ¢, &,..., €,, ... are independent and P (e, = + 1) -

=P@—~D—§ (m=1,2 ..). We put s, e +e+ ... +e.

Let us call s, ,,positive” if either s, > 0ors, = 0and at the same time s,_,> 0.
Let N, denote the number of those amoung the sums s, (k=1, 2, ..., n) which
are positive in the mentioned sense. It has beén proved by K. L. CHUNG and

W. FELLER [2] that
_[2r ‘2n——2r)
(8) P(Ng,=2r)=——1"" """

2%
(Clearly N,, can not be odd.)
Let us denote by g,,(f) the characterlstlc function of the random variable
N,,—n, i. e. let us put

| ‘ . ]
©) P (=M () = P (Ny,=21) i,
’ r=0 :

(r=0,1,...,n).

Now it can be seen from (8) that the distribution of N,,—n is symmetric and
thus we have, taking (6) into account, that .

(10)  ga (=P, (cos1).

Thus P, (cos t) is the characteristic function of the random variable Ny, —n.
Clearly Ny,—n is the excess of the number of winning positions of a player
tossing a coin 2n times over the average value of this number (provided that
a neutral position following a winning position is counted also as a winning po-
sition). -Now it is well known, (see*[3], ‘p. 186) that

(11) | lim P, (cos ﬂ: Jo ()

n-—»+oco

uniformly in f, where jov(t) denotes the Bessel function of order 0, that is
. |2k
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On the other hand it is known (see [3], p- 15) that
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Thus  Jo(f) is the charactenstlc furictién of-the dlstr1but10n which- has the
density function .

1
(14) ) ={aVT—x
' | 0 for [x| > 1.

for —1l<x< 1

'By means of (10), (11), (13) and the continuity theorem for characteristic func-
tions it follows that .

.a —_— - x .
(15) - lim P(N—2” " <x]=lf—du |
n—+ oo n Ta —1V1_u2

which implies

(16) lim P (Nz” ] — 2 arcsin Vy forO g y < n
T

n—>+°° 2n

As clearly Ny, = N2n+1 < Ngn +1, it follows from (16) that

a7 lim P( y) =—2~arcsin]/y_' o<y<l
n T

n—-4 s

(17) is the celebrated arc-sine law. Obviously using instead of (11) a correspon-
ding formula with a remainder term (see.[3]) one could obtain a remainder,,.
- term™in-(17) too.

In his mentioned paper [1] FEJER makes the. remark that the sequence
g, defined by (5) is the sequence of moments of the distribution having the
density function ‘

{ .
: —_—  for0<x< 1,
(18) - g(x)='[ﬂx(1—x) ‘
: , 10 forx <Oandx >1,
that is, we have
o .
(19) g, = fg(x)x"dx (k=0,1,...).
0

Now clearly g (x) defined by (18) .is nothing else than the density function of
the arc-sine distribution figuring as a limiting distribution in (17), that is

. ¥ _ )
(20) fg(x)dx:ﬁarcsinﬁ Cfor0<y< 1.
. T .
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Thus if the sequence g, is defined by (19) where g (x) is defined by (18), we have

(21) lim 3 g k-fg(xwx
=10 o< k<ny .

The question arises whether the fact that the function g (x) is connected
with the sequence {g,} both by (19) and (21) can be generalized for other functi-
onsg(x)? It is easy to see that this is not the case, and the fact that the same
functlong(x) occurs both in (21) and (19) is a mere coincidence. As a matter
of fact it is easy to see that if g (x) is an arbitrary density function which vani-
~ shes outside the interval (O 1) and whose asymptotic behaviour for x - 10
is given by o

wherec >0 and 0 < o < 1,

i T

then defining g, as the k-th moment of the dlstrlbuhon having the density
function g(f) we obtain

(22) g (x) ~

cI'(l —o)

(23) o g, ~ e - fork — + oo.

Thus especially if in (22) a = /,, we obtain | | iy
- dx :

24)" lim- X - :cznf——* for0<y < 1.

( ) m 0<k22ny gr 8 K . xd—% . | y

' 1
Thus at the ri ht hand Slde of (24) we find alwa s the same function ~————
: @ y =)

if only g (x) satisfies (22) with a = 1/,. It is also easy to see that if we choose
g (x) so that(22) holds with some a (0°< a < 1) and choose another density
function h(x) which vanishes outside the interval (0,1) and for which for x—»1—-0

i}

(25) R (x) ~ withd > 0

(1—x)t—=

and define A, as the k-th moment of the distribution having the density function
h (x) we obtain ;

(26) lim > gkhn_k-cdl’(a)l"(l—_oc)f

n—+ee g<k<ny

Sh
2 g

1—-a(1 _x)a ¢

The limit relatmn (26) contam some further special cases which are connencte,d
with probability theory. Let us put

Sln o7
7T xl‘a(l — x)a

s .
i

(27) | g (o, X)

" for0 Cx < 1.
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Then, as mentioned in [1], we have
1
@) p = [e@orac= [ b k=01,
. .

Thus choosing g(x) = g (&, x) and & (x) = g (1 — «, x) it follows from (26), taking

into account that I'(o) I' (1 — &) = _.n ,
~ SN e 7t
—a) sin o dx
(29) im > T * [T N 1y Sinas f
n— oo k<yn k n— k T 5 x1l—a (1 —_ X)a
Now it has been shown by E. SPARRE ANDERSEN [4] that if x;, x5, ..., X,, .

are independent random variables with the same continuous distribution and
putting s, =x; + x, +...4X,, wehave P(s,>0)=a(n= 1,2, ...)0<a<],
then denotmg by N, the number of pesitive terms of the sequence where
. $1, S9y ..., S, we have

30 P(N,=k)=|*|[*— J—1"
(30) == nuk( )
~and
. ‘N, sino o [ dax |
31 lim P2 <y|= .
( ) n—3 1+ oo (ﬂ y) T f xl"a(1--X)a

Now clearly (29) expresses that (31) follows from (30).
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