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 REVIEW OF THE INTERNATIONAL

 STATISTICAL INSTITUTE

 Volume 33 :1, 1965

 ON THE FOUNDATIONS OF INFORMATION THEORY'

 by

 A. Renyi
 Mathematical Institute of the Hungarian Academy of Sciences, Budapest

 1. INTRODUCTION

 In the present paper we shall give a review of certain investigations on the founda-
 tions of information theory. We shall deal exclusively with one question, which is
 however fundamental in information theory: how should the amount of information be
 measured? By other words we shall give a review of results concerning the definition
 of information.

 This question can be approached from two essential different points of view. The
 first is the axiomatic (or postulational) approach; starting from the intuitive notion of
 information one formulates certain properties which a reasonable measure of infor-
 mation has to satisfy; after this the purely mathematical question has to be solved to
 find all the expressions which possess the postulated properties. The first to adopt
 this point of view was C. Shannon who in his fundamental paper [1] deduced from
 certain postulates his formula

 a 1

 (1.1) H(P)= E1 pklog02 k=l Pk

 for the entropy2 of a probability distribution P = (p , P2,..., pa) i.e. the amount of
 information contained in a single observation of a random variable ? which takes on a
 different values xl, x2,..., xa with the probabilities pk P ( Xk) ( k = 1, 2,..., a).
 The second point of view may be characterized as the pragmatic approach; this

 approach starts from certain particular problems of information theory and accepts
 as measures of the amount of information the quantities which present themselves in
 the solution. According to this point of view the real justification of some measure of
 information is that it does work. This second point of view has been recently empha-
 sized by J. Wolfowitz in his book [2], who however points out that the view that the
 main reason for introducing the quantity (1) is its role in coding theory, was expressed
 already by Shannon.
 These two points of view are according to the opinion of the author of this paper

 not as opposed to each other as they seem to be; they are compatible and even com-
 plement each other and therefore both deserve attention. Both of the mentioned ap-
 proaches may and should be used as a control to the other. As a matter of fact, if
 certain quantities are deduced from some natural postulates (from "first principles")
 these certainly need for their final justification the control whether they can be
 effectively used in solving concrete problems. On the other hand if one encounters a

 1 A review paper prepared for the 34th Session of the International Statistical Institute, Ottawa,
 Canada, August 1963.
 2 The quantity H (P) defined by (1) is interpreted either as a measure of entropy (i.e. of uncertainty)
 or as a measure of information. Both interpretations are justified. As a matter of fact the difference
 between these two interpretations consists only in that whether we imagine ourselves in a moment
 before carrying out an experiment whose a possible results have the probabilities p, p, .. ., Pa (in
 which case H (P) measures our uncertainty concerning the result of the experiment) or we imagine
 ourselves in a moment after the experiment has been carried out (in which case H (P)) measures the
 amount of information we got from the experiment.
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 certain quantity in course of the solution of a particular problem, this in itself does
 not prove that the quantity in question is of general importance; only the fact that one
 encounters the same quantity in solving a large number of rather different problems
 (as is the case e.g. with Shannon's measure of information) convinces us that it is a
 fundamental notion. In this case however it is quite natural to try to find out the
 reason why the same quantity occurs in different contexts, i.e. to find which are its
 properties which make it so useful; and exactly this is the aim of the axiomatic
 approach.

 In ?? 2-5 we shall deal with the pragmatic approach and in ?? 6-9 with the axio-
 matic approach, while in ? 10 we add some further remarks.

 2. A PRAGMATIC APPROACH

 The entropy H (P) of a finite discrete probability distribution P - (P1, P2. , Pa)
 presents itself in the solution of the following simple coding problem. Let us consider
 a sequence of independent identically distributed random variables j9, -,.. ., - n each
 of which takes on the different values x , x2,..., Xa with the corresponding proba-
 bilities p , P2, ., Pa i.e.

