
ON TWO PROBLEMS OF INFORMATION THEORY
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P A U L E R D Ő S a n d A L F R É D R É N Y I

§ 1. Introduction

The f i r s t p rob lem1 which will he discussed in this pape r can be f o r m u l a t e d
as follows: Suppose we are g iven n coins, which look qui te alike, but of which
some are false. (For ins tance suppose t h a t t h e r igh t coins consis t of gold, whi le
t h e false coins consist ma in ly of silver and are covered on ly b y a thin layer of
gold.) The false coins have a smaller weight t h a n the r igh t coins; the we igh t s
a and b < a of bo th t h e r i gh t and false coins are known. A scale is given b y
means of which any n u m b e r gL n of coins can be weighed together . Thus if w e
select an a r b i t r a r y subset of t h e coins and p u t t h e m together on the scale, t h e n
t h e scale shows us the t o t a l weight of these coins, f r o m which it is easy t o
compute t h e numb er of false coins among those weighed. T h e question is w h a t
is the minimal number A(n) of weighings b y means of which t h e right and fa lse
coins can be separated? I t can be seen by a n e lementary in format ion- theore-
t ical a rgumen t t h a t (denot ing b y log2a; t h e logari thm w i t h base 2 of x) 

7)
( 1 . 1 ) . 

log2 (n + 1)

As a m a t t e r of fact , the a m o u n t of in format ion needed is log2 2" = n b i t s ,
because t he subset of t he coins consisting of t h e false coins m a y be any of t h e
2" subsets of t h e set of all n coins; on the o the r hand if we p u t к ^ . n coins on
t h e balance, t h e number of false coins a m o n g them m a y have the va lues
0, 1, . . ., к a n d thus t he a m o u n t of in format ion given b y each weighing c a n
n o t exceed log2(/c + 1) rii log2(n + 1). Thus s weighings can give us a t m o s t
s log2(n + 1) bits, and t h u s t o get the necessary amount of information ( t h a t
is n bits) i t is necessary t h a t s log2(n + 1) should be no t less t h a n n; t h u s we
obtain (1.1). On the other hand , a trivial u p p e r est imate is

(1.2) A ( n ) ^ n

because if we p u t the coins one by one a f t e r another on the scale t h e n
clearly these n weighings are suff icient . The inequal i ty (1.2) is best possible f o r
n = 1, 2 a n d 3, bu t a l ready for n = 4 we h a v e A(4) = 3. As a mat ter of f a c t

1 This p rob lem was p roposed for n = 5 b y H . S . S H A P I R O [1 ] a n d for a r b i t r a r y
n b y N . J . F I N E [ 2 ] .
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if we label t h e 4 coins by t h e numbers 1, 2, 3, 4 then the following 3 weighings
are always sufficient: we p u t first the coins 1, 2, 3 on the scale, t hen the
coins 1, 3, 4 and finally t h e coins 1, 2 and 4. Let the number of false coins
among the coins 1, 2, 3 b e / 1 ; t h a t among 1, 3, 4 be f2 and t h a t among 1, 2, 4 be
/ 3 . The following table gives us the false coins:

/1 /2 /3 1 2 3 4

0 0 0 — — — —

1 1 1 + — — —

1 0 1 — + — —

1 1 0 — — + —

0 1 1 — — — +
2 1 9 + + — —

2 2 1 + — + —

1 2 2 + — — +
2 1 1 — + + —

1 1 2 —
1

T — +
1 2 1 — — + +
3 2 2 + + + —

2 2 3 + + — +
2 3 2 + — + +
2 2 2 —

-L + +
3 3 3 + + + +

Note t h a t among the possible 64 tr iples fv f2, /3 (0 f j ^ 3, / = 1 . 2 , 3 )
only 16 a re possible and each corresponds to a d i f fe ren t distribution of
the false coins.

I t is easy to see t h a t in general one has

(1.3) A(nm) < A[n) • m

(because if we have nm coins we may determine by A(n) weighings f rom each
group of n coins the false ones). Thus f r o m the above example one gets

A(4n) ^ 3n

and as A ( n ) is evidently monotonie, we obtain

(1.4) j - ^ j + 2 

where {x} s tands for the least integer LA x 
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I t m a y be guessed2 f rom this t h a t one has

(1.5) lim ^ 1 = 0 .

