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Let G be a non-oriented graph without parallel edges and without 
slings, with vertices 14, 14, Vn. Let us denote by d(V,) the valency (or 
degree) of a point 14 in G, i.e. the number of edges starting from 14. Let 
us put
(1) c(G) =  min r/(l4).

í g i i s i i

If G is an arbitrary non-complete graph, let cp(G) denote the least number 
к such that by deleting к appropriately chosen vertices from G (i. e. deleting 
the к points in question and all edges starting from these points) the result­
ing graph is not connected. If G is a complete graph of order n, we put 
cv(G) =  n — 1. Let ce(G) denote the least number / such that by deleting / 
appropriately chosen edges from G the resulting graph is not connected. We 
may measure the strength of connectedness of G by any of the numbers 
cP(G), c(G ) and in a certain sense (if G is known to be connected) also 
by c(G). Evidently one has
(2) c(G) Ш ce(G) cP(G).

It is known further that any two points of G are connected by at least 
cp{G) paths having no point in common, except the two endpoints (theorem 
of Menger—Whitney, see [1] and [2]) and by at least ce(G) paths having 
no edge in common (theorem of Ford and Fulkerson, see [3]).

We shall denote by vr(G) the number of vertices of G which have the 
valency r (r =  0, 1, 2, ...).

As in two previous papers ([4], [5]) we consider the random graph Г„, N 
defined as follows: Let there be given n labelled points 14, 14, . . . ,  V„. Let

us choose at random N  edges among the |^J possible edges connecting

these n points, so that each of the ((2 )) possible choices of these edges
\ N l

should be equiprobable. We denote by the random graph thus obtained. 
We shall denote by P ( ) the probability of the event in the brackets.
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The aim of this note is to investigate the strength of connectedness of 
the random graph Г,,,n when n and N  both tend to + » ,  N = N (n )  being 
a function of n. As it has been shown in [4], the following theorem holds:

Theorem  1. I f  we have N(n) =  ~ n  log n +  an +  o(n) where a is a real
constant, then the probability o f being connected tends to exp (—е~м)
for n —► +  °c.

In this paper we shall prove the following theorem:
1 r

T heorem  2. I f we have N(n) =  -^-n \og n +  ~̂  n\og\ogn +  an+  o(n) 
where a is a real constant and r a non-negative integer, then

(3) lim P (ср(Г„, Щ«)) =  r) =  1 — exp
11 — +  CO

further

(4) lim Р(се(Ги, *(«)) = /') =  1—exp [— - —r  

and

(5) lim Р(с(Г„, лг(»)) =  /') =  1 — exp
i i  - >  +  CO

Remark. Clearly Theorem 2 can be considered as a generalization 
of Theorem 1. As a matter of fact, any of the statements cp(G) — 0 or 
ce(G) =  0 is equivalent to G not being connected and thus for r =  0 (3) and
(4) reduce to the statement of Theorem 1. It has been shown further in [4]

that if N(n) =  ~  log n -\-ccn +  o(n) and Гп, щ„) is not connected, then it con­

sists almost surely of a connected component and of a few isolated points. 
Therefore (5) is for r =  0 also equivalent to the statement of Theorem 1. 
Thus in proving Theorem 2 we may restrict ourselves to the case г Ш 1.

The statement (5) of Theorem 2 gives information about the minimal 
valency of points of Гп, n- In a forthcoming note we shall deal with the 
same question for larger ranges of N  (when с(Г„,х) tends to infinity with n), 
further with the related question about the maximal valency of points of Г„, n- 

We shall prove further the following
1 rTheorem 3. I f  we have N(ri) =  — n log n -f  -^n  log log n -fa n  +o{n) 

where a is a real constant and r a non-negative integer, then we have

(6) lim P (vr( Г щ П)) =  Ar) =  —j-г- for к =  0 ,1 , . . .
i i  -> + со л  !
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e--2a
where A =  —y—; in other words, the distribution of vr( l \  *(„>) tends to a 

Poisson distribution.
P roof of T heorem s 2 and 3. Let r s  l he an integer and — °o <  a < +  oo. 

Let us suppose that
1 r(7) N(n) =  — n log n +  - j  n log log n +  an +  о (n).

Let Гп, у be a random graph with the n vertices Vt , V2 , . . . ,  Vn and 
having N  edges. Let Pk(n, N, r) denote the probability that by removing r 
suitably chosen points from Г„, у there remain two disjoint graphs, consisting

n — rof к and n —к — r points, respectively. We may suppose k<  
we have clearly

'(tl\

First

Pk(n, N, r) =g n — r 
к

r )

It follows by some obvious estimations that

(8)
(r+3)

log П 
log log n

2
<k

p, (n, N(n), r)==0 —

Now we consider the case Arg(r +  3) log я Let P*(n, N, r) denote thelog log я
probability that by removing r suitably chosen points (the set of which will 
be denoted by J) Г,,, n can be split into two disjoint subgraphs Г' and Г"  
consisting of к and n— k — r points, respectively, but that Г„,к can not be 
made disconnected by removing only r—1 points. If F„, n has these pro­
perties and if s denotes the number of edges of r„,N connecting a point of 
A with a point of / ”, then we have clearly s ш r. Otherwise, by definition, 
s s  rk. Thus we have

