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 ON TWO MATHEMATICAL MODELS OF

 THE TRAFFIC ON A DIVIDED HIGHWAY

 A. RINYI, Mathematical Institute of the Hungarian Academy of Sciences, Budapest

 Introduction

 In the present paper we deal with two models of the traffic on a divided highway.
 In both models traffic is flowing in one direction only, in two lanes, of which one

 (the left hand lane) is used only for overtaking. We suppose that vehicles enter
 the highway at the same entrance so that the instants at which a vehicle enters the

 highway form a homogeneous Poisson process, with density 1. Thus A is the rate
 at which vehicles enter the highway per unit time. We suppose that there are no
 junctions, or exits (i.e. the highway extends in one direction to infinity).

 In the first model, discussed in Section 1, we suppose that each driver chooses
 a speed v, and drives constantly at this speed. We suppose in this model that if a
 vehicle B approaches a slower vehicle A ahead of it, B overtakes A without delay.
 This means that we neglect the case when a third, still faster car, C, has already
 begun overtaking B on the left hand lane, so that B has to slow down and wait
 until C passes, and only after this can itself go over to the left hand lane to pass A.

 In reality the cars lose some time because of overtaking, even on a divided highway.
 The second model, discussed in Section 2, differs from the first only in that this

 effect is taken into account, and the corresponding average decrease of speed is
 estimated. A more detailed analysis of the second model will be given elsewhere.

 1. Discussion of the first model

 We suppose that denoting by Vk the speed of the vehicle entering the highway

 at the moment zk, the random variables Vk (k = 1,2,...) are independently and

 identically distributed with the cumulative distribution function F(v) = P(vk <v),
 and are also independent of the process {Zk}. Clearly we have to suppose F(O) = 0.
 Besides this, the only restriction necessary for F(v) is that

 (1.1)d(v) < + 0,
 w <+o,
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 312 A. RJNYI

 i.e. that the mean value of 1/vk should be finite; without this condition a traffic
 jam would arise and make all traffic flow impossible. Of course, in reality, there
 exists a positive lower limit to the velocities, i.e. a positive number a such that
 F(a) = 0; this ensures that condition (1.1) holds. (On many highways there is in
 fact a prescribed lower speed limit.) In Model 1 we suppose that overtaking a
 slower car takes place without delay; thus each car travels with constant velocity.
 (In the second model we shall drop this simplifying assumption.) In Model 1,
 if we consider the distribution of cars along the highway at a given instant of
 time, it can be easily seen that the spatial distribution of the vehicles along the
 highway is also a homogeneous Poisson process with density

 (1.2) A =-- w

 this shows why 1/ w has to be finite).
 The fact that the spatial process at any moment is again a Poisson process
 follows from a general theorem of Ryll-Nardzewski [1] (see also Prekopa [9]).
 Recently Breiman [2], [3] considered' the problem of one-way traffic flow,
 starting from the spatial process. If one supposes that at a certain moment to
 the spatial process is a Poisson process with density y and the velocities of the
 vehicles are random variables with the identical distribution function F(v), and
 are independent of each other and of the position of the vehicles at the mo-
 ment to,it follows from a more general result of Doob [5] that the process will have
 the same properties at any other moment t. Breiman has proved that the Poisson
 process is the only process having this time-invariance property.
 Our main aim is to take into account (in Model 2 which will be discussed in
 Section 2) the delays in overtaking; for this reason we have found it more conven-
 ient to start from the process of entrance times of the vehicles rather than from
 the spatial process, as was done by Breiman.
 We shall prove now some results concerning Model 1, which will be needed
 also in discussing Model 2. Let us imagine that we are sitting in a car travelling

 along the highway with velocity vo. Let Zr (k= 1,2,...) denote the instants when
 our car overtakes a car with a lower speed, and z, (k= 1,2,... ) the instants when
 a faster car overtakes our car. The following theorem is valid.