This is in fac t true; moreover we shall p rove in § 1 t h a t t h e lower est imate (1.1)
gives t he correct order of magnitude of A(n). We shall prove namely in § 2 
(Theorem 1) tha t for a n y ô > 0 we have for n ^ n0(ô)

( 1 . 6 ) +

log2 И

I t remains an open question whether the limit

A(n) log, n 

(1.7 lim —E-L—°2_ = a
n

exists, and if it exists, w h a t is its value? We shall p rove in § 4 (Theorem 3)

tha t

(1.8) l i m i n f ^ ) l Q g 2 W > 2 .
n

I t follows from (1.8) tha t if the l imit a in (1.7) exists one has 2 gL a g.
g log2 9 ^ 3,17. We shall prove in § 5 t h a t if the problem is modified so t h a t we
are contented with f ind ing a method of weighing which leads to the separation
of the false coins with a prescribed probabi l i ty p < 1 which may be arbi t rar i ly
near to 1, (supposing t h a t all the 2" possibilities have same probability) then

2 n
(1 + e) weighings a re sufficient for anv e > 0 if те is large (Theorem 4).

log2 та
Le t us return now to the original problem of determining Л (та). This

problem m a y be formula ted as follows: W e have to guess an unknown sequence
ofтаdigits, each digit being equal to 0 or 1. We have t he r igh t to select a rb i t r a ry
„test ing" sequences of zeros and ones of length та and with respect of each
such sequence we are to ld what is the n u m b e r of places in which a 1 s tands both
in the sequence to be guessed and in our testing sequence. The minimal number
of tes t ing sequences by means of which the unknown sequence can be uniquely
determined whatever i t m a y be, is equal to Л (re).

This reformulation of our first problem shows i t s connection wi th the
second problem which will be discussed in this paper and which is as follows:
Suppose we want to guess an unknown sequence of те digits, each digi t being
either 0 or 1. Information concerning t h e unknown sequence may be obtained
in the following way: W e have the r igh t to select a rb i t rar i ly „ tes t ing" sequ-
ences of digits consisting of zeros and ones and we a re told the number of
places in which the two sequences coincide. Let B(n) deno te the minimal num-
ber of sequences by means of which we can determine t h e unknown sequence,
whatever i t may be. The problem is to determine the asymptot ic behaviour of
B(n). Clearly we have

72.

(1.9) B ( n ) ^ .
log 2 (n + 1)

2 T h i s conjecture w a s s t a t ed in [2].
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The inequality (1.9) is obtained by a similar information-theoretical a rgu-
ment as t h a t which leads us to (1.1). We have here the same trivial u p p e r
estimate

(1.10) B(n)gn.

As a mat ter of fact , if we select the n test ing sequences 11 . . .1, Oil . . . 1,
1011 . . . 1, . . ., I l l . . . 101 t h e n if к is t he number of places in which t h e
sequence 11 . . . 1 and the unknown sequence coincide, t hen the number of
coincidences between the sequence Oil . . . 1 wi th the u n k n o w n sequence is
either к — 1 or к -f- 1 according to whether t he first digit of the unknown
sequence is 1 or 0. Thus by t h e 2nd, 3rd, . . ., n—th testing sequences we can
determine the f i r s t n — 1 digits of the unknown sequence; t h e last one can b e
determined because the total number к of ones in the unknown sequence i s
known from t h e f i rs t comparison. We have clearly B(n) = n for n = 1, 2, 3, 4 
and B(5) = 4 as can be seen f r o m the following example: using the tes t ing
sequences

11111

11100

01010

01101

we can guess any sequence of 5 zero-or-one digits. As a m a t t e r of fact we ge t
for the number of coincidences t he following values for the 16 sequences consist-
ing of not more than two ones :

sequence coincidence with
11111 11100 01010 01101

00000 0 2 3 2
00001 1 1 2 3
00010 1 1 4 1
00100 1 3 2 3
01000 1 3 4 3
10000 1 3 2 1
00011 2 0 3 2
00101 2 2 1 4
01001 2 2 3 4
10001 2 2 1 2
00110 2 2 3 2
01010 2 2 5 2
10010 2 2 3 0
01100 2 4 3 4
10100 2 4 1 2
11000 2 4 3 2

