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 ON STABLE SEQUENCES OF EVENTS

 By ALFRED R?NYI
 Mathematical Institute, Hungarian Academy of Sciences

 SUMMARY. A sequence {An} of events is called a stable sequence if for every event B the limit
 lim P(AnB) = Q(B) exists. It is shown that in this case Q is a bounded measure which is absolutely

 n?> +00

 continuous with respect to the underlying probability measure P. The Radon-Nikodym derivative -^ ? a
 is called the local density of the stable sequence {An}. Criteria for a sequence of events being stable are
 given, further examples of stable sequences are discussed The notion of a stable sequence of events
 generaliz?s the notion of a mixing sequence of events, introduced in a previous paper of the author. A
 stable sequence is mixing if its local density is constant almost everywhere.

 1. Introduction

 Let [?2, ji, P] be a probability space in the sense of Kolmogoroff, i.e. let ?2
 be an arbitrary set whose elements shall be denoted by co and called elementary events,

 j? a cr-algebra of subsets of Q whose elements will be denoted by capital letters A, B
 etc., and called random events or simply events and P = P(A) a measure, i.e. a non
 negative and cr-additive set function defined on j<l and normed by the condition
 P(Q) = 1; P(A) will be called the probability of the event Aeji.

 We shall denote by <?> the empty set which represents the impossible event,
 further by A+B the union and by A.B the intersection of the sets A and B. If
 An(n = 1, 2, ...) is a sequence of sets, we shall use also the notation 2 An for the union

 n

 of the sets An. We denote by A?B the set of elements which belong to A but not to
 B and put 0,?A = ?. If A and B are arbitrary events such that P(B) > 0, we shall
 denote by P(A \ B) the conditional probability of the event A with respect to the condi
 tion B, i.e. we put

 We shall denote by aeA that a is an element of the set A and by A?^B that
 the set A is a subset of the set B.

 As usual a real function ? = ?(o>) defined on Q is called a random variable if
 it is measurable with respect to j?, that is, if denoting by ?"*(/) the set of those coei?
 for which ?(co)e/, then ^_1(I) belongs to jt if I is an arbitrary interval of the real
 line.

 We denote by E(i) the mean value (expectation) of the random variable \9
 i.e. we put E(l) = J \dP. o i
 The infinite sequence of events Ax, A2, ..., An, ..., i.e. of subsets of ?2 belonging
 to ji will be called a stable sequence, if the limit

 lim P(AnB) = Q(B) ... (1.1) n-?+oo
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 exists for every Bej?. We shall show that in this case Q(B) is a bounded measure on
 j?, triiich is absolutely continuous with respect to the measure P, and thus

 Q(B)=S?adP ... (1.2)
 for every Beji where a = a(o>) is a measurable function on Q such that 0 ^ a(co) <; 1.

 We shall call a(o>) the local density of the stable sequence of events {An}.

 As well known a(co) is not uniquely determined, but if (1.2) holds both with
 a == a1(c?) and dc = a2(<o) then ax(co) and a2(o>) are almost everywhere equal to another.

 In the special case when the local density is constant, i.e. a(co) = a, then
 Q(B) == otP(B) for every Bej?, i.e. in this case

 lim P(AnB) = ocP(B). ... (1.3)
 ???+00

 Sequences {An} for which (1.3) holds have been considered already in a previous
 paper (R?nyi, 1958) and have been called strongly mixing sequences of events
 with density a. Thus the notion of a stable sequence of events is a generalization of
 the notion of a mixing sequence.

 The definition of a stable sequence of events can be formulated also in the following

 equivalent form: The sequence of events {An} (n = 1, 2, ...) is called stable if for every
 event Bey[ such that P(B) > 0 the conditional probability P(An\B) tends to a
 limit, i.e.

 lim P(An\B) = q(B) ... (1.4) W??+O0

 exists. Clearly, if P(B) > 0 then (1.1) and (1.4) with q(B) = p(J, are equivalent, while

 if P(B) = 0 then (1.1) holds with Q(B) == 0 for any sequence {An}.

 We shall show that stable sequences of events can be simply characterized
 in terms of Hubert space theory. Let H denote the Hubert space of all random
 variables \, defined on the probability space [?2, ji, P], for which E(Z2) is finite, the
 inner product (?, r/) being defined by (?, r?) = E(% . t?). Let an = an(co) denote the
 indicator of the set An, i.e. &n(co) = 1 for <?eAn and an(co) = 0 for <?eAn. Then the

 sequence {A^ of events is stable if and only if the sequence an converges weakly; the
 weak limit of the sequence an being equal to the local density of the sequence {An}.
 It follows that the sequence {An} is mixing if and only if ocn converges weakly to a
 constant.