 Theorem 1. The instants {+k } and {urk} form two homogeneous Poisson
 processes, with densities

 (1.3) A(+(v0) = A2 o - VV dF(v) and A2-)(vo)= v 0 O )dF(v), o~3)0

 1 For further literature, we refer to the paper by Hammersley [4] where a bibliography up
 to 1961 is given. A complete bibliography of the scientific study of road traffic, containing more
 than 700 items, has been prepared by Frank A. Haight and will be issued by the International
 Statistical Institute in 1964.
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 On two mathematical models of the traffic on a divided highway 313

 Moreover these two processes are independent of each other.
 The following corollary of Theorem 1 should be noted:

 Corollary. We have A((vo) = A(-)o(v) if and only if

 (1.4) vo dFV = W.

 In other words a car travelling with speed vo is as frequently overtaken by faster
 cars as it overtakes slower cars if its speed vo is equal to the harmonic mean w
 of the speeds of all the vehicles on the given highway.

 If we make notes of the speeds of the cars which overtake us, and the speeds of
 the cars which we overtake, we naturally obtain a biased picture of the velocity
 distribution of the cars on the highway; however from this "apparent" velocity
 distribution, the real distribution can be easily determined. As a matter of fact,
 supposing for the sake of simplicity that the density function f(v) = F'(v) of the
 velocity distribution exists, we obtain for the apparent densityfa(v) the respective
 formulae

 (1.5) f(V) = for 0 < v _ vo
 for the slower cars, and

 Af (V) I co

 (1.6) fa(V) V)for vo _-- v < + oo
 for the faster cars, and from these formulae, knowing fa(V), we can determine
 f(v) easily.

 It is possible to determine the velocity distribution also if we observe only one

 of the densities A(+)(v) and A(-)(vo), but this must be done for every value of vo.
 As a matter of fact, if A+%(vo) as a function of vo is given for all vo, we obtain
 from (1.3)

 (1.7) fo 0F(v) dv
 and thus

 1 = (xd)(x) (+)()) (1.8) F(x) = t as -X)/x
 [(1.7) shows that not only A+(x) but also 2+(x)/x is an increasing function of x.]

This content downloaded from 157.181.127.91 on Sat, 07 Jan 2017 17:00:19 UTC
All use subject to http://about.jstor.org/terms
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 Thus if we travel for sufficiently long periods with different velocities and count
 the number of cars we overtake (or which overtake us), we can estimate from
 these data the velocity distribution and the total flow of vehicles fairly accurately.
 We shall not go into the details of these estimation problems here.
 The proof of Theorem 1 is based on the following two properties of Poisson

 processes:

 (A) If 0 < ri < ,2 < ... are the instants of time when an event occurs in a
 homogeneous Poisson process with density A, and ,' 2, ... is a sequence of in-
 dependent positive random variables, having the same distribution function

 F(v), and independent of the process {(k}, then the time instants zkk (k = 1,2 ...)
 also form a homogeneous Poisson process with density

 (1.9) 2* = Ao dF(v)
 (B) If a subsequence {Z,,v of the instants Zk, in which an event occurs in a

 Poisson process with density 2, is selected at random in such a way that for each j

 the probability of the event Aj that j should belong to the subsequence {vk} is
 equal to p (0 < p < 1) and the events Aj (j = 1,2,...) are independent, and if
 {(Z,} are the instants which are not selected, (i.e., j belongs to the sequence {Pk}

 if and only if it does not belong to the sequence {Vk }), then both {(,V} and {z,r}
 are Poisson processes, with densities Ap and Aq, where q = 1- p; moreover
 the two processes are independent.

 Property (A) can be proved easily; it follows also from the mentioned theorem

 of Ryll-Nardzewski [1] or of Pr6kopa [9]. Property (B) is well known.
 Let us mention that in a certain sense property (B) is characteristic of Poisson

 processes, as the following theorem shows.

