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§ 1. Introduction

- The second named author has proved (see [1]) some years ago the following
THEOREM A. Let f(2) be a transcendental entire function and let

fz) = 3 a,7"
and

€)= 3 bafa— 1y

n=0

be the power series of f(2) around the pointst 2=0 and z=1 respectively. Let Zy(n)
resp. Z,(n) denote the number of zeros in the sequence ay, @, ..., a,—, resp.

vy By—q. Then .
liminf Z6M 4 _

Neco n

- Ugy Yy -

Theorem A can be formulated somewhat vaguely in the following way:
if there are ,many” zeros among the coefficients of the power series of a trans-
cendental entire function about the point 2=0, then there can not be ,too
many” zeros among the coefficients of its power series about the point z=1.

In the present paper we shall prove a generalization of Theorem A, whose
statement can be expressed somewhat vaguely as follows: if ,many” of the
coefficients of the power series of an entire transcendental function about the
point z=0 are . small”, then there can not be  too many” ,small” coefficients
in the power series of the same function about the point z=1. Of course one
has to give a precise meaning fo the word ,small” in.this context, :

Roughly speaking we shall call a coefficient of the power series of an entire
function f(2) ,,small” if it is smaller in absolute value than the corresponding
coefficient of the power series of an other entire function g(z) which is of
smaller order of magnitude than f(z). To make ‘this definition quite de-
finite, we have to decide how to compare the orders of magnitude of the entire
functions f(2) and g(2) . This could be done for example by comparing the rate
of increase for r—»< of the maximum modulus Mxr) = {V{ax lf®)| of f(z) with

Z| =T . .

that of g(), i.e. with M,(r) = I'VIIax 1g@)].

1 The theorem remains valid if we consider the power series of f(2) around two arbitrary

different points « and .
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For our purposes it is however more convenient to compare the orders of mag-
nitude of f(z) and g(z) by comparing the maximal terms of their power series.
We shall prove the following

THEOREM 1. Let f(2) = X' a,2" = g'bn(z—l)“ be a transcendenial entire

n=0 n=0

unction and g(z) = s ¢, be an arbitrary entire function. Put .
g
n=0 .
pAry = Max |a|r"
n
and .
‘ pe(r) = Max ¢ |r™.
n .

Let us suppose that there exists a number § such that 0<é<1 and

1/6
(1.1) fimint 22 _
roee pdr)

Let Sy(n) denote the number of indices k < n for which |a] = |c,| and Sy(n)
the number of indices k < n for which |b,| = |¢,|. Then we have?

(1.2) liminfSUD+SD) 0

n—-oo n

Let us make some remarks.

REMARK 1. If we choose g(z) = 0, then (1.1) holds for any =0, further
in this case Sy(n) = Zy(n) and S;(n) = Z,(n), where Zy(n) resp. Z,(n) denote
the number of zeros in the sequence a4, a,, ..., a,—, resp. by, by ..., b, ;.
Thus in this special case Theorem 1 reduces to Theorem A, i.e. Theorem 1 is
a generalization of Theorem A. }

REMARK 2. If f(2) is an entire function of order o, and g(2) an entire func-
tion of order g, then according to a well known theorem (see e, g. [2], Chapter
IV. Problem '51)
loglog udr) _ o

lim sup
resco logr
and similarly -
(1.3) lim supw = 0.
. r— oo logr

Thus if g, <, and we choose avsequence ro. (k=1,2, ...)such that limr, = =

k— o0
loglog uq(ry)- O

and lim = o, then we have for any ¢ with §=>—
k— o0 log Ty ) 16 . or
lim wr) 0
k= pdry)

. 1 .
* Clearly only the case & <5 is interesting as otherwise (1.2) is trivial.
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1t follows that the conditions of Theorem 1 hold with any 8 for which §>— zg
i
and thus we obtain
(1.4) limf int S0 TS _ o0
Nn—oo n Qf

In case g, = 0 and g,>0 further also in case g; = = and g, <o it follows

n— oo n

We shall show later (Theorem 4) that (1.4) can be improved, namely the
factor 2 on the right hand side of (1.4) is unnecessary.

Of course, Theorem 1 can also be applied to certain pairs of entire functions
which are either both of order O or both of order <.

REmARK 3. Clearly instead of considering the power series of f(z) about
2=0 and z=1 wg could consider its power series about 2=« and z=p where
o and g are arbitrary complex numbers and s 8. As a matter of fact in this
.case wé have to apply Theorem 1 to the function f[(8—a)2+«] instead of
J(@) and g[(B—o)z] instead of g(2).