 We introduce further the notion of a stable sequence of random variables.

 The sequence of random variables ?n = ?w(co) (n = 1, 2, ...) will be called stable if for
 any event B with P(B) > 0 the conditional distribution of ?n with respect to B tends
 to a limiting distribution, i.e.

 lim P&n<x\B) = FB(x) ... (1.5)
 n??+00

 for every x which is a continuity point of the distribution function FB(x).

 Expressed in terms of Hubert space theory this means that for every bounded
 and continuous function g(x) the sequence g(%n) converges weakly.
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This content downloaded from 157.181.127.169 on Sat, 07 Jan 2017 17:07:39 UTC
All use subject to http://about.jstor.org/terms
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 An other equivalent definition of a stable sequence of random variables is
 the following : the sequence of random variables ^n(n = 1, 2,...) is called stable, if
 for every xeX where X is a set of real numbers which is everywhere dense on the
 real line, the sequence of events ?n < x (n = 1, 2, ...) is stable.

 Clearly such a sequence {?n} of random variables is stable in the sense
 of (1.5), because if (1.5) holds for x belonging to an everywhere dense set X then
 it holds for every continuity point x of FB(x). On the other hand (1.5) implies the
 stability of the sequence of events ?n < x for x e X where the set X is everywhere
 dense on the real line.

 In the special case when the limiting distribution FB(x) does not depend on
 the choice of B we arrive at the notion of a strongly mixing sequence of random
 variables, introduced previously (R?nyi and R?v?sz, 1958).

 The aim of the present paper is to study general properties of stable sequences
 of events and to give criteria for the stability of a sequence of events which are discussed

 in Section 2; some examples and applications of these notions in probability theory
 are discussed in Section 3.

 2. Some general theorems on stable sequences of events

 Let an ? ocn(c?) (n = 1, 2, ...) be the indicator of the set An, i.e. an(to) = 1
 if (?eAn and an(o>) = 0 if <?eAn.

 Let H denote the Hubert space of all random variables \ for which E(Z?)
 exists, the inner product (?, r?) being defined by (?, tj) = 2?(? . t?). We put further
 || ?|| = (i-, ?)1/2. All definitions and theorems from Hubert space theory which will

 be needed in the sequel can be found, e.g., in Sz?kefalvi-Nagy (1942).

 We prove first the following theorem.

 Theorem 1 : {A^ is a stable sequence of events, i.e. the limit
 ]im P(AnB) = Q(B) ... (2-.1)

 exists for every Bej?9 if and only if {an} is a weakly convergent sequence of elements of
 the Hubert space H, i.e. if for any r?eH the limit

 lim (an9V) = A(y) ... (2.2)
 n?>+00

 exists.

 Proof of Theorem 1 : Clearly, if ? is the indicator of the set B then
 (an, ?) = P(AnB). Thus (2.2) reduces to (2.1) if we substitute ? instead of r/. Thus to
 prove Theorem 1 it suffices to show that if the limit (2.2) exists whenever r? is the
 indicator of a set 2? then it exists for every r? eH. Clearly, if the limit (2.2) exists for

 every indicator r\, it exists also if i) is an arbitrary element of H which takes on only a
 finite number of values. As to every random variable r\ for which E(\r\\) < +oo
 and to every e > 0 one can find, by the definition of the Lebesgue integral (Halmos,
 1950) a random variable r\x which takes on only a finite number of values, such
 that E(\r\?r)x|) < e, it follows easily that (2.2) holds not only for every r/eH but
 also for every r? for which E(r?) is finite. Thus Theorem 1 is proved.
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 As a consequence of Theorem 1 we obtain the following theorem.

 Theorem 2 : // {A^? is a stable sequence of events, i.e. if
 lim P(AnB) = Q(B) ... (2.3)

 W-?+00

 exists for every Beyi, then Q(B) is a measure on J? which is absolutely continuous with
 respect to the measure P, and thus can be represented in the form

 Q(B) = S*dP ... (2.4) B

 where a = a(co) is a random variable; we have further 0 <; a ^ 1.