It is unnecessary to t r y t he other 16 sequences with 3 or more ones,
because these are obtained b y replacing 1 b y 0 and 0 by 1 in the above 16
sequences, and this changes t h e number of coincidences f r o m x to 5 — x.
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We shall p r o v e for B(n) t h e same inequa l i ty as obtained fo r A(n); viz. w e
ob ta in in § 3 (Theorem 2) for a n y ô > 0 tha t f o r n ^. nßö)

( M l )
log2 И

H e r e again t h e quest ion r e m a i n s open whe the r t h e limit

(1.12) l im

exists, and if so w h a t its value is. We shall show in § 4 (Theorem 5) by the s a m e

m e t h o d which we have used t o p rove Theorem 3 t h a t

(1.13)
71

T h u s if the l imi t ß in (1.12) exis ts , then ce r t a in ly 2 g ß gL log2 9 ^ 3,17. W e

shall prove also in § 5 t h a t if w e modify our second problem so tha t we w a n t

t o determine a f i x e d but u n k n o w n sequence of n zero-or-one digits by t h e

n u m b e r of coincidences wi th cer ta in testing sequences and w e are con ten ted

w i t h f inding i t w i t h probabi l i ty p < 1 which m a y be a rb i t ra r i ly near to 1 t h e n

2 71
(1 + e) t e s t i ng sequences a re sufficient, (Theorem 6), f o r a n v e > 0 if n is

logг и 

la rge enough.

Finally let us mention t h e following geometr ie in te rpre ta t ion of b o t h

problems. To a n y sequence of zeros and ones there corresponds a v e r t e x

of t h e unit cube Cn of «-dimensional space. T h e funct ion B(n) can be in t e rp re -

t e d as follows: B(n) denotes t h e least n u m b e r such t h a t b y selecting B(n) 

sui table chosen vert ices of Cn each vertex of Cn is uniquely de te rmined b y i t s

dis tances f rom t h e chosen B(n) vertices.

Now let u s in te rpre t a n y sequence of n zeros and ones a s a vector of t h e

«-dimensional space leading f r o m the origin t o one of the ve r t i ces of Cn. W i t h

th i s in te rp re ta t ion A(n) deno tes t he least n u m b e r such t h a t b y selecting A(n) 

vectors vv v2, . . ., vA(nj leading t o suitably chosen vertices of Cn each v e c t o r

v leading t o a v e r t e x of Cn is uniquely d e t e r m i n e d by i ts project ion on t h e

A(n) chosen vec tors , i. e. b y t h e A(n) n u m b e r s (v, vß, . . ., (v, vA(nß w h e r e

(v, w) denotes t h e inner p r o d u c t of the vectors v and w. 

We p rove our Theorems 1 and 2 by t h e same me thod , consisting in a 

r a n d o m selection of the t e s t i ng sequences.

§ 2. An upper estimate for A(n) 

Our f i r s t p roblem can b e formulated as follows: W h a t is t he least v a l u e

A(n) of s such t h a t there ex i s t s a matrix M h a v i n g s rows a n d n columns a n d

consisting of zeros and ones, such tha t if we select an a r b i t r a r y subset e of t h e

se t E of the co lumns of M, a n d f o r m the row-sums of the s u b m a t r i x M(e) con -

sisting of t h e selected colums of M, and d e n o t e by ve t h e column-vector

consisting of t h e s e row-sums, t h e n the vec tors ve and ve- a r e dif ferent if e a n d

e' a re dif ferent subsets of E. W e shall call such a matrix an Л-mat r ix .
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Thus A(n) is the least value of s such that t h e r e exists an A-matr ix
with n columns and s rows. Clearly t h e mat r ix corresponding to the example
given in t h e introduction for и = 4 is t h e A-matrix

