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Introduction

In our paper with P. TURAN [1] we have given a new proof for the theorem
of P. ERDGs and M. KAc [2] according to which the distribution of the number
of prime factors of the natural number n (1 =n= N) tends for N — + = to the normal
distribution. Our method enabled us also to prove the conjecture of J. W. V. LE
VEQUE concerning the exact order of magnitude of the remainder term in the theorem
of ERDOS—KAc. Our method consisted in using the usual methods of analytical
number theory, i.e. expressing the sum of coefficients of a Dirichlet series by a
contour integral, and in using certain function-theoretical properties of the (-
function,

It is natural to guess that this powerful method yields also other known results
on the distribution of values of additive number-theoretical functions. This is in
fact true: however, for this purpose the technique has to be developed somewhat
further. In the present paper we shall give a new proof running on the same lines
as our proof of the Erd6s—Kac theorem in [1], for the following theorem of P.
ErDOGs [3]: Let f(n) be a real valued additive number-theoretical Sfunction, and put

o {f(n) for 1f()=1
/=" for |f(n) > 1.
Put
m B@=g 31

Then the distribution-functions Fy(x) tend for N— + to a limiting distribution
Junction F(x) at all points of continuity of the latter' ), if the following three cond-
itions are satisfied: .

X
1. 2> f—(}i) is convergent,
r P
(f* () 1
2. 2——<+oo, 3. 2 — << 4+ oo,
p V4 lr@>1 P

1
') It has been shown also by ErDSs that if the series 2 s divergent then F(x) is
f@#op
continuous, and thus Fx(x) tends for N— + e to F(x) for every value of x.
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(Here and in what follows p runs over the Sequence of primes). In this case the distri-
bution function F(x) has the characteristic JSunction

+oo

iux &, eillf(pk)_eiuf(pk-l)
) 80) = [ emarey = Jy (14 3 S22,

P k=1

— oo

It has been proved later by P. ERDGs and A. WINTNER [4] that the conditions 1),
2) and 3) are also necessary for the validity of the assertion of the theorem of
ERDGs.

Before giving in § 1 a new proof for this theorem let us mention that the theorem
of ERDOs and WINTNER shows a clear-cut resemblance to the three-series theorem
of KOLMOGOROFF in probability theory. However, a proof of the Erd8s— Wintner
theorem, reducing it to the three-series theorem, has not been found up to now.
An attempt in this direction has been made recently by E. M. PauL [5] but he
succeeded only in proving by purely probabilistic considerations that under the
above conditions 1)—3) the /logarithmic density of the numbers n, for which
Sf(n)<x, exists and is equal to F(x). This is, however, essentially less than the
assertion that the ordinary density of these numbers equals F(x). A new proof of
the theorem of ErRDGs and WINTNER has recently been given by H. DELANGE [10].

In § 2. we make some remarks on the Erd6s— Wintner theorem. We intend to
return to other applications of the method in question (e. g. to prove a theorem
of I. P. KuBiLius [6]) in an other paper.

§ 1. Analytic proof of the theorem of Erdds

Before going into details, we give a sketch of the proof. Let us put?)

(L. 1) Ia(m) = > f(p").
N
Then clearly
(1.2) nm)=f(n) for n=N
In order to prove the theorem in question, it would be sufficient, — according
to the well known continuity theorem concerning characteristic functions — to

show that for all real » one has

N
(1. 3) lim < 2 €W =g(y),
Not+eN 7=

where g(u) is defined by (2). In view of (1. 2) we can write (1. 3) in the form

N
(1. 4) lim N-l— g; etInm = g (y),

No +oo

?) p“In means that n is divisible by p* but not by p**!.
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Now clearly