 (2.1) P(?j = Xk) -- Pk (1A k a; 1 jj n) a

 where Pk ? 0 (1 5 k 5 a) and k Pk = 1. The sequence 1, * ~*, *n may be in- k=l
 terpreted as produced by an information source emitting stationary and independent
 signals. Let On be the set of all ordered sequences of length n of the symbols x1,

 X2,. .., Xa. Let be given a fixed number e (0 < e < 1) and let us consider those
 subsets E of On for which Pn (E) > 1 - e where Pn (E) is the probability that the

 observed sequence ?1, L2, ? * * , nbelongs to the set E. Let b (n, e) denote the minimum of the number of elements of such sets E; by other words if N(E) denotes the num-
 ber of elements of a set E, we put

 (2.2) b (n, e) = min N(E).
 Pn (E)> 1-c

 Now it is easy to show that the limit

 log 2b (n, e)
 (2.3) lim n H(P)

 n--> + oo

 exists, it is independent of e, and it depends only on the distribution P, namely one has

 a 1

 (2.4) H(P)= , Pk log -. k= 1 Pk

 Still more is known; it has been shown recently by W. Strassen [3] (improving a
 previous result by Jushkewich [4]) that - if the numbers pk are not all equaP one has

 (2.5) log2 b (n, E) = nH(P)+ V/n. ?D 2 log 2 n O (1)
 where

 D= I2 (log2s- - H(P))2 Pk 2 k= 1 Pkl
 1

 * If pl = P- = ... = Pa - -a then clearly b (n, e) is equal to the least integer _ an (1 - e) and thus, as in this case H (P) = log1 a, we have log2 b (n, e) = n H (P) + O (1).
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 3

 and X is defined by (X) = 1 - e, where D (x) denotes the standard normal distribu-
 1 x -u=/2

 tion function ( (x) = 2/X_ U e du; in (2.3) O0(1) denotes a remainder term4
 which remains bounded for n -> + oo.

 Thus we may consider (1.3) as a definition of the entropy H (P). The result can be

 interpreted as follows: if we want to express (code) the sequence of signals ?1, s2,..,9
 ,, by a sequence of 0-s and 1 -s so that the correspondence should be one to one,
 except for certain rather improbable sequences which we are ready to neglect if the
 total probability of occurrence of these neglected sequences does not exceed e, then
 this can be accomplished by using sequences of 0-s and 1 -s of length n H(P)
 + O(n).
 Thus if we accept as the unity of the amount of information the maximal amount

 of information which a signal capable of only two values (e.g. 0 and 1) can carry,
 then H(P) can be interpreted as the amount of information per signal produced by
 a stationary source of independent signals, if the probability distribution of the pos-

 sible values of the signals is P = (pi, P2,..., Pa) ?
 As it is easy to see

 (2.6) H(P) < log2 a
 1

 with equality standing in (2.6) if and only ifl P2 = ... Pa = Pa-  a

 An important point in favour of accepting (2.3) as the definition of the entropy
 H (P) is that the amount of information per signal furnished by a more general
 channel (e.g. a stationary Markovian source, see Jushkewich [4]) further the definition
 of the capacity of a channel can be defined in a quite analogous way; as regards the
 latter question we refer to the coding theorem and its strong converse (see [2], [3]).
 Here and in what follows we restrict ourselves to discuss the entropy of a stationary
 source of independent signals.

 3. ANOTHER PRAGMATIC APPROACH

 While the simple coding problem discussed in ? 1, the solution of which leads us to
 Shannon's entropy H(P), is certainly of fundamental importance, nevertheless there
 are other problems which are equally of fundamental character and which may also
 be used as an alternative for introducing in a pragmatic manner the entropy H(P).
 In this ? we shall discuss another problem of this kind, which may be called the
 problem of random search (see [5], [6], [7], [8]).

 Let us consider the following situation: we want to find an unknown element x
 of a set S, having n elements. The information available is of the following nature:
 we can carry out independent experiments, each experiment consisting in dividing at
 random the set S, into a classes C1, C2,..., Ca so that for any element of S, the
 probability that it will belong to the class Ck is equal to pk (k = 1, 2,..., a) inde-
 pendently from what happens to the other elements. By other words we suppose
 further that if the elements of S, are x1, x2,..., x, and ?j denotes the index of the

 class into which xi belongs, then the random variables ;, ?2,..., ;n are independent
 and P (?i = k ) = pk (1 < j ? n; I ? k < a). The result of the experiment consists
 in that we are informed which one of the classes Ci, C2,..., Ca contains the un-
 known element x. Let be given a number E (0 < E < 1) and let d (n, E) denote the

 4 Strassen has analyzed this term further, but we do not go into these details here.
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 4

 least such value of m that the probability that the unknown element can be uniquely
 determined from m experiments of the above mentioned type, exceeds 1 - e. It is easy
 to see that d (n, e) is the least number m such that

 (3.1) a 1 p2!. p.! m'. .*P.ama (l-pm1. p- 2 ... pama)nn-1 -
 1 mi m

 i= 1

 It follows by an easy calculation that putting

 (3.2) D 1 p (log2 H(P)1/2 Ik= 1 Pk
 we have in case D > 0

 log2 n DX Vlog2
 (3.3) d (n, e) =log + (0g2n og n

 H(P)? H(P)31' +O(Vl0g2 n)
 where X is determined by the equation D (X) = 1 - .