1110

(2.1) 1011

1101

The 24 = 16 possible column-vectors ve a r e in this case

0 2 2 1 

1 1 2 2 
1 2 1 2

1 2 2 2 3 
2 2 3 2 2 
1 2 2 3 2 

and all a re different, t hus t h e matrix (2.1) is in fact an A-matrix.
I n o rder to est imate A(n) we shall p rove that if we choose M a t random

so that t h e sn elements of M are independent random variables, each taking

on the values 0 and 1 wi th probability — , then the r a n d o m matrix M will have

the required property wi th positive probabil i ty (in fac t with probabi l i ty
71 1о££. 9

tending to 1 for n —*• -j- 0 0 ) provided t h a t s > (1 + (5) . 

log 2 n
This can be proved as follows: L e t PS,„(A) denote t h e probabili ty t h a t a 

random m a t r i x M of order s X n is an A-matr ix , and pu t Q s n (A) = l — P s n (A) .
Let A(ev e2) (where el and e2 are different subsets of the set E of columns of M) 
denote t he event that t h e row-sum vectors vei and ve a r e identical. Ev iden t ly
if vei = ve2 and the sets ex and e2 are n o t disjoint, then put t ing e( = el — e1 e2

and e2 = e2 — e^, we have v^ = (Here and in what follows the p r o d u c t of
sets denotes their intersection and t he difference e — / o f two sets e and /
denotes t h e set of elements of e which do n o t belong to / ) . I t follows t h a t is M
is not an A-matr ix, then there exist disjoint subsets e± a n d e2 of the se t of its
columns such tha t vei = ve2. Thus we o b t a i n that

(2 .2) Q 2 P(A(eve2))

where the summation has to he extended over every pa i r of disjoint subsets
e1 and e2 of t h e set E of t h e columns of M and 0 denotes the empty set .

I t follows that
. minik,,к.) А/

п\
(2.3) s j A ) < 2 

i=о I

A IA I 
l^fci + fc^n 1 2'

By t h e well known ident i ty

К

[n — кл — A, 9 к, + k.

we obtain
1 = Г ' Г )

ni
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I t follows

(2.4)

As

(2.5)

f u r t h e r

we ob ta in

(2.6)

Now we choose s

; 2 

s+1

/<=-•0
9 rs

(4 = 0 , 1 , . . . , r )

9
r

] / r + 1
for r — 3, 4, . . . (this follows easily by induct ion)

r = 3
2
s

2
r

( r + 1 ) 3

log2 n 
As we h a v e

nloglogn
2
r
= 0(2 ) 

log; n 

where с > 0 is a cons tan t , i t follows t h a t

(2-7) QS ,„(A) <; 2 
v

+ 0(1).

r>
logjjn

n

(Г + l )2

Taking into accoun t t ha t I I 2 r = 3", we obta in
r = 0 l r I 

(2-8) Q , , n ( A ) ^ 2 " l 1 0 g ' 3 ^ ) + ° < " >

provided t h a t s = s(n)

(2.9)

where a > 2 log2 3 = log29. I t fol lows
log2 я

i ™ Q s ( n ) ,„(A) = 0 .

N o w clearly if Qs (n) i„ (A) < 1 t h e n Ps(n)tn [A] > 0; as Psn(A) is t h e pro-

babi l i ty t h a t the r a n d o m matr ix M is a n A-matrix, i t follows tha t if ô > 0 and

n l°o2 then for n^-n0(à) t h e r e exists an A-matr ix of o r d e r sxn s >
log2 n 

which implies A(n) ^ s. Thus we p r o v e d the following

Theorem 1. For any ô > 0 we have for n ^ n0 (ő)

(2 .10) A(n) ^ (1 + &)
n log2 9

log., n 
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§ 3. An upper estimate for B(n)

Let и = (e1; E2, . . ., EN) and u' = (e'v E'2 E'„) be row-vectors consist-
ing of n components, each of which is either 0 or 1. Let us p u t c(u, u') =

n
= n — ^ ( r , — e'/)2 Thus c(u, u ' ) is the numb er of „coincidences" of t h e

i=i
vectors и and u ' , i.e. the number of columns of the 2хте mat r ix i • • • £n|

1 • • • en!
n

which consist of equal elements. By the usual notation |] и ||2 = ^ e2 we
i=i

have

(3 .1) c(u,ü) = те — (I m — и ' II2.