= eiufn(m) s (") 1
r

n=1 n

Sl NP

and thus
(1.6) An(s, u) =L (8) pun(s, u)
where, putting k(N, p) = [M J, we have

log p

iuf(p*) __ piuf(p*-1 __ piuf (p*(N>P)
an  men=p (e g S )
k=1

As px(s, 1) is a Dirichlet-polynomial, it is an entire function, and its values
can be easily estimated. Thus the behaviour of Ay(s, ©) is sufficiently known in order
to evaluate the sum of its first N coefficients. However carrying out this program
in a straightforward manner leads to a proof of (1. 4) only in the special case if
instead of 1) the much more restrictive condition

3
o 5 1O
p p
is satisfied, i. e. we get in this way not the full theorem of ERDOs, only the special
case which was previously obtained by I.J. SCHONBERG [7].

To get the full theorem we have to introduce the following modification of the
method: we put

(1.8) N* = New

where ¢y is a sequence of positive numbers, tending to 0 for N — + <o, such that

+ oo

o ; 1
(19) EN’VW with O(>0, ﬁ>'5
and prove first
I & .
(1.10) lim — > e/~ =g(y).

N— 4o n=1

As a matter of fact, we prove more, namely we obtain also an estimate (see
(1. 17)) of the remainder term in (1. 10), and from this relation we can already
deduce (1.4). The situation is still somewhat complicated, because for technical

o L X .
reasons we consider instead of the sum v 2, e/n=M the related sum

n=1
1 X .. N
7 *) = — iufnx() . —
1.11) gn(u, N*) N'n=21 e log o

Let us pass now to the details. We have (see [8])

\ 1 [ {(s)pys(s, ) N*~ ' ds
/) = ——
(1. 12a) gy (u, N*) e / =
()
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and thus
e (1, 4) /Ns—lds
.12b , N¥) =
(1.120) g, N¥) 2ni s2(s—1) +
(©)
"y £(s)— 1\ pps(s, )y Ns—tds +i (s, w) — ppr (1, W) N5— 1 ds
T 2ni s—1 52 2mi (s—1)s2
© ©
where j denotes that the integration has to be carried out on the line s = c+it
©
from 1 = — o to t =+ and ¢ is a real number, ¢c>1. Now according to the
theorem of residues
, 1 Ns—tds 1+logN
(L. 13) w2 =TT N
(©)

On the other hand evidently under conditions 1)—3)

(1. 14) lim py+(1, u)=g W)
N- 4o

for all real u. Thus the first term on the right hand side of (1. 12) tends to g(x); it
remains to prove that the other two terms tend sufficiently rapidly to 0. As the
integrand in both terms is regular for s = o +it, 6 >0, the path of integration can
~ in both integrals be shifted to the line s = 1+if i.e. we may take c=1.

Now we have evidently for s = 1+t

Wz L@
],uN*(S, u)]:o e P=N*T p

and by the Cauchy inequality and condition 2) we obtain

. ()
= P

P=N¥*

= O(/loglog N).
Thus
(1 15) ’,UN*(Ss M)] = plul4V loglog N
where A4 is a positive constant. It is easy to see, that (1. 15) holds not only for
— 2k 7 = [ — =g=1].
s = 1-+it but also for s = o+ir where 1 Tog N =o=1

Similarly we obtain (denoting by us«(s, u) the derivative of Un+(s, u) with
respect to s) for s = 1+t

(1.16) lun+ (s, 1)) = O(&y - log N - eAlul Vioglog )

where 4 is a positive constant. Thus we obtain by partial integration, taking into
account the well-known estimates (see [8])

IE(1+ir)| = O(log 1))
(1 +ir)
)

= O(logt))
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that the second term on the right of (1. 12) is of order O(gy-e4l*/VloglosN) and thus
tends to 0 for N> + . As regards the third term of the right of (1. 12) the path
of integration can be transformed into the broken line £ consisting of the 5 segments

€1 s=1+4it —oco<t=-—1,

1
Q.- =g—1 ==l -—
€ s=0—i lz=o=1 Tog N+ °
1
5332 S:l~w+it —1§t§+1,
Q,: =0o+i 1 —1 =o=1
€4 s=o+i g s

€s: s=1+4it 1=t=+ .