2 contains estimations of certain.interpolatory polynomials. In § 3 we
give the proof of Theorem 1, further of the related Theorems 2,3 and 4. The
method of proof of Theorem 1 is the same as that of Theorem A given in [1]
but besides the tools used there; the results of § 2 are also needed. § 4 contains
the discussion of an example, which shows that our results are not far from
being best possible.

§ 2. Estimates of certain interpolatory polynomials

Let Q.(2) (n=1,2, ...) be the umque polynomial of degree 2n—1 which
satisfies the followmg conditions

) :
2.1 —Q&:p" for i=01,...,n—1
il .
and
()
2.2) 9@=qj for j=01,n1
I
where p;and ¢; (j=0, 1, ..., n—1) are arbltrary complex numbers. An explicit
fO{mula for Q, (z) has been given by P. JoHANSEN [3]; this can be writtenas
follows:

0. = (=27 T 2] 3 pe [0 I+

@3 B 1y k 1y n+s—1
3 e >[2<— >qk_s( el
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Formula (2.3) can be transfromed as follows:

= F {1, {2

(2.4) =1k : s:o n+s—1
L] b GV PolER A IIt

Thus we obtain
M) " (n+t
Q4 () 2 ( JQM

where

R R e

n+t—

VE (Efe o E a7

§=0

Now evidently

B o lQn,iIS(o Max [pu,)é (n+t_k}[£.(n+s—1”+

u=<n-1 =0 S
. n+s—1
+7 Ma .
| (e (2]
. As however
i, (n-@-s—lj _ [n+k < ok
§=0 k
we obtain _ '
n-1 n kK in+s—1y
< 2n+t..3ﬂ - 12"
k‘é’: (n+t—k Lgé‘;’ s ” )
further '

Thus we obtain
[Qnd < 12"( Max lp,,'|+" Max ]q,,]) for t=0,1,...,n-1
' O=su<n-1 G<v<n—1

Thus we have proved thgf following

LEMMA 1. Let Q,(2) (n=1, 2, ...) be the unique polynomial of degree 2n—1
determined by the conditions (2 1) and (2.2). Then we have

Max 180 _ 12"( Max_[p,|+ Max quI)Z ‘n:t)e

Jz}=e nl - O<uxn —1 0<v<n-1 f=0
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§ 3. Proof of Theorems 1—-4

We can suppose without the restriction of generality, that f(2) is real for
real z, i. e. that all the coefficients a, (and thus all the b,) are real. As a matter
of fact suppose that Theorem 1 is already proved for such functions. If f(z) =

= 3'a,2" is an arbitrary entire function, put /,(2) = i‘ a;2" resp. f,(2) = S‘a,,z"
n=0 n=0 =0
where a; and a, denotes the real and imaginary part of g, respe'::tively

(n=0, 1, ...). Clearly
#Ar) = pr(r)+ pa(r)

thus if f(z) satisfies (1.1), at least one of the functions f,(2) and f,(2) satisfies
(it too. Suppose e. g. that f,(2) satisfies (1.1) i.e.

1/6
timint 4 _ o
oo e .ufl(r )
Put f(2) = 3 b,(z—1)", further b, = by+iby; now if la;|<[c,| then |a;|<]c,l,
n=90
and similarly if |b,| < |c,| then |b}] < |c,|. Thus if Sj(n) resp. Sj(n) denotes
the number of indices k < n for which o]} <|c,| resp. |b7| <]c,| then
So(n) < Sg(n) and S,(n) < S{(n). As by supposition the statement of Theorem 1
is valid for f,(2), it follows that it is valid for f(2) too. Therefore in what follows
we shall suppose that f(z) is real on the real axis, i.e. that the coefficients
- a, and b, are all real n,ul;n_bers. '
To prove Theorem 1 we shall need the following Lemma A, which has
been used in proving Theorem A in [1]. '

LemMA A. If h(x) is a real function which has n continuous derivatives in
the closed interval [0, 1] and if N(n) denotes the number of zeros of h™(x) inthe
interval [0, 1] further Zy(n, h) and Z(n, h) denotes the number of zeros in the
sequence h(0), K’(0), ..., K*—9(0) and in the sequence h(1), K'(1), ..., K"~1)(1)
respectively, then we have

Zo(n, b)Y+ Zy(n, h)—n = N(n).
We shall apply Lemma A to the function

3.1) h(2) = fR)—-Qu(2) (n=1,2,...)
where Q,(2) is the unique polynomial of order 2n—1 defined by the following
conditions:

0 for O0=j<dn

( ’
(3.20) QL)'(Q)_ =laq if ¥n=j=n-1 and |g| =[]
I 0 if ¥n=j=n—1 and |g| > ¢}
1 0 for 0=j<é&n
(3.20) D 1, it on=j=n—1 and o] =/
j!