 Theorem 2. Let Y. be a class of time-homogeneous point processes such
 that for each A > 0 the process 9, has density A. Let us split at random the process

 ,A into two processes 1) and 2) in such a way that for each point of 9 the
 probability that it will belong to 9') is equal to p, and the probability that it will
 belong to 2) is equal to q = 1 - p, independently of what happens to the other

 points.Let us suppose that for every value of p the process t1) will be governed by
 the same laws as the process YP, and 9(2)by the same laws as q,. Further let the
 processes 9') and y,2) be independent. Then for each A, 19 is a Poisson process
 with density 1 .

 Proof. Let P,(t, A) denote the probability of the event that an interval of length t
 contains exactly n events of the process #. From the assumption that the prob-

 ability distribution of the number of events in an interval in the process 1)and
 the process ?, are identical, it follows that
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 00

 (1.10) Pk(t,Ap) = (k pnq-kP(t,2) (k = 0,1,...). n=k

 Putting

 00

 (1.11) G(tA,u) = 2 P,(t,2)(1 + u)" , n=0

 where G(t, A,u) is certainly defined if I1 + u < 1, we obtain from (1.10) that the
 functional equation

 (1.12) G(t, Ap, u) = G(t, 2, pu)
 holds. The identity (1.12) can be used for the analytic continuation of G(t, 2, Y)
 for all complex values of u such that Re(u) < 0. It follows further from (1.12)
 that for Re(u) < 0,

 (1.13) G(t, 2, u) = G(t, 1, Au) = H(t, Au).

 Now from the assumption that the processes ,1) and 9," are independent,
 it follows that

 n

 (1.14) P,(t,2) = Pk(t,Ap)Pn_k(t,Aq) k=0

 and thus that

 (1.15) H(t, Au) = H(t, pAu) . H(t, qAu) .
 As H(t,v) is clearly analytic in v, we obtain

 (1.16) H(t, Au) = eUK(t)

 and thus

 o00

 (1.17) P,(t,A)z"= eA(z- 1)K(t) n=0

 Let us now compute the mean value M,(t) of the number of events in an interval

 of length t in the process qa. We obtain from (1.17) that
 00

 (1.18) MA(t) = 1 P,(t,2) n = AK(t).
 n=0

 But as we suppose that the process 9, is time-homogeneous and has density I,
 we have M,(t)= At. Thus we obtain from (1.18) that K(t) t, and hence

 0o

 (1.19) , P.(t,A)z"= e'-' ' , n=O

 which implies that
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 316 A. RINYI

 ( t)"e- "t (1.20) P,(t,) - (n = 0, 1,..) n!

 so that the process 9a is a process with independent increments.
 Thus 9, is a Poisson process with density A, and Theorem 2 is proved.

 Let us mention that if we suppose only that 9") and q(2)are governed by the
 same Iaws as ., and gAq but do not assume the independence of the processes , 1)
 and ~I2), there are other solutions too, e.g. the compound Poisson processes,
 for which

 " (Aty) ne - ty PP(t, A) = f.Aty)e dL(y), o n!

 where L(y) is a probability distribution function in (0, oo) with mean value 1.
 Theorem 2 is related to investigations concerning the rarification of time-

 homogeneous point processes (see [6], [7] and [8]).

 2. Discussion of the second model

 Let us pass now to Model 2. In fact, if a car B in the right hand lane approaches
 a slower car A, it can overtake it only if the left hand lane behind it is free for a
 certain distance; that is if a still faster car C has not already begun to overtake the
 car B. If, however, a faster car C has started overtaking B, then B has to slow
 down to the velocity of the car A and travel with this velocity until C has passed.
 To make our model precise, we have to introduce quite strict rules on how over-
 taking has to be effected. First we suppose that if a car B with velocity v2 approaches

 in the right hand lane from behind a slower car A, with velocity vl < v2, it has to
 go over to the left hand lane at the instant when the distance between the two

 cars becomes equal to T(v2 - vx) (provided that at this instant there is no third car behind it which has already started overtaking it) and remains there until
 it has passed A; then it goes back immediately to the right hand lane. B does the
 samein the case when at the moment it starts overtaking A, A is in the left hand lane

 in the course of overtaking a third, still slower car; clearly this does not cause any
 difficulty, since the car A will spend a time less than T in the left hand lane, and
 thus A will go back to the right hand lane before B passes it, so that B can continue
 in the left hand lane without slowing down.