 Thus we have

 log2 n (3.4) H (P) = lim 2n
 ,n--+oo d(n, e)
 1 1

 In case D = 0, i.e. ifp, =P2 =... = p =-we have for 0 < < 1-- a e

 log0 n + l9log 1
 (3.5) d (n, E) = H (P)

 where {x } denotes the least integer ? x (and of course H (P) = log, a).
 The result obtained can be interpreted as follows: to determine an unknown element

 of a set S,, having n elements, one needs log2 n bits of information. If S, is divided
 at random into a classes having approximately pl , p P n,..., Pan elements, and we
 are informed which of these classes contains the unknown element which we try to
 find, then each such experiment gives us in the average H (P) bits of information,

 log2 n and thus approximately such experiments have to be carried out in order to
 H (P)  log2 n

 get a sufficient amount of information. (The reason why slightly more than H(P)

 experiments are needed if we want to determine the unknown x with a probability
 > 1 - E, is that there is some overlapping between the partial informations obtained.)

 The number d (n, s) can be interpreted also in the following alternative way: Let us
 consider again a stationary information source producing independent signals, with

 values xl, x2, .. ., xa having the corresponding probabilities p, P2, .., ,Pa. Suppose
 that the source produces n sequences of signals, each sequence consisting of m signals;
 let us denote these sequences by

 S1 = (~l1,''*, jxm) , S2 -=- {(t21,', s2m),..., Sn = (Enl,'**, %nm) "
 Then d (n, e) is the least value of m such that the probability that the sequences

 s, s3, . . ., sn are all different from the sequence sl, exceeds 1 - E .

This content downloaded from 157.181.127.169 on Sat, 07 Jan 2017 17:10:40 UTC
All use subject to http://about.jstor.org/terms



 5

 4. AN OTHER MEASURE OF INFORMATION

 We shall deal now with a modification of the problem considered in ? 3 (see [7])
 which leads to a measure of information, different from that of Shannon. The problem

 discussed in ? 3 can be characterized as follows: we divide a finite set Sn into a classes
 at random several times, and we are interested in the number m of such subdivisions
 which is necessary in order that the m divisions together should separate a fixed (but

 unknown) element x of Sn from all other elements of Sn with a prescribed probability.
 (We shall say that a subdivision of Sn into a > 2 classes separates two elements x
 and y of Sn if x and y belong to different classes of the subdivision.) Now we modify
 the problem as follows: how many independent subdivisions of the same type are
 needed in order that these subdivisions should separate any two element of Sn from
 each other, with a prescribed probability.

 We suppose again that the subdivisions in question are independent from each
 other and are such that each element of Sn will belong to the k-th class with proba-
 bility pk independently of what happens to the other elements (i.e. if xj,..., xn are
 the elements of Sn and Xi denotes the index of the class into which xj belongs, then
 the random variables A, ... , A, are independent and P (Xj = k) = Pk for 1 :j < n,
 1 < k < a). Let Pn m denote the probability that m such subdivisions separate any
 two elements of Sn. Pnm can be expressed as follows. Let us consider all possible
 ordered products consisting of m factors, each of which is one of the numbers

 Pi, P2,... , Pa, i.e. the products of the form pi, pi2... Pim. There are clearly am
 such products (two products containing the same factors but in a different order are
 considered as different). Let us label these products in any order by the numbers
 1, 2,..., am and denote them by w1, w2, ..., Wam. Then we have

 (4.1) Pnm = ' Wi Wj w... W.n
 where the summation is to be extended over all positive ordered n-tuples j , j2,... , J
 which consist of different numbers chosen among the numbers 1, 2,..., am; thus

 the sum on the right contains (am) n! terms. It can be proved that if e2 (n, E) denotes
 the least integer m such that Pn > 1 - e then

 11

 2 log2 n +0log2 log

 (4.2) e2 (n, = 12(P)
 where

 (4.3) 12 (P)= log2
 k=1

 The quantity 12 (P) which in formula (4.2) plays the same role as the entropy H (P)
 in formula (3.3), can also be considered as a measure of the amount of information
 contained in the value of a discrete random variable ( which has the distribution

 P (Pi,..., Pa)" The relation between H(P) and 12 (P) can be characterized as follows. Let
 P = (Pi, ..., Pa) be any finite probability distribution; let A be a random variable
 which takes on the values 1, 2,..., a with the corresponding probabilities P,

 P2, ..., Pa and let r- be the random variable defined by rt = ph; by other words n is
 always equal to the probability of that value of A which A takes on. Thus we have

 (4.4) P ( : pk= Pk (k = 1,2,..., a).
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 Now let us put
 1

 (4.5) L (x) = log2 - x

 and let us denote by E (?) the expectation of the random variable r. With these
 notations we have

 (4.6a) H (P) E (L(=))

 and

 (4.6b) 12 (P) L (E ()) .

 Thus H (P) is obtained by transforming 7 by the function L and then calculating
 the expectation of this random variable, while 12 (P) is obtained by carrying out the
 same operations in the reversed order.
 12 (P) has certain properties in common with H (P). For instance both are addi-

 tive with respect to taking the direct product of probability distributions; more
 exactly if P = (pi,..., Pa) and Q = (ql,..., qb) are two arbitrary probability
 distributions, and if we denote by P * Q the distribution consisting of the terms
 Pi qj (I i : a; 1 j ? b) then
 (4.7) H (P * Q)= H (P) + H(Q)

 and similarly

 (4.8) 12 (P * = 2 (P) + 12 (Q)
 1

 It follows from Jensen's inequality and the convexity of the function log2 - that the
 x1

 values of H (P) and 12 (P) are equal if and only if p, = P2 = ... a = -, in
 every other case one has I2 (P) < H (P). a

 5. A CLASS OF MEASURES OF INFORMATION

 Both H (P) and I (P) considered in the previous ?-s belong to the same class of
 measures of information, defined as follows (see [9] and [10]): Let o be any fixed
 positive number, a = 1; we shall call the quantity

 1 a

 (5.1) 1, (P) --21- 02o g 1
 the measure of order a of the amount of information contained in a value of a random

 variable having the finite discrete probability distribution P = (px,..., Pa). For
 c = 1 we define I, (P) as the limit of I, (P) for ao tending to 1; we have evidently

 (5.2) 11 (P) = lim I (P) = H (P)
 a -- 1

 Clearly for a = 2 we get the same quantity 12 (P) which we encountered in (3.2).
 The problem considered in the previous ? can be generalized so that we encounter

 instead of I2 (P) the measure Ir (P) of (integral) order r of information. As a matter

 of fact, let us consider again m independent random subdivisions Ax,.., Am of the finite set S, having n elements, so that each subdivision splits the set S, into a classes,

 so that each element of Sn should be contained in the k-th class of any of the subdivi-
 sions with probability pk (k = 1, 2,..., a) independently of what happens to the

 other elements. The m subdivisions together define a subdivision A of the set Sn which
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 7

 may be called the product of the subdivisions Aj (j - 1,..., m) and denoted by
 A = A1. A2... Am. The subdivision A is defined as follows: two elements of S,
 belong to the same class of A if and only if they belong to the same class with respect

 to each subdivision A1, A2,..., Am. Now let e, (n, e) (r ? 2, 0 < e < 1) denote the
 least value of m such that with probability ? 1 - e each class of A = A1 . A2... Am
 contains less than r elements. Clearly er (n, e) is for r = 2 equal to e2 (n, e) defined
 in the previous ?. Now it can be proved (though the proof is rather complicated) that
 for r 2, 3,...we have

 log1 n 1 1 1
 (5.3) lim - (1 - ) Ir(P) -log2 a n -oo er(n, e) r r r

 k=l

 As it is easy to see the right hand side of (5.3) is an increasing function of r.
 Another closely related relation containing I, (P) which however is easy to prove,

 is as follows: let fr (n) denote the least value of m such that the expected number of
 such r-tuples of elements of Sn which belong to the same class of A does not exceed 1;
 then we have

 log2 n

 (5.4) fr (n) 1 0)2n O(1) (1 -) Ir (P)

 As a matter of fact, if Vr (m, n) denotes the number of r tuples of elements of Sn
 which belong to the same class of A = A ... Am, then we have evidently

 (5.5) E( v (m, n))= ) (k=l pr)m
 and (5.5) clearly implies (5.4).

 The quantity Is (P) has the same additivity property as H (P) for each positive
 value of a; that is for any two probability distribution P and Q we have

 (5.6) IC (P * Q) = I (P) + I, (Q)
 If p = P2 .. = Pa = then Is (P) = log2 a for each a > 0. For other distri-

 butions Ix (P) is a decreasing function of a .
 As regards other properties of Is (P) these will be discussed in connection with

 the axiomatic characterization of measures of information.

 6. AXIOMATIC CHARACTERIZATION OF SHANNON'S MEASURE
 OF INFORMATION

 Different sets of postulates have been found which characterize Shannon's entropy
 H (P) (defined by (1.1) uniquely). The original set of postulates given by Shannon [1]
 himself was later somewhat simplified by Chintschin and Faddeew [11], [12]. In this
 last form these postulates are as follows: Let 1I denote the set of all finite, discrete

 a

 probability distributions P = (p,,..., pa) (Pk ? 0 (k = 1,..., a) and _ pk = 1).
 k=l

 Let us suppose that a function I (P) = I [pi,..., pa] is defined for all P e II which
 satisfies the following conditions:

 A) I [p, 1 -p] is continuous for 0 ? p < 1 and I[4, ] = 1.
 B) I [p,, . P, pa ] is a symmetrical function of its variables.
 C) IfO ( < 1, we have
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 I[pi,..., P, P, (1 - 9)Pal] = I[p,, P29... ,Pal Pa I [&, 1 -a ]
 Then I (P) = H(P) where H (P) is the entropy of the distribution P defined by
 (1.1). (For a simple proof see [12]).

 The proof depends mainly on the following number theoretical lemma due to
 P. Erdis [13]: If f (n) is an additive number theoretical function (i.e. f(n m) =
 f(n) + f(m)) further if lim (f(n + 1) -f(n)) = 0 then f(n) = c log n where c

 n -- + co

 is a constant. (For simple proofs see [14] and [15]).
 Note that postulate C) implies that I (P) has the additivity property

 (6.1) I(P* Q) = I (P) + I(Q)

 but C) is not implied by (6.1). As a matter of fact C) is not valid for I, (P) with
 a # 1. However C) can be replaced by (6.1) and by some other supplementary con-
 dition. For instance Chaundy and McLeod [16] have remarked that if we suppose

 a

 that I(P) is of the form I(P) = I F (Pk) where F(x) is continuous in the interval
 k=l

 [0,1] and F() = and if I (P) satisfies (6.1) then F (p) = p log2 1 and thus I(P) =
 H (P) (see also [17] where it is shown that it is sufficient to suppose the validity of
 (6.1) for the case when P and Q have an equal number of terms).
 Another such condition has been given in [9], for functions I(P) defined for the

 wider class of generalized probability distributions, including also incomplete distri-
 butions.

 Let HI* denote the set of all finite sequences P = (pi., , Pa) of nonnegative num-
 a

 bers such that 0 < w (P) = E Pk ? 1. We shall call every Pe H* a generalized
 k= 1

 a

 distribution and w (P) = pk the weight of the generalized distribution P. A distri-
 k= 1

 bution P e I* will be called a complete probability distribution if w (P) = 1 and
 an incomplete probability distribution if w (P) < 1. The natural extension of Shan-
 non's formula for P e H* is

 a 1
 Spk log2-
 kEA Pk

 (6.2) H(P) = 1 Pk
 E Pk

 k=-1

 The direct product P * Q is defined in the same way for generalized probability distri-

 bution as for ordinary (complete) probability distributions. If P e H* and Q e H*
 where P = (p,..., pa), = (ql,..., qb) and w(P) + w (Q) ? 1 we putP U Q =
 (Pl, ... ,Pa, qx, ..., qb). (If w (P) + w (Q) > 1 then Pu Q is not defined.)

 Now we have shown that if I (P) = I [p,. .., Pa] is defined for P E I* such that

 A*) I [p] is continuous for 0 < p ( 1, and I [] - 1
 B*) I [p1, ..., Pa) is a symmetric function of its variables,
 C1