( 9 ) PHn, N, r) ^
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It follows that

(Ю)

[(г+З) log п  
log log  n

X P*(n, N(n), r) 0 log л

From (8) and (10) it follows that for n —► +
(П) P (Ср(Гп, X ( n ) )  =  f ) ~  P(c(Tn, A'(n)) =  r).
As a matter of fact, (8) and (10) imply that if by removing r suitably chosen 
points (but not by removing less than r points) Г„,к(п> can be split into two 
disjoint subgraphs Г' and Г "  consisting of к and n — к — r points, respec­

tively, where к then only the case k =  1 has to be considered, the

probability of к > 1 being negligibly small. It remains to prove (5). This can 
be done as follows. First we prove that
( 12) lim Р(с(Г„, лтfit)) ^  r—1) =  0.

For г — \ this follows already from Theorem 1. Thus we may suppose here 
r ^ 2 .  We have

and thus

(13) P (с(Г„, N(Tt)) =i r - \ )  =  О ( j ^ )  
which proves ( 12).

Now let vr(r„, n) denote the number of vertices of x which have the 
valency r. Then we have clearly by (12)
(14) P (С(Л;, N ( n ) )  =  Г) ~  P (l'r( r n, N(i,)) Ф  0).
Now evidently

(15) P (vr{ [ \  A-(n)) ф  0) =  j £  ( - 1 Г 1 Sj
3=1

where
(16) ••• X P  (d(Vh) =  r,d(Vu2) ^ r , . . . , d ( V kj) =  r).

1 ^к,<кг< ■■■ < S S .
Evidently, if we stop after taking an even or odd number of terms of the
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sum on the right-hand side of (15), we obtain a quantity which is greater 
or smaller, respectively, than the left-hand side of (15). Now clearly

and thus

(17)

P(rf(V*) =  r)

p - 2 a
lim S, =  —.- .

n  +  CO T  •

Now let us consider P(i/(14,) =  r, d{Vk.) =  r) where k, =f= k2. If both 14, and 
14, have valency r, three cases have to be considered: a) either 14-, and 14, 
are not connected, and there is no point which is connected with both 14, 
and 14,; b) or 14, and 14„ are not connected, but there is a point connected 
with both; c) 14, and 142 are connected. We denote the probabilities of 
the corresponding subcases by Pa(d(Vki) =  r, d(Vih) =  r), Ph(d(Vk)  =  r, 
d(Vh2) =  r) and Pc(d(Vkt) =  r, d(V,.^ =  r), respectively. We evidently have

P„(d(14,) =  r, d(Vi:) r)

and thus 

(18)

( n - 2)!
r\2(n — 2r—2)!

2) (2/г 3)
N(n) — 2r

I in) ]
' 2 )

\N(n)

Z Z  P (d( V,.) =  r, d{ VO =  /■)— Г
l s ü r i i i S »  Z \  Г\

On the other hand (denoting by l the number of points which are connected 
with both 14] and 14,), we have

P„(rf(14,) =  r, d(VO =  r) =

(19) f 
^  (n — 2)! \

0
л

— (2n — 3 )| 

l ( n ) -2 r  /
r i  /!(/'—/)!(« — 2r VI — 2)!

( 0
\N(n

\

)J

(19)
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Similarly one has

(20)

P c{d(Vu) =  r,d (V ki)= r )

r -  1

- z1= 0

(n — 2)!

\
- (2л—3)

V N (n)— 2r )
l\(r—/ —1)!2(л — 2r +  /)l = 0 - г

\N(n))
Thus we obtain

1 (e-2a)
Hm 5г = Т  V! - > +  оэ Z  \ /  I

The cases j  > 2  can be dealt with similarly. Thus we obtain

1 f e~2a У
(21) lim S i— .. I , 3 j \ \ r \n - >  4~ CO

(7 =  1,2, 3, 4, ...).

It follows from (16) and (21) that

( 22) lim P (гг( /  лг(п)) 0) — 1 exp
it со r!

In view of (2), (11) and (14) Theorem 2 follows.
To prove Theorem 3 it is sufficient to remark that by the well-known 

formula of C h . J ordan

(23) Р Ы Г ,,,* („ ) )= * )= Z ( - i yj=o
AJ + k

j
Sj+k,

e -2 n
and thus by (21), putting Я =   ̂ , we obtain for к =  0 ,1 , . . .

7k ®  ( ____1 \ i / J
(24) lim P ( ^ ^  =  ^  =  ̂ 2 ^  =  ̂ - .

n -> 4- co /v • j = 0  у I К !

Thus Theorem 3 is proved.
Our thanks are due to T. G allai for his valuable remarks.

(Received 12 October 1960)
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