 This rule is reasonable, as it corresponds to the practice of a cautious driver.
 Of course, one does not really return to the right hand lane immediately after
 passing another car, but only after passing it by a certain distance; in order to
 simplify the theory we neglect this second phase of overtaking. We did not
 incorporate into our model the fact that most drivers accelerate during overtaking;
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 these two neglected factors have opposite effects: the first means a lengthening,
 the second a shortening of the time spent on the left hand lane and their joint
 effect is practically negligible.

 Our rule is convenient from a mathematical point of view because-as shown
 above-it ensures that no car has to slow down when it is in the left hand lane in

 the course of overtaking another car.
 In our second model each vehicle (except the vehicles which travel either with

 the minimum or the maximum possible velocity) is from time to time forced to

 travel slower than its own chosen velocity v and thus its effective average velocity f7
 is smaller than v. We want now to calculate o3 as a function of v. This problem is
 rather difficult. Therefore we deal here only with the case when all cars on the

 highway are travelling either with the velocity v, or with the velocity v3 > v,
 except for the car in which we are sitting, which travels with an intermediate

 velocity v2, i.e. we have vI < v2 < v3.
 More exactly we suppose that the process of arrival times of the cars at the

 entrance of the highway is a time-homogeneous Poisson process with density 1,
 and further that each car chooses at random the velocity v, or v3 (v1 <v3) with
 the corresponding probabilities p and q = 1 - p. Let us call for the sake of
 brevity the cars with speed v, the slow cars, and those with speed v3 the fast cars.
 Let us suppose further that we arrive at the entrance of the highway at time t = 0
 and want to travel with the speed v2 where vI < v2 < v3.

 Clearly neither the slow nor the fast cars lose speed; the slow ones because
 they cannot overtake any other car, the fast ones because no vehicle overtakes
 them. Thus we have to compute only the velocity loss of our own car. As was
 shown in Section 2, so long as we maintain the velocity v2 the time instants

 4Z when we overtake a car with velocity v, form a Poisson process 9 + with
 density

 (2.1) = Ap (V2 )

 while the instants when a car with velocity v3 overtakes us form a Poisson process

 9- with density

 (2.2) P-) =q(V3 .,.V2)
 these two processes being independent.
 Let us now compute the distribution of the random variable X which is the

 length of the time interval from the moment we entered the highway until the
 moment when, for the first time, we should like to start overtaking a slow car in
 front of us, but cannot do this because a fast car has already started overtaking us.

 Clearly if z4 is the least instant > T belonging to the process B+ such that
 there exists a t( belonging to 8- for which '7 < z+ < zr + Tthen X = z4 - T.
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 318 A RJNYI

 Now the time instants T4 of the process 9+, for which there is such a 7, in
 the process 9-, themselves clearly form a Poisson process with density

 (2.3) D= (+) - (1 - e- A T).

 Thus 4 has an exponential distribution with mean 1/D. Now

 P(x _ x)= P( x + T 4 ? T) = P( x),

 and thus X has also an exponential distribution with mean value 1/D, i.e.

 1 1

 (2.4) E(X) = D = 1 -e1(-)T)
 If we are forced to slow down to the velocity v, because we cannot overtake the

 slow car in front of us until the fast car behind us, which has already started
 overtaking us, has passed, we have to continue to drive with velocity v, for at
 least a time interval of length

 (2.5) [T- (z' - 7)] V3 - = 60. V3 - V1

 However it may happen that we cannot start to overtake the slow car in front of

 us at the instant k +- T + 60 because in the meantime another fast car has started
 to overtake us; in this case we have to wait until this fourth car has passed, and
 then look out to see whether there is a fifth car which has in the meantime already
 started overtaking us, and so on. Thus in computing the distribution of the length
 of the time interval in which we are forced to travel with the velocity v, of the
 slow car in front of us, we have to take into account these various possibilities.

