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lntfoduction

- In a-previous joint paper with P. ErDfs and P. SzUsz in this journal
([1]) we have given detailed proofs of certain results on Engel’s series for the
representation of real numbers, due originally to E. BorerL [2] and.P. LEvy’
[3]. Recently 1 have found a new approach to these theorems which leads
to a much simpler proof of these results. The new approach consists in intro-
ducing a certain sequence of independent random variables, by means of which
all the quantities in question can be expressed in a simple way. The mentioned
theorems are obtained as direct consequences of well known general theorems
on the sum of independent random variables. This is an essential simplification
compared with [1] where the same results have been obtained by the rather
difficult technique of dealing with sums of almost independent random vari-
ables.

In § 1 we give the definition of Engel’s series, and collect certain simple
formulas, all of which have already been given in [1], which will be needed
in the sequel. In § 2 we introduce the mentioned independent random vari-
ables. In § 3 we show how Theorems 2, 3 and 4 of [1] can be obtained as special
cases of well known limit theorems of probability theory. In § 4 we prove by
the same method some new results on Engel’s series. These are obtained by
combining the method of the present paper by some previous results of the
author (see [4]). Finally in § 5 we discuss a modification of Engel’s represen-
tation of real numbers, which we call modified Engel’s series. For these series
similar results hold as for ordinary Engel’s series. A similar 31mp1e approach
to the correspronding theory of Sylvester’s series, given in [1] is still lacking.

§ 1. Engel’s representation of real numbers

Let x be an arbitrary real number in the interval (0, 1]. Then x can be
represented in the form of the infinite series

' 1 1 1 :
(1.1) X=—4—+4. ...
i 019: 919z - -qn
where ¢y, ¢ ..., ¢ ... i8S a nondecreasing sequence of positive integers

=2, which can be obtained by the following algorithm: we choose for ¢, the

least positive integer for which 1 < x; for ¢, the least positive integer for
: )
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which i+—— < x, and in general (for n= 2, 3,...)if gy, Qs . . ., g, have already
9 Y

been determlmed we choose for ¢,4+, the least positive integer for which

1 1

—+4—+...+ ——————— < x, This algorithm ensures that ¢, is a non-
91 419 111‘12' < Gnni1 ' :
decreasing sequence, further that
N : :
(1.2) Xx— N : .

S GG | e -Onlgn—1)

which implies that (I.1) holds.

Clearly the n-th denominator g, is a well defined function of x, that is
q,=g,(x). { we suppose now that x is a random variable, uniformly distri-
buted in the interval (0,1], then ¢, = ¢,(x) is a random variable too (n=1,
2, ...). It was shown in [1] that the sequence {¢,} is a homogeneous Markov
chain with transition probabilities

(1.3) P = Klo = )= 0= (1= 1,2,0.)

where k and j are arbitrary positive integers satisfying k=j=2, and the (uncon-
ditional) distribution of A is given by

1
(1.4 Pg, =k) = ———  (k=2,3,...).
(1.4) 0 == )
{Here and in what follows P(A) denotes the probability of the event A and
P(A|B) the conditional probability of the event A under condition B).

§ 2. The basic independent variables

Let ¢,=e(x) (k=2, 3, ...) denote the number of times the integer k
occurs in the sequence g,=g¢,(x) (n=1, 2, ...). As the sequence ¢, is non-
decreasing, it follows that e, =r means that there exists a nonnegatlve integer
j such that

qn<k for¥ n=j,
(2.1) go=Fk for n=j+1, j+2,...j+r,
g, =k for n=j+r.

The probability distribution of ¢, can be easily obtained. As a matter of
fact this has already been done in [1] (Theorem 1). We obtain by (1.3)

. 1 k-1 1 1
2.2) Ple, = 1) = 74 =—,
e =

{

* if j =0 then there is of course no n=j for which g, is defined.
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and as evidently

(23) ) P(Ek = r) = P(Ek %r)—~P(3k =r+ 1)
it follows ' : :
(2.9 P(e, = 1) = k; (r=01,2...;k=23,...).

Now what escaped our attention when writing the paper [1] is the fact
that the random variables e, &, ..., ¢, ... are independent.

This can be shown as follows: Let r,, r, ..., r, be arbitrary nonnegative
integers, then again by (1.3)

1
2r2.3rs . (n—1)'n-1n'n

Plea=Trg, 65 =13, .., 8y y =Ty 1,8, =1,) =
2.5) |
and thus
n—-1n1 n (k—1)

(26) P(*‘?z =Ty,83 = 1I3,...,6, = rn) = TklzlkT" =kI=II krk+1 .