 Proof of Theorem 2 : Clearly A(r?) defined by (2.2) is a bounded linear opera
 tion on H, and thus by a well-known theorem [Sz?kefalvi-Nagy (1942)] there exists
 an oceH such that A(i?) can be represented in the form A(r?) = (a, r?). It is easy to see
 that 0 < a < 1. It follows that, denoting by ? the indicator of the event B, we have

 Q(B) = (a,?) = iadP. ... (2.5) B

 Thus Q(B) is a measure, which is absolutely continuous with respect to the measure
 P(B). We shall call a = a(co) the local density of the stable sequence {An}.

 Now we shall prove a criterion of the stability of a sequence of events which
 is the generalization of a corresponding criterion for mixing sequences, proved by
 the author (R?nyi, 1958).

 Theorem 3 : Let {A^ (n = 1, 2, ...) be a sequence of events such that the limit
 Km P(AnAk) = Qk ... (2.6)
 n??+0O

 exists for & = 1, 2,_ Then the sequence {An} is stable, i.e. (2.1) holds for every Bej?.

 Proof of Theorem 3 : Let H1 denote the subspace of H spanned by the
 sequence {an} where ocn is the indicator of the event An(n = 1, 2, ...), i.e. the closure
 with respect to the distance ||??t?\\ of the set of all finite linear combinations S cKaK K=l

 where cv c2, ..., cn are arbitrary real numbers. Let H2 denote the set of those elements

 \2 of H which are orthogonal to every ^eH^

 According to a well-known theorem (see Szokefalvi-Nagy, 1942, p. 8) each
 element \ of H can be represented in the form ? = ?i+?2 where ?sleH1 and ?2^2
 Now we shall prove that if the limit (2.6) exists for k =1, 2, ... then the limit

 Km K, l) = A(l) ... (2.7) n-?+00

 exists for every \eH. To prove this it suffices to show that (2.7) exists if \ = ^eH^
 because of the above mentioned decomposition of every \eH into the sum of a ^sleH1

 and a l,2eH2, as a matter of fact if I = \2eE2 then (2.7) holds with A(%2) = 0 while if
 the limit (2.7) exists for ? = ?x and ? = \2 it clearly exists for ? = \y\-\% also.

 Now if Xi is a Knear combination of a finite number of the a?'s then clearly
 the limit (2.7) exists. Let now ^ be an arbitrary element of Hv Then to every N
 e > 0 one can find a finite linear combination S cK<xK such that

 K = l

 ||^- f cA||<e. .. (2.8)
 296
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 ON STABLE SEQUENCES OE EVENTS

 But (2.8) implies in view of ||an|| < 1 and the inequality |(?, ?/)| < ||?||. \\y\\, that

 \(an, ?j)- S ck(an,ak)\ < e. ... (2.9) ?6=1

 Thus it follows that

 | lim (an, ?j)- lim (an, ly)\ < 2e. ... (2.10)
 w?? + oo w??+ oo

 As 8 > 0 is arbitrary it follows from (2.10) that the limit (2.7) exists. Thus Theorem
 3 is proved.

 Let us put (supposing P(Ak) > 0 for k = 1, 2, ..., which is no essential restric
 tion)

 ??=-p?h-(*=l,2,...) ... (2.11)
 where Qk is defined by (2.6).

 Note that even if all the numbers qk(k ? 1,2, ...) are equal, it is not sure that
 the sequence {An} is mixing. See for instance examples 1 and 2 of Section 3. This
 is true, however, in case Ax = ?2 as it has been shown by the author (R?nyi, 1958).

 Another way to express this fact is contained in Theorem 4.

 Theorem 4 : Let {An} be a stable sequence of events such that lim P(An) = q0 n?>-f-oo

 and lim P(AnAk) = qkP(Ak) (k ~ 1, 2, ...). Then the sequence {A^ is mixing if and ???+00

 only if the numbers qk (k = 0, 1, ...) are all equal to another.

 Proof of Theorem 4 : The necessity of the condition follows immediately
 from the definition of mixing sequences.

 The sufficiency can be proved as follows : Let a denote the local density of
 the sequence {An}. If qk = q ^ 0(k = 0, 1, ...) then clearly

 (a,ak) = q(l,cck) ... (2.12)
 which can be also expressed as follows :

 (a,ak) = qP(Ak). ... (2.13)
 It follows by passing to the limit from (2.12) that

 (a,a) = g(l,a) ... (2.14)
 and from (2.13) that (a, a) = q2. ... (2.15)
 It foUows that q = (1, a) ... (2.16)
 and therefore that (a, a) = (1, a)2 ... (2.17)

 i.e., S oc2dP = ( j adP)2. ... (2.18) o a

 This implies that a is constant almost everywhere and thus by (2.15)
 a, = q. ... (2.19)

 The case q = 0 is trivial.
 We should like to add the following remark:
 In view of Theorem 1, Theorem 3 is a special case of the following.