 In dealing with this question we cannot work with the quantities zl-x,zr*+2'..
 because these do not give us the instants when a fast car overtakes us, because we

 have slowed down. Instead of this, we must work with the instants T* at which a
 fast car overtakes us now that we are travelling with the velocity vI. These instants

 Zrj form, according to what has been said in Section 1, a Poisson process with
 density

 (2.6) 2* = q (V-~1 )

 As the first fast car passes us at the moment 4t - T+ 60, we clearly have to let n
 fast cars pass before being able to pass the slow car in front of us if and only if
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 j+ - T < k - T+ bo < z +1 ,

 Zj+2 - < +1 < Tj+2

 and +.-1 - T < z+n-2 < +n1
 *-T> * Tj+n -j+n-1 ?

 As the variables zT - ( - T 0+ o), z*+1 - z*,... are all independent and have
 an exponential distribution with the mean value 1/ A*, we have, if we denote by r
 the number of fast cars which we are forced to let pass us, that

 (2.7) P(r = n) = (1 - e- A*)n -le-*r
 and thus

 (2.8) E(r) = e

 Let us now compute the mean value of the length of the time interval in which we

 have to drive slowly and wait for an opportunity for overtaking. Let us denote

 this time interval by ir. Thus we have

 (2.9) r1= 6o + 61 + + br_- ,

 where 0o is given by (2.5), 61 = - (k4 - T+ 60) and bS+1 = ++ - +
 for i = 1,2,... r - 2. We have evidently

 00

 (2.10) E(b, + ... + br-,_1) = C P(r = n)E(b + ... + n,_- 1 r =n). n=2

 Now for k < n

 1 T

 (2.11) E(6k Ir = n) = E(kI6k < T)=-
 e -1

 Thus we obtain

 (2.12) E(31 + ... + ,r-1) = e - T.

 Let us now compute E(o0). From (2.5) we obtain

 (V3 - VI12(-)_1
 and hence

 v= -v2 - " (2.13) E(i) 3- VV 1 e -T 1T + eT
 (V3 - V1 e"(-)T 1

 Now we are in a position to compute our average effective velocity. As we travel
 alternatively with velocities v2 and vs, the mean values of the corresponding time

 intervals being E(x) and E(r) and the time intervals in question being independent,
 we obtain by the law of large numbers that in the long run our average velocity
 will be V2 where
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 320 A. RtINYI

 v2 V E(X) + v, E(r)
 E(X) + E(r)

 where E(X) and E(r) are given by (2.4) and (2.13) respectively, and the quantities

 f+), (-), 2* figuring in these expressions are defined by (2.1), (2.2) and (2.6)
 respectively.

 It is easy to see that a considerable loss in velocity is to be expected only if the

 traffic on the highway is heavy, more exactly, if both A*T and (-)iTare large.
 As regards the general case, one can get an approximate solution for the effective

 velocity i of a car which travels with velocity v when this is possible, by replacing
 the actual velocity distribution by a distribution in which there are only two
 velocities present, namely

 v - =tdF(t)
 F(v) J

 and

 V3 = 1tdF(t), 1 - F(v) f
 these having corresponding probabilities p = F(v) and q = 1 - F(v); in other
 words we replace the velocity of every car slower or faster than our car by the
 average velocity of such cars. However in the case when the traffic density is
 large, this approximation is rather crude. To make this clear, let us mention that
 in general, when we have to slow down behind a slow car to let a faster car (which
 has already started overtaking us) pass, we may then be overtaken by another car

 whose speed is less than our own original speed. This also happens quite often in
 heavy traffic, as everyone who has some experience of driving on divided highways
 knows. However the above approximation excludes this possibility, and so gives
 too high an estimate of the average speed (i.e. too optimistic a view on the loss of

 speed). We intend to return to the general problem in another paper.
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