L e t now M he a ma t r ix having s rows and n columns, and consisting of elements
0 and 1. Let uv . . us be the rows of M interpre ted as vectors. Let и be an
arb i t ra ry row-vector consisting of n components which are either 0 or 1. Let U 
denote the set consisting of all 2" such vectors u. To any и there corresponds a 
vector Wu consisting of the numbers c(u, ux), . . ., c(u, us). The mat r ix M will be
called a B-matrix if the 2" vectors Wu corresponding to different elements и
of U are all d i f fe ren t from each other. Thus if Ж is a B-matrix, then each
vector и € U is uniquely determined by the « numbers c(u, ux), . . ., c(u, us)
(and thus also b y the distances || и — м; ||, j = 1, 2 s). Let Psn(È)
denote the probabi l i ty that the random matr ix Ж of order « X те (whose ele-
ments are independent random variables each t ak ing on the values 0 and 1 with

probability — should be a B-matr ix , and put Q s n ( B ) = 1 — P s r i(B).
2

Let и = (e4, . . ., en) and u ' = (e[, . . ., e'n) be two a rb i t r a ry different
row-vectors consisting of те components each of which is ei ther 0 or 1. L e t
H and H denote t h e set of those indices к (1 gk g те) for which ek = 1 and
EK = 0, respectively and similarly let II' and II' denote the set of those indi-
ces к (1 g к gn) for which e'k = 1 and e'k = 0 respectively. Let AAl k2,k3 and A4

denote the number of elements of the sets H H ' , H H ' , H H ' and H • H ' respec-
t ively. Let и, = . . ë jn) be t h e /-th row of t h e random mat r ix Ж and let
ljV lj2, /;3_;tnd denote^the number of those indices к which belong to the sets
HH', HH', HH' a n d IIH' respectively and for which &jk = 1. Clearly we have
c(u, uj) = c(u', Uj) if and only if

ljX + lj2 + k3 lj3 -T kA lj4 = ljV + lj3 + k2 lj2 + A4 ljX

t h a t is if

(3.2) 2(1j2 — lj3) =k2 — k3 .

I t follows that a necessary condition for c(u, u f ) = c(u', uf) is t h a t k2 — k3

should be even, a n d further t h a t
k,+ k, 

2 ik \ / к \ \ s
j 2 j / 3 \ \ 

1=0^ I i l l 

(3.3) Q s , n ( B ) < 2 k 2 \ k 3 \ ( n - k 2 — k3)\ V 2k'+k* ) '
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N o w

a n d thus

k,+k,
2

2
( = 0 

<k2\ ( k3\

j 7-'2 k3 fr'2 + 7"з

(3.4)
ffl

Qs,n{B)g У ' П

4 2 

I t follows similarly as in § 2 t h a t if s = s(n) a 
log2 n 

where a > l o g 2 9 t h e n

(3.5) l im Qs(n)JB) = 0 .

d e a r l y if Qs (n) n(jB) < 1 then P s ( n ) n (B) > 0 a n d t h u s there exis ts a B-mat r ix

of order s(n) xn and therefore B(n) g s(n). Thus we have proved t h e following

Theorem 2. For any ô > 0 and n 2: nx(ô) one has 

(3.6) B(n) g (1 + ô)
n log2 9

l o g 2 n

§ 4. Lower bounds for / ( f t ) and B(n) 

I n this § we prove the following results

Theorem 3. One has 

(4.1) lim inf
П-.+ . П

Theorem 4. One has 

(4.2) lim inf
п->+~ П 

Proof of Theorem 3. Let M be now an a r b i t r a r y / - m a t r i x of order sxn. 