 Theorem : A bounded sequence {aw} (n = 1, 2, ...) of elements of a Hubert
 space H is weakly convergent if and only if the limits Km (<xn, ak) exist for k = 1,2, ... . n?>+oo

 297
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 The proof of this assertion is exactly the same as that of Theorem 3. This
 useful theorem, which is due to E. Schmidt (see Schmeidler, 1954) is well known
 in Hubert space theory; e.g. the proof in Szokefalvi-Nagy, (1942, p. 10) of the theorem
 that every bounded set is weakly compact, is based essentially on this fact.1

 Let us add that if {An} is a stable sequence of events and ocn the indicator of An,
 then the sequence ocn converges strongly in H only in the trivial case when the weak
 limit of an is almost everywhere equal either to 1 or to 0, e.g., in the case mentioned
 in Example 1. As a matter of fact a necessary and sufficient condition of the strong
 convergence of an to a is lim ||an|| = ||a||. But

 n??+00

 Km ||an||2 = lim (ocn, 1) = / adP fl??+00 W??+0O ?

 and ||a||2 = J* a2dP. Thus ocn is strongly convergent to ot if and only if

 J a(i?a)dP = 0 i.e. if a(l?a) =0 almost everywhere, o

 In view of Theorem 4 and of the well-known theorem of Hilbert space theory
 according to which every bounded set is weakly compact, the following theorem holds :

 Theorem 5 : Any sequence {An} of events contains a subsequence which is stable.

 An interesting feature of the stability of a sequence of events is that unlike
 such properties as independence, equivalence etc., it remains invariant when the under
 lying measure is replaced by another which is absolutely continuous with respect to
 the original measure. Moreover the local density of a stable sequence of events remains
 also unchanged.

 Theorem 6 : Let [Q, ji, P] = S be a probability space and {An} a stable
 sequence of events in S> Let P* be another probability measure on jt which is absolutely
 continuous with respect to P. Then the sequence {An} is stable on the probability space
 ^5* == [Q5 j%, p*] also, with the same local density, i.e. if (2.1) and (2.4) hold, one has also

 lim P*(AnB)= fadP*. ... (2.20) n??+00 B

 Proof of Theorem 6 : By supposition

 P*(A) = SpdP for Aejl ... (2.21) A

 where p ? p(o>) is a nonnegative random variable and J pdP = 1. It follows that o

 P*(An, B) = S ocnpdP = (an, p?) ... (2.22) B

 where ? is the indicator of the event Bej%. Thus the existence of the limit (2.20) follows
 evidently from the remark made in course of proving Theorem 1 that the limit (2.2)
 exists not only if rjeH but also under the single condition that E(r?) exists and that we
 have in this case also A(r?) = (r?, a). Thus it follows that

 lim P* (AnB) = (a, p?) = J adP*. n??+ 00 B

 i Prof. B. Sz. Nagy has kindly called my attention to this proof.
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 This proves Theorem 6. Let us mention that for mixing sequences a more general
 result supposing only the semi-continuity of P* with respect to P has been proved by
 Sucheston (1962).

 We want to make some further general remarks. It is impossible, except
 in trivial cases that the convergence in (2.1) should be uniform in B for all Bejt. As
 a matter of fact, putting B = An one has

 P(AnB)-Q(B) = P(An)-Q(An) = J (l-a)andP

 and this difference tends to J* a(l?a)dP. Thus the convergence in (2.1) can be uni

 form only if the local density a is almost everywhere equal to 1 or 0 as in the trivial
 case of Example 1 in Section 3. Nevertheless the convergence in (2.1) may be uniform
 in B for Be ? where ?8 is some proper subset of jt which does not contain the sets An
 themselves or only a finite number of them. For instance, if there exist events B
 which are independent from all the events An, then these may all be contained in
 ?. If B is such an event then clearly the indicator ? of B is uncorrelated with the local

 density a of the sequence {An}.