__’. . % . . . @
Now as (1. 15) holds for s =1 Tog V% +1it the contribution of the line ¢; to

the third term on the right of (1. 12) is of order

1

0(log N.e_s?) = O(gNeAIul VloglogN)_

On €, and €5 we can again apply partial integration, and use the estimates
(1. 15) resp. (1. 16) and thus obtain that the contributions of the segments £, and

€5 are also of order O(gyetlvl/logloeN),

Finally, in view of
1

1
o~ 1 o
/ N da«0<—logN>
1

; L N
log N* g —
eA|u|]/ loglogN )

the contribution of the segments €; and £y is of order O
eylog N

= O(eyeAlnVioslosN) Thus collecting all estimates, we obtain

(1.16) gy, N*) = puy(1, u) + O(ey - eAlul Vieslog N),

Now let us apply (1.16) for N and N’:[N(l—i-—logl—N)] but with the

same N* and consider the difference of the two expressions. We obtain
1 2 -
1.17) = > eI =y (1, u)+ O(eyeAlul VieslogN),
n=1 ’
Now let us consider the difference
(1.18) dy =

N 1 XN
Z' e _ e/,
n=1 N =1

2|~

n
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‘We have evidently

. iu % b0
P*|n
dy :_7\[1“ D eiufnxm | o N*<p=N 1]

n=1

Now let us collect the terms in which there occurs in the exponent a prime

power p* with k=2; the sum of these terms does not exceed

1 N 1
— 3 |2]=0 A
N N*gﬁ{kzz [p"] (pg%vﬁ; p2>

Thus the sum of these terms tends to 0. It follows that
in Y ®)
N N¥<p=N
(1.19) Z "‘fN*(")( pln —l)+o(l).

269

.

We can further disregard the terms in which there occurs in the exponent a p such

that |f(p)| > 1, because the contribution of these terms is of order O(

Thus we have

v X f*)
1 N . pln
(1. 20) dy = N 2 e"‘fN*(")<e N*<p=N — 1>+ o().
n=1
As
2
(1.21) et = 1+4jo+ 29; where |9 =1
we have
(1.22) dy = Dy+ Ry+o0(1),
where
u N
Dy = 3 enrmo( 3 fr(p))
n= pln
N*<p=N
and
Ri=55 20 2 )
N*<pSN
Clearly

f*2(p) =Y
—— S’ B — S
]RN] 0 (N{_ép P +(N*<Zp'<N P ) )

Thus in view of conditions 1), 2) and 3) it follows that

(1.23) lim Ry=0,
N> 4+

and thus

(1. 24) dy = Dy+o(1).

I£()]>1P ) )
*
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Let us consider now the term Dy. We have evidently

[Z]
(125) DN l—li S‘ f* (p) [: S’l ewa*(m):I

N nx2 ps N
Now let us consider first the contribution of those terms to Dy in which p ~}N.

%
The contribution of these terms clearly does not exceed |u|- > M As
VN<p=N P

we have
4 |f*(p)1§1/( | f*2<p)>,< < _1_)2 |
VE<Zp§N p 1-"W2<p P VWf;éNp 2Ll
we obtain
iu [%]
(1.26) Dy=2% 3 ¢ (p)-< > ei"f~*<m>)+o<1>.
N N*x<p=|N =

;]

Now we apply (1. 17) to each sum 2 e®/~*( in (1.26). Taking into account that
m=1 :

for N* <p§1/j\l“

&(N,P) §
N =Ns&v = (E) t
p ‘a

where
(1.27) e(N,P) = 10;’;\;9_%7 = P, with 1=9=2
it follows that
iu
(1.28) Dy=5 2 f*(p)[ ]uw(l )+ on> ]
N*<p=|N l
where |

o= 3 L) o earan

N*x<p=|N 4
Now, applying the estimate
& S S
F 1@l _ 0(Vloglog N),

N*<p=|N p
we obtain
(1.29) lim oy =0.
No 4o
On the other hand we have

/@) 0(_1_)
<N*<§]Nf*(p)|: :' ) N*<£VN p - VN ’
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%
> J*(p)

As by condition 1) ra tends to O and by (1. 14) uy«(1,%) tends to the

N*<p§VW
limit g(x) and thus is bounded, it follows that

(1. 30) lim Dy=0.