0 if ¥n=j=n-1 and |b|=>|c
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Here & is an arbitrary number such that <& <1.
Clearly if h.(2) is defined by (3.1) and Q,(2) by (3.2a—b) we have

3.3) So(n) = Zy(n,h,)+&n
and
{3.4) Sy(n) = Zy(n,h,)+n.

Thus it follows by Lemma A that denoting by N,(n) the number of zeros
of KM (2) in the interval [0, 1], we have
3.5) Sy(n)+S4(n) = N (n)+n(1+2¢).

Now we shall need Jensen’s theorem which we shall use in the following
form (see [4], p. 127, formula (13)):

LEmMA B. Lef H(Z) be an analytic function which is regular in a circle
{2l < R(R > 1) and H(0o)=0. Let o/, denote the number of zeros of H(2) in the
(closed) unit circle, and choose a number ¢ with 1 < ¢ < R. Then ,

Max log 5((2))
(3.6) oty Fze  1HO
: log o .
It follows from (3.5) and (3.6) that if h(¥(0)=0, then for any g> 1 we have

()

Max log LA

So(n)+sl(n) = [zj=e hgn)(o)
n nlog o

(3.7 +(1428).

- Now let us choose a sequence r, of positive numbers, such that lim r; = « and

l S— oo
o 268 _ g
S=eo :uf(rs)

Such a sequence r; exists by supposition. Let n; denote the index of the maximal

term of the series 3a,2" for |2 =7, i.e. suppose
n=0

3.8) lanrts = la,rm for  m=0,1,...
It follows by Lemma 1 that
' lgoy| % Ml
(3.9) f = T 2% = Cy(120n )%
["90)]  lan

where C,>0 is a constant and

1

Z"SZ 8 —8
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As clearly ‘
13.10) lim2,, = 0
« S0 -

if follows that
(ns) 0
(3.11) ( )
f‘"S’(O) I

and thus also h§9(0)7 0 for suff1c1ent1y large s.
By Lemma °l we have also for [zl =0>1

n ne+j J
n Ma 12ns
0o | _ 2(Max lctl) Z ;
1(0) lansl
Similarly as in (3.9) we obtain '
(19
G ¢ 121 > (n HJ@’
|z} =e f("s)(O) =R

where  C,>0 is a constant.
Now if s is sufficiently large, we have 124, 0<1 and therefore

|&P@ | Cy
lzl—e’ f("s)(O) C(1-122, )+t .
it follows by (3.10) that

QA2
[79(0)

le]=e

@3.12), lim
. §mes - ns

'Finally we have for |¢| = o by (3.8)

M = < | Instt (ns‘."lJel - b_._l—
f(ns)(O) =0 ans { (] B _gJ"s+1
rS
and thus
g f("s)(z)
= (rs)
3.13) fim =01 1%9(0)
S— 00 ns
As we have evidently
(ns)
() .
(ns) Max [79(@2) +Max |— = ()
3.14) (z)l =2 | f"O) | Iel—e j(ns)(O)
= [1g50) 0
[0

3 ANNALES, Sectio Mathematica, Tomus VI

33
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comparing (3.11), (3.12), (3.13) and (3.14) it follows that

B9z
Max log i(l
kl=e | B39(0)
(3.15) lim z = 0.
S§— 00 fls
Combining (3.7) with (3.15) we obtain
(3.16) lim sup —SW TS _ ¢ oy
oo ng .

and as (3.16) holds for any &>4, we obtain finally
lim inf Solm) +84(m)

§—s00 n

= 1+26.

Thus Theorem 1 is proved.
New we prove the following

oo

THEOREM 2. Let f(2) = 3 a,2" = X'b,(z—1)" be a transcendental entire
n=0 - ’

n=90

Junction and g(z) = i‘ ¢,2" an arbitrary entire function for which the suppositions

n=0
of Theorem 1 hold. Let Zy(n) denote the number of zeros in the sequence a,, a,
evs @y and Sy(n) the number of indices k< n for which |b]<|c,|. Then

Reroo n

+34.

The proof of Theorem 2 is almost the same as that of Theorem 1; as how-
ever we do not use now (3.3), only (3.4), we get ¢ instead of 2.
The following result contains each of Theorem 1 and Theorem 2 as special
cases. ,

THEOREM 3. Let f(2) = 3 a,2" = 3'b,(2—1)" be a transcendental entire
n=0 n=0 ’

function, further g,(2) :‘i‘ 2" and g,(2) = i‘d,,z" be entire functions, such that .
n=0 n=0

putting
per) = Max|e,|r

and
/‘Ez(r ) = Max Idn]rn

we have for some & and §,(8,;>0,6,>0, 8, +8,<1)

lim mf #gl(r1/61_)+ugg(r1/5a) < oo,
roee BAT)
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Let Sy(n) denote the number of indices k < n for which |a| < |¢| and Sy(n)
the number of indices k < n for which |b,| < |c,|. Then

lim inf So(m)+84(n)

Nn— oo n

= 1468, +6,.