L e t us divide t h e row-vectors of M in two classes. A row-vector и of M belongs

t o the f i r s t class if i t contains less t h a n h e lements equal to 1, where h =

= Уnlog n; o therwise it belongs t o t h e second class. We shall give f i r s t an upper

es t imate for t he n u m b e r of d i f fe ren t column-vectors ve consisting of the row-

sums of t he s u b m a t r i x M(e) of M consisting of t h e columns of M belonging t o

t h e set e; here e is an a rb i t ra ry subset of t he set E of columns of M. Clearly

a n y component of ve corresponding t o a row belonging to the f i r s t class m a y

t a k e on a t most h di f fe ren t values. On the other h a n d if a row Uj of M belongs t o

t h e second class, a n d contains m ones (m h) t h e n the n u m b e r of possible

choices of t he subse t e of the co lumns for which t h e sum of the e lements of t h e

row и- s tand ing in t he selected columns does n o t lie be tween t he bounds

— + A Y m log m (where the posi t ive constant A will be chosen la te r ) is equal t o
2

(4.3) 2 " - " 2
• y I > k~fm m

m
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According to the Moivre—Laplace t h e o r e m we have

2 m
(4.4) 2

> Л )'m log m

= 0 

m 22'

Let us call a subset e of t h e set E of co lumns a „ b a d " subset, if t h e r e exists a 
row Uj belonging to t h e second class a n d containing m ones, for which t h e sum
of the e lements of Uj s tand ing in t h e columns belonging to e lies ou t s ide t h e

bounds — + Aj /wi logm. Otherwise we call e a „ g o o d " subset. Clearly b y
2

(4.4) i f W d e n o t e s the n u m b e r o f b a d subse t s we have

(4.5) N = 0 

Thus if A2 ^ 1 we h a v e

(4.6)

и 2"

h №
= О

2 "

иР-'-i) (log п)х '

= oi N = 0 
2"

[log,

On the o t h e r hand, d e n o t i n g by V t h e n u m b e r of d i f f e r en t values of t h e vector
ve if e r u n s over the good subsets, we have

(4.7) V + A*[2 A ][n log тер-* ^ (2 A J/те log n)s .

As M is b y supposition an A-matrix, t h e inequal i ty

(4.8) 7 ^ 2 " — N

has t o b e valid, which implies by (4.6) a n d (4.7)

1
(4.9) (2A]/wlogw) s ^ 2" 1 0

log,

Thus we obta in tha t t h e inequality

(4.10)
2 n

log2те + 0(loglog n) 

holds, f r o m which T h e o r e m 3 immedia te ly follows.

Proof of Theorem 4. Theorem 4 can be p roved in a similar w a y as we
proved Theorem 3. T h e only difference is t h a t the dist inct ion between rows of
the f i r s t and second class is now unnecessary . Le t M be a Ü-matr ix of order
s X те. L e t U denote aga in the set of all possible rows of те elements each of
which is equal either t o 0 or to 1. L e t uv u2, . . ., us denote the rows of t he
matr ix M . An element и of U will be cal led „bad" if t b e r e is a row Uj of M such
tha t t h e numb er of coincidences c(u, иJ of и and Uj, does not lie in t h e in terval

— + AI/те log те; o therwise и will be cal led „good". I f N denotes t h e n u m b e r of
2

„ b a d " e lements и of U we have by Chebyshev 's inequa l i ty

2 "
(4.11) N= О

log те
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On the other h a n d if W denotes t h e number of possible values of t he
vector wu — (c(u, uß, . . ., c(u, uß) where и runs over t h e „good" e lements of
U, we have

(4.12) W g, (2 f n \ o g n ) s •

As M is a F -mat r ix , we have

(4.13) W 2" — A7.

Thus i t follows f r o m (4.11) and (4.12) t h a t

2 n
(4.14) s ^

log2 n + O(loglog n)

which proves Theorem 4.

§ 5. Discussion of a modified form of both problems

L e t U denote again t he set of all possible sequences of length n consist ing
of zeros and ones. L e t M denote again a matr ix of order s x n consist ing of
zeros a n d ones; let uv . . ., us denote t h e rows of M. L e t (и, u') where и Ç.U,
и' € U denote the inner p roduc t of t h e vectors и and u', i.e. the n u m b e r of
places in which 1 s tands both in и and u'. L e t c(u, u') = n —||w — м' | | 2 deno te

the n u m b e r of coincidences of t he vectors и and u ' , i.e. t h e number of places in

which t h e same n u m b e r s tands bo th in и and u ' . A m a t r i x M will be called