 3. Examples of stable sequences of events

 Example 1 : A sequence of identical events An = A(n = 1, 2, ...) is evidently
 stable. Note that in this case the local density a (o>) is equal to 1 for coeJ. and to 0
 for ue?. Let us mention that the sequence A, A,... is trivially mixing if P(A) = 0
 or P(A) = 1 but not if 0 < P(A) < 1.

 More generally, if A'n is a mixing sequence of events with density a, and A
 any event, the sequence An = A'nA is a stable sequence of events, with local density
 equal to a on i and 0 on J!.

 Example 2 : Let {An} be a sequence of equivalent events (called also symme
 trically dependent events) i.e. suppose

 P(AilAi2...Aik)=Wk ... (3.1)
 for any choice of the different indices ix < i2 < ... < ik and for k ? 1, 2, ... where Wk
 depends on k only, but not on the choice of the indices ix, i%, ...,ik. Such a sequence
 {An) is evidently stable. As a matter of fact, it is sufficient to suppose the indepen
 dence of Wk from the indices ix, ?2. ..., ik for k = 2 only. This follows clearly from
 Theorem 3.

 Thus sequences of equivalent events are always stable. Note that in view of
 Theorem 4 a sequence of equivalent events is mixing if and only if

 W2=W2. ... (3.2)
 It is easy to see however that (3.2) is satisfied if and only if the sequence {An} is a
 sequence of independent events.

 As a matter of fact according to a well-known theorem due to Khintchine
 (1952) if {An} is a sequence of equivalent events and Wk is defined by (3.1) then there
 exists a distribution function G(x) in the interval [0, 1] such that

 Wk=}x*dG(x). ... (3.3) o
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 As a matter of fact this follows from the following theorem of Hausdorff (1923). If
 a sequence {Wk} is monotonie of every order, i.e. putting W0 = 1

 ? (-1)> (*)^>0 3=1 J
 for all n ^ 0 and k > 0 then Wk can be represented in the form (3.3). Now clearly
 W2 = If? means by (3.3) that

 }xHG(x) = ( ?xdG(x)f 0 0

 which implies evidently that G(x) is the distribution function of a constant c, i.e.

 0(x)
 L 0 for # ^ c

 where of course c = Wt ; but then according to (3.3) Wk = Pff that is

 P(??1 4?a ...^) = n p(^)
 for every sequence ^ < i2 < ... < ik and therefore the events are independent. Thus
 we have proved the following theorem.

 Theorem 7 : A sequence of equivalent events is always stable, but it is mixing if

 and only if the events are completely independent.

 Example 3 : Let Q be the interval (0, 1), j? the set of measurable subset of Q,
 and P the Lebesgue-measure. Let the set An be defined as the union of the intervals
 / fe JcJrX(kln)\
 ? ? 9 - ) (k = 0, 1, ... n? 1) where X(x) is a continuous function in the interval

 [0, 1] such that 0 <! X(x) < 1. Then clearly the sequence {4n} is stable with local
 density X(x).

 This follows evidently as for any subinterval I of [0, 1] we have

 P(V) = IVa(*)+0(I) ... (3.4) n ?? \ nl \ nl
 (*/?)67

 and the first term on the right of (3.4) is a Riemann sum of the integral J X(x)dx. i
 Thus lim P(AJ)=: ?\(x)dx. ... (3.5) n??+00 I

 It follows easily (e.g. by Theorem 3) that
 lim P(AnB) = J X(x)dx ... (3.6) n??+00 B

 for every measurable set B, which proves our assertion.

 Example 4 : Let us consider a stationary Markov chain with a finite number
 of states 1, 2, ..., s. Let ?0, the state of the chain at time t = 0, have an arbitrary
 distribution over the set of states. Let \n denote the state of the chain at time
 t = n (n = 1, 2, ...). Let An denote the event that the value of \n belongs to a set E

 where E is a proper subset of the set of states. Let p\p denote the probability of a
 transition from state i into state j in k steps. Let us suppose that the limits

 lim 2# = 7Ti} &-?+00

 300
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 ON STABLE SEQUENCES OF EVENTS

 exist for all i and j; tt? may depend in general on i. It follows that

 lim P(AnAk) = S Wi f 2 2#> ( S njh)} ... (3.7) w->+00 i=l t jeE \JieE ' J

 where if^ is the probability that the chain started at time t = 0 in the state i. Thus
 by Theorem 3 the sequence {J.J is stable. Note that in case n(j does not depend
 on i, the sequence {A?} is mixing.