Compared with (2.4) it follows that
n
2.7) Ple, = roy...,e,=1r,) = I P, =r,)
. k=2

which makes the independence of the variables e,, &, ..., g, ... obvious.

Thus we have proved the following

THEOREM 1. If ¢, (k=2, 3, ...) denotes how many times the number k occurs
in the sequence of denominators q, (n=1, 2, ...) of Engel’s series of a random real
number x, uniformly distributed in the interval (0, 1], then the random variables
g, are independent and the distribution of ¢, is given by (2.4).

Let us calculate the mean value, the variance and the third absolute cent-
ral moment of the random variable &,. (Here and in what follows we denote
by M({) the mean value and by D2{) the variance of the random variable {.)

We clearly have for k=2, 3, ...

1
(2.8) M(e,) = k—_iy
2.9 DY) =
‘ k=1 (k=17
31 =< C
(2.10) M{je, Mo} = =,

where C is a positive constant, not depending on k.
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§ 3. Limit theorems on the denominators of Engel’s series

Let wy=pun(x) denote the number of terms of the sequence ¢,=g¢,(x)
which are =N. By other words, let us put

N

(3.1 : pn =D&
. : k=2

Then clearly in view of (2.8), (2.9) and (2.10) and Theorem 1

3y - M(uN)=I§1%~’10gN,
No1(]

3.3 . D2(uy) = —t— ] ~ logN

6y ) 5(}.4—].2) og

and

(3.4 ¥ St et = olyrezn)

Thus in view of Theorem 1. Liapounoff’s form of the central limit law is
applicable, and we get
. THEOREM 2a. For every real y we have

(3.5) fim P(@g_—]\i < y) = D(y)
N—s+ oo Vlog N :
wihere -
(3.6) _ O = — fe—u?lzdu.
S V2m Y
As clearly , o
3.7 ‘ P(uy < n) = P(g, > N).

Theorem 2a can be written in the following equiivalent form
THEOREM 2¢. For every real y

3.8 tim P[18L= ) g).

: ) n— 4o » Vn .
Theorem 2c¢ is identical with Theorem 2 of [12] and is originally due to
P. Lévy. » :

To prove the strong law of large numbers for the random variables &,
we need the following general form of this law: If.&, &, ..., €n, - - are inde-,
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pendent, nonnegative random variables with finite mean values M,=M(&,)
N
and variances D}=D*&,), and if putting Ay = ' M, one has

k=1

(3.9) lim Ay = +oo,

N— + oo

and further

oo D2
(3.10) >N C e
: N=1 4%
then with probability 1 one has
N
o ZE
(3.11) lim =L =1,

N—+ oo AN

- This theorem follows easily from the three-series theerem of A. N. KoL-
MOGOROFF and KRONECKER’s lemma. :
{See [5], [6], [7])- The conditions of this theorem are clearly fulfilled for &,=z¢,,

in view of the fact that the series ™' _ is convergent. Thus we obtain
. A=sNlogz N
THEOREM 3a. We have with probability 1 (i. e. for almost all x)

(3.12) lim N =
N— 4 log N

In view of wg,=n Theorem 3a is equivalent with
THEOREM 3b. We have with probability 1

(3.13) lim yg =e.

Theorem 3b is identical with Theorem 3 of [1] and is originally due to
E. BoreL.

Similarly, as the conditions given by A. N. KoLmocororr [8] for the law
of the iterated logarithm are evidently fulfilled for the variables ¢, we obtain

THEOREM 4a. We have with probability 1 (i. e. for almost all x)

lim sup ty —log IV =41 and limint tn—108 — 1
N-—+o V2log N -logloglog N N—s+o V2log N-log loglog N
(3.14)

or equivalently
THEOREM 4b. We have with probability 1 (i. e. for almost all x)

(3.15) fimsup——289""  _ _{ and liminf_18% "1 _
: n—te ¥2n-loglogn n—+= ¥2n-log log n
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Theorem 4b is identical with Theorem 4 of [1], due also to P. LEvy, which
was proved in [1] in a rather cumbersone way; here we obtain this result with-
out any effort as a special case of a well-known general theorem.

§ 4. Some further results

We first prove the following theorem, which is a simple consequence of
the Borel-Cantelli lemma.