a p-A ma t r ix (resp. a p-B ma t r ix ) where 0 < p < 1 if by choosing a t

r a n d o m an element и oiU (so t h a t each of the 2" elements of U has t h e same

probab i l i ty to be chosen) the probabi l i ty t h a t и is uniquely de te rmined b y the

sequence of numbers (u,uß, (u,u.ß,..., (u,uß (resp.. b y t he sequence c(u,uß,

c(u, uß, . . ., c(u, uß) exceeds p. L e t sA(n, p) and sB(n, p) respectively deno te

the minimal value of s for which a p-A mat r ix resp. a p-B m a t r i x M of

order sxn exists. T h e n t h e following resul ts hold:

Theorem 5. For any fixed p with 0 < p < 1 one has 

(5.1) l im 4 Ф 4 = 1 .

Uog2 n 

Theorem 6. For any fixed p with 0 < p < 1 one has 

(5.2) l i m 4 4 = l .2 n

log2 n) 

Proof of Theorems 5 and 6. Let M denote the set of all sxn mat r ices t h e

e lements of which a re zeros and ones. L e t P A ( M ) and PB(M) resp. d e n o t e t h e

probab i l i ty t h a t by choosing a t r a n d o m an element и of U this e lement should

be un ique ly de te rmined by the sequence (u, uß, (и, uß, . . ., (и, uß resp. b y t he

sequence c(u, uß, c(u, uß, . . ., c(u, uß where uv . . , us deno te the rows of t h e
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mat r ix M. Clearly the assertions tha t sA{n, p) g s and sB{n, p) g s resp. are
equivalent to t h e assertions t h a t

(5.3)

a n d

(5.4)

m a x P A ( M ) ^ p 
MÇ M 

m a x P B ( M ) > p
MÇM

Evidently if P A ( M ) and pB(M) denote t h e mean value of pA(M) and
pB{M) when M is chosen at r a n d o m so tha t M may be equal to any element of

M with the same probability -i— , then
2 s "

(5.5)

a n d

(5.6)

m a x pA(M) ^ PA(M)
MÇM

m a x pB(M) è Вв(М)
Me M 

T h u s if we prove t h a t for a cer ta in value of s we have

a n d

P b M è V ,

i t follows that t h e inequalities sA(n, p) g s and sB{n, p) g s hold.
Let A(u, i l I ) denote the event tha t t he row vector и Ç.U is uniquely

determined by t h e sequence (и, uß, . . ., [и, us) and B(u, M) t he event tha t the
r o w vector и С U is uniquely determined by t h e sequence c(u, uß, . . ., c(u, uß
where uv . . ., us denote the rows of M. Then evidently

<5.7)

a n d

<5.8)

pa{M) = p[A(U,M)) 

pb{M) = p{B{U,M)) 

where on the r ight hand side of (5.7) and (5.8) и is a randomly chosen element of
XJ and ilf a randomly chosen element of M. Let us put

<5.9) 1 - p{A(u, M)) = qa(S, n) 

a n d

<5.10) 1 — p(B(u,M)) = qB(s,n).

We obtain b y a similar a rgument as t h a t used in § 2 and § 3 resp.

[i + Л

(5.11) aA(s,n)g V 

A=0

П I 1
V

Л ш " A i ,
i+J>0

'n — 1c

1 . 2 i + j
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and

(5.12) Q B ( s , n ) g ^
fc=0

and therefore

л / . I

rw ( n J _ ^ 

Jc 2" ' 
' i—jmod2

i+j>0

n — к

i

(г + f

г + j

{ 2 

2'+J

k=0 1=1 I / 1 = 0

[ f T1

2; . л

[ i l
L 2' . 

and

п У Ц

2(1

Using again the inequalities
U

it follows that

(5.13)

and

(5.14)

,„, .r an 
Ihus il s

|2(

1 l

2 21

yi+ 1

V — — —
H (( + u s ' 2 - :

ffl
Q

i=i ( 2 ( + 1 )s/2

log2w
we obtain

(5.15)

and similarly

/ o\ ^n log log л x
Q^fs , n) g 2 ' ' Í l ö g i i /

n i l - A ) -,
> V 2/ \ logn '(5.16) e B ( í , n ) ^ 2

Thus if a > 2 we have

(5.17) lim 0 Л ( в , н) = lim Q 3 (s , n) = 0 .