The proof of Theorem 3 is  essentially the same as that of Theorem I;
the only differences consist in that now we define the polynomial Q,(z) of order
2n—1 (n=1,2, ...) as follows:

M0 0 for 0=j<éin
&_f—) =lq if n=j=n-1 and |g] =]
I 0 if §n=j=n-1 and |g| > |¢]
ey [, S
= b it =j=n-1 and [b|=|d}
T lO if n=j=n-1 and b} > |d].

Here &, is an arbitrary number for which 8, < d; < 1 and 4; an arbitrary
number for which §, < & < 1.
Evidently if we choose g,(2) = £,(2) = g(2), then Theorem 3 reduces to
Theorem 1, while if g,(2) = 0, g,(2) = £(2), then Theorem 3 reduces to Theorem 2.
Now we shall prove the following Theorem 4, which gives a sharper in-
equality than (1.4). '

THEOREM 4. If f(z):ﬁ‘a,,z" = 3'b,(z—1)" is an entire function of
A=0

n=0

order p(O<p; <o) and gR) = i‘cnz" an entire function of order.p, where
n=0

0< g, <oy, and if Sy(n) denotes the number of indices k < n for which |a,| < |¢]

and Sy(n) the number of indices k<n for which {b,|<|c,| then

1imiﬁfw =14 %,
R oo n Qf

ProOF oF THEOREM 4. Let us put
(2) = a,2"
¥ ) lanélcnl "

MR =@-¢@= 3 a2"=

lan > el n

Then clearly f*(z) has the same order o as f(2) further (2) is at most of
order p,. Let Z§(n) denote the number of zeros in the sequence .af, af, ...,
ak_,, then clearly : :

@3.17) | Ziw) = Sn)

3

'and

a?t = > bp(z—1)"
n=0

ibge
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36
= 0 as evidently

We can without restricting the generality suppose that ¢,
Z‘[cn]z" is an entlre function of the same order as g(2) [This follows e. g. by

(I3)]. Put
g*(@) = i‘ [ S (m) ] = i‘ 2

n= m=n

It is easy to see that g*(z) is also an entu'e functlon of order g,. As a matter of

fact, one has
g*() = 2gz+1).

Now as

lam) = lem}

we obtain
oi] = [b + > (mjck (k=0,1,...).
m=k k

It follows that if Sf(n) denotes the

Thus if |b,] < |c,| we have [bF| < [c}].
number of indices k<n for which |b}| < |c¥|, then -

(3.18) Sy(n) = S¥(n).

Now we can apply Theorem 2 to the function f*(z) of order or and the
¢ and thus we obtain, taking (3.17)

function g*(z) of order o with any 6> .
s

and (3.18) into account
Zym)+Sxn) _ |, &

fim int S TS _ i ing 26
n n—eo n er

n—o.oco

Thus Theorem 4 is proved.

§ 4. An example
We shall discuss now an example, which shows that Theorem 4isin a

cerfain sense best possible.
Let us c0n51der the function

1) =

22"

o (@)!

i Ma
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where @ > 1 is an integer. Clearly f(z) is an entire transcendental function of
order 1. Let us choose for g(2) the function :

n

- 4
=L
g() PIINT

where—l < 9 < 1. It is easy to see that g(z) is an entire function of order ».
a

We consider now the power series of f(z) around the point z = 1; we have

= [1+@=-DF" =

@) = go (@) = mé‘b bz — 1y
where
1 1

b= — > 1
,m m' anzm(an_m)!

Let us compare now b, with
1

Cm =
(mh)

for a value of m which lies in the interval

a'd
1+

A" l=m<

(n=12,..))
where ¢ is an arbitrary positive number.
We have clearly for any m satisfying (4.1)
2
m![(l te lJm]!
i}

1t follows by Stirling’s formula that if n = n, where n, is a suitably chosen
large number and if m satisfies (4.1) we have

by =

It follows that

o1
(4.2) fiming SeW+Sn) _ ., 1+e @
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As for ¢ we can choose an arbitrary small positive number and a can be
chosen arbitrarily large, it follows that the lower bound in (4.2) can be arbitra-
rily near to 1+9. As however by Theorem 4

(4.3) fim in SM +8u(m) _
s o0 n

it follows that Tehorem 4 (and thus also Theorem 2) is best possible in the sense
that 1+9 can not be replaced in general by any smaller number in (4.3).

149
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