No +o
Thus we have proved that
(1.31) lim dy=0

No 4o

and therefore (1. 17) implies the validity of (1. 3), which was to be proved. Thus
the proof of the theorem of ErRDGs is completed.
§ 2. Some remarks on the Erdés— Wintner theorem

In the course of the proof of the theorem of ERDGs in § 1 we have made use
of the evident fact, that in case the conditions 1)—3) are satisfied the infinite product

= eiuf(P*) _ piuf(pk-1)
@1 g = [ (1 + 3 ; )
P k=1 V4
is convergent for every real u. Conversely it is easy to see that the convergence of
this product for all real u implies the fulfilment of conditions 1)—3).
This can be shown as follows. If the infinite product (2. 1) is convergent, then
clearly the series

(2 2) e_iuf (») — ]

P p

is convergent too. Thus the real part of the series, i. e. the series with non-negative
terms

2. 3) s 1 —cosuf(p)

P P
is convergent for every real u. Thus both of the series
Q. 4) > 1 —cosuf(p)

FT>1 p
and
1— cosuf*(p)

@.5) s of* (p.

p p

are convergent too.
Now the convergence of (2. 5) clearly implies the convergence of the series.

S**(p)
2 P

p

. On the other hand, it can be shown that the convergence of the series.

. 1 ;
(2. 4) implies the convergence of the series h To show this we need the
lr|>1
following
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Lemma. If the series > b,(1—cosa,x) where b,=0 and a,=1 (n=1,2,...)

n=1
is convergent for every real x, then the series D b, is convergent.

n=1

ProOF OF LEMMA 3). Let us put

2. 6) S() = j b, (1 —cos a,x).

As S(x) is finite for every real x, and is a measurable function of x, there exists a
set E of positive measure lying in a finite interval / on which S(x) is bounded,
S(x)= K. Denoting by e(x) the indicator of the set E (i. e. e(x)=1 for x€E and
e(x) =0 otherwise), and integrating the series (2. 6) on the set E (the integration
can be carried out term by term owing to BEPPO LEVI's theorem) we obtain

> b,,/(l —cosa,x)e(x)dx=K|E]|
n=1
I

where |E| denotes the measure of the set E. Now evidently G(a) =
= / (1 —cos ax)e(x)dx as a function of a is bounded from below by a positive
1

constant for 1 =a< + <. (As a matter of fact, G(a) is everywhere positive, conti-
nuous and by Riemann ’s lemma lim G(a) = |E| >0.) It follows, putting

min G(d)=g, that o
1Ea< oo
¢ 3 b=K-|E|
This proves the Lemma. "
Now the convergence of the series fo@ and l together with

» P If@1>1pP ()
that of the series (2. 2) imply by (1. 21) the convergence of the series > —pp—.
p

Thus conditions 1)—3) are satisfied.

Therefore the theorem of ErDGs and WINTNER can also be formulated as
follows: for the existence of the limiting distribution of the values of an additive
arithmetic function f(n) the convergence of the infinite product (2. 1) is necessary
and sufficient.

This reformulation of their theorem has been already given by ERDGS and
WINTNER themselves in [4]; however, they deduced this form of the theorem from
the original one in another, indirect way, by using the theory of infinite convol-
utions.

3) This Lemma can be proved in exactly the same way as the theorem of DENjoY—Lusiy
{see [9], p. 232); nevertheless, for the sake of the convenience of the reader, I give here the proof.

:
!
i
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