By (5.9) and (5.10) this implies

(5.18) lim p(a(u,m))= lim P(ß(w, m)) — 1

16 a Matematikai Ku ta tó Intézel Közleményei VI I I . A / 1 - 2 .
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a n d thus by (5.5)—(5.8) if follows

(5.19) lim m a x P A ( M ) = lim max P B (M) = 1 . 
17-»+- М£М п—> -f- 00 MiM

As ment ioned above th i s proves Theorems 5 and 6.

(Received J u l y 28, 1963.)
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Remark, added on September 24, 1963

Since t h e present p a p e r was given t o pr in t , we have been in fo rmed tha t
qu i t e a numb er of mathemat ic ians worked on t h e f i r s t problem of t he present
paper , and ob ta ined resul ts which are closely re la ted to our resul ts . None of
these results a re published b u t some of t h e m are in p r in t . As W . M O S E R informed
us, D. G. CANTOR has p roved in a paper in p r in t in t he Canadian Journa l of
Mathemat ics t h e relation (1.5); in fac t he ob ta ined the e s t ima te A(n) =

_ q 7 1 1 О Ё 1 О Ь N L M O S E R (Universi ty of Alber ta , Edmonton) informed us
log n 

t h a t , he ob ta ined together wi th ABBOT, t h a t

(*) l i m s u p ^ n ) l o g 2 ^ l o g 2 2 7 .
n — n

While this u p p e r bound is g rea te r b y the factor 3/2 t h a n our b o u n d log29, the
method of proof applied b y A B B O T T and L . M O S E R has t he a d v a n t a g e t h a t it is

n loa 27
construct ive; t h e y exhibit effect ively A-matr ices of size s x n where .

log2 n 
The same resul t has been obta ined by II . S . S H A P I R O and S . SÖDERBERG.

Their paper is in p r in t in t h e American Mathematical Monthly. E . R . B E R L E K A M P

(Bell Telephone Laborator ies) has obta ined b y a method , essentially the same
as our method, t h a t

А ( п ) ^ П к > ё г д -
log2 n 

This result is slightly be t t e r t h a n our result (1.6) (by t he factor 1 + b). To get
r i d of the unnecessary fac tor (1 + Ô) one has to use ins tead of t h e rough esti-
m a t e (2.5) a sharper es t imate following f r o m Stir l ing's formula.

BERLEKAMP conjec tured also t h a t ( 1 . 8 ) holds, and gave a heuristic
a rgument for his conjecture .

Other proofs of (1.8) have been given b y B. GORDON (Universi ty of
California, Los Angeles) and L. MOSER. E. M I L L S has also p roved t h a t

A(n) = О Quite recent ly B . L I N D S T R Ö M (Universi ty of Stockholm)
log я
t h e conjec ture (1.7) wi th a = 2. His p a p e r will be p r i n t e d in t h ehas provec

n e x t issue of th i s journal .
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О ДВУХ ПРОБЛЕМАХ ТЕОРИИ ИНФОРМАЦИИ

Р. ERDŐS и A. RÉNYI

Резюме

Пусть U множество всех 2" последовательностей (ev е2, . . ., еп) где
ек = 0 или ек = 1 (к — 1, 2, . . ., и). Пусть M некоторая матрица с разме-
рами s x и, элементы которой все равны или 0 или 1. Пусть uv . . ., us

строки матрицы М. Положим для и = (е1, . . ., е„) € U и и' = (е[. . ., е„) ç U 

(и, и') = JV Е'к и = n — — е'ку — п — \\и — и' |12. Матрица M

называется А-матрицой (соотв. ß-матрицой) если все элементы и от U
однозначно определены заданием чисел (и, щ), . . ., (и, us) (соотв. чисел
с (и, щ),.. ., с(и, us)). Пусть А(п) (соотв. В(п)) означает минимальное значение
s для которого существует А-матрица (соотв. ß-матрица) с размерами
s x п.

В работе доказано, что

п п

к=1

2 < lim inf

и

2 < lim inf
В(п) log, n

n