THEOREM 5. Let 2=k, <k,< ... <k; < ... be an increasing sequence
of positive integers.  Then the sequence q,=q,(x) contains for almost all x infi-
nitely many or only a finite number of terms of the sequence ki(j=1,2,. ..y accord-

ing to whether the series >'— is divergent or convergent.
i=1f;
Proor oF THEOREM 5. Let A, denote the event that the number £ is
contained (at least once) in the sequence g,. Then by Theorem 1 the events
A, are independent and

@1 wm%m@zn=%

Thus Theorem 5 follows immediately by the Borel-Cantelli lemma.

Especially it follows that for almost all x there are infinitely many primes
in the sequence g, (x).

Let us consider now the following problem: what is the probability that
the sequence ¢,(x) is strictly increasing for nz nyx).

This question is answered by

THEOREM 6. For almost all x the sequence q,(x) is strictly increasing for
n = ny(x). where ng(x) depends on x.

Proor or THEOREM 6. Let B, denote the event that the number k& occurs
more than once in the sequence ¢, (x). Clearly the events B, are independent
and

1

(4.2) P(B)) = Ple, = 2) = .
Thus the series
(4.3) ZP(B;J

. k=2

is convergent, and Theorem 6 follows also from the Borel-Cantelli lemma.

The least number »(x) having the property that no number k> x(x) occurs
more than once in the sequence ¢,(x) is a random variable, and it is not diffi-
cult to obtain its distribution. As a matter of fact we have

(4.4) | Pln(x) = k] = — 11 (1-—1~].

K=kl )
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As by an easy calculation

(4.5) SP) =k = S 1T

z k2i=k+1

-4

it follows that the probability of %(x)—l is /5. By other words, 1/, is the pro-
bability that ¢, is strictly increasing from the very beginning.

Now let us drop our assumption that x is uniformly distributed in the inter-
val (0,1] and replace this assumption by the supposition that x has an arbit-
rary absolutely continuous distribution in (0, 1]. As the random variables e,
are independent,"we can apply the theorem (see [4]) that if for a sequence of
independent random variables a limit distribution theorem holds, then the
assertion of this theorem remains valid if we replace the probability measure
on the underlying probability space by a new measure which is absolutely con-
tinuous with respect to the original measure.

Thus it follows that the assertions of Theorems 2b znd 3b and thus also
those of Theorems 2a and 3a remain valid if x is a random variable having an
arbitrary absolutely continuous distribution in the interval (0, 1]. Especially
x may be uniformly distributed in an arbitrary subinterval («, f) of (0, 1].

§ 5. Modified Engel’s series

In this § we consider the representation of a real number x(0<x=1) in
the form

) -—_1_ 1 | 1
O e T e D)y

where m,, is a strictly increasing sequence of positive integers, =2 which is

o1
defined as follows: we choose for m, the least positive integer for which — <x;
my
evidently m,=2; if m, is already chosen, we choose for m, the least positive

I !
integer for which — +—————<x. Then clearly m,>m, a§ — + ———— =

my  (my—1)my Comy o (my - Dmy
1

= . ——1 = x because of the definition of m1 If my, my,...,m, are alrecady
my ~

. 1
determined, we choose for m,y, the least positive integer for which — 4+
: my
1 1

S
(ml— 1)ms (my—=1)...(m,— )m, 4
It is easy to see that m,.,>m, and that

4

n 1
0 =< x—i— > ! —
my  g(my = 1) (e — 1)my (my—1)(my—1). . .(m,—1)m,

(1A
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and thus. as m,=n+1, (5.1) holds. We shall call (5.1) the modified Engel’s
series of x.
The denominators m, have the same probable asymptotic behavmur as
the denominators ¢, of the ordinary Engel s series.
. In fact the variables m, (n=1, 2, ...) form also a homogeneous Markov
chain, with the transition probabilities

5.3) P(it, = kf,_y = 1) = k—(kéTf (k= 1+1)

The basic independent random variables are defined here analogously.
In fact if ¢, is 1 or O according to whether the number k occurs in the sequ-
ence m, or not, then it can be shown — analogously as in § 1 we proved the
corresponding fact for ordinary Engel’s series — that the random variables

By, O35 « .., O ... are independent and P((Sk_l)_— Starting from this fact

it follows that Theorems 2b, 3b and 4b remain vahd for m, instead of ¢,
These results are connected with the theory of order statistics (see [9]).
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