 Example 5 : Let 8 ? [?2, j?, P] be a probability space. Suppose that

 Q = S ?^ where Q-e^r and P(Q,) > 0 (j = 1, 2, ...). Let fy = [Q,, jfy, P,] be i = i
 the probability space obtained by putting

 Pj(A) = P(4 | Qj) for ?e^, ?=1,2,....
 where j?? denotes the set of all Aej? such that AQ&y

 Let {Affl} be a mixing sequence of sets in the space 8j9 with density a,-, and put

 u?w = 2 .4^' il,-. Then ??n} is a stable sequence of sets in 8, with local density

 a(co) = a^. for (?ety (j = 1, 2, ...).
 Clearly, Example 5 covers all cases in which the local density a of a stable

 sequence of sets has a discrete distribution. As a matter of fact let [il, j?, P] be a
 probability space and {A^} a stable sequence in this space with local density a where
 a is a discrete random variable, taking on the different values a,j (j = 1, 2, ...) with
 positive probabilities. Let Q? denote the set of those co for which a (to) = a?. Put
 P?(A) = P(A | O,) for j = 1,2, ... . Then clearly for any Bej?.

 lim P?AnB)= lim P-^?> = OgM = ajPj(B). n->+oo n->+oo P\Uj) f(**j)
 Thus the sequence {A^} is mixing in the probability space [Q, ^/f, P?] with density a^
 (?==1,2,...).

 Remarks : One can generalize Example 5 by splitting the probability
 space into a non-denumerable instead of a denumerable set of probability spaces,
 but in this case some care is necessary to avoid measure-theoretical difficulties.
 However, in this way we arrive at a decomposition of a stable sequence of events
 into the union of mixing sequences of events, in the most general case. This can be
 seen as follows. Let {J.J be a stable sequence of sets with local density a(co). Then
 one can define as usual the conditional probability of the event B with respect to a
 given value of a, which will be denoted by Pa(B). Pa(B) is a random variable such that

 P(AB) = J Pa(B)dP for every Bej? A

 and every Aej?a where jia is the least o*-algebra on which a is measurable. By other
 words Pa(B) is the Radon-Nykodim derivative of the set function P(AB) with B
 fixed with respect to P(A) on the cr-algebra jia.

 As well known, while in case Bkej?, BkB? = (?> for k ?. I the relation

 Pa(ZBk) = ?Pa(Bk)

 holds with probability 1, i.e., except for coeC where G is a set suchthat P(O)=0 neverthe

 less one cannot say that Pa(B) is with probability 1 a measure, because the set 0 of
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 exceptional values of co may depend on the sequence {Bk} and the union of all possible
 such sets G may have positive measure or even be of measure 1. As however, Pa(B)
 is not uniquely determined and its value may be changed on a set of measure 0, it
 is often possible to find a determination of Pa(B) such that it is with probability one
 a measure. If this is the case it is easy to see that the sequence {An} is almost surely
 mixing with respect to the measure Pa(B), with density a.

 Such examples can be constructed by means of the theory of measurable de
 compositions of Lebesgue-spaces, developed by Rochlin (1949). We do not propose
 to go into details here, but shall return to this question in another paper.

 However, we give one example of a stable sequence of random variables cons
 tructed by the same principle as applied in the above Example 5 of stable sequence
 of events.

 Example 6 : Let {??} be a mixing sequence of random variables with limiting
 distribution F(x) and r? an arbitrary random variable having a discrete distribution.
 Let further g(u, v) be a continuous function of two variables. Then the sequence of
 random variables

 Gn^g(ln,7?) (n=l,2,...)
 is strictly stable. As a matter of fact if the values taken on by r? with positive probabi

 lity are denoted by yk (k = 1, 2, ...) and Bk denotes the event rj = yk we have

 lim P(Qn<z\B)= 2 P(Bh\B) J dF(x). ... (3.8) _ n??+00 k=l g{x,yk)<z
 We may take for instance g(u, v) = u-\-v in which case we get

 Km P(Gn <z\B)=? P(Bk | B)F(z-yk) ... (3.9) W??+00 fc=l

 respectively, we may take g(u, v) = uv, in which case, supposing that yk > 0 for
 k = 1, 2, ..., we obtain

 lim P(Gn < z\B) = 2 P(Bk\B)F (^) ... (3.10) w-?+oo ?=i \yw
 for all values of z for which the function on the right hand side of (3.9) respectively
 (3.10) is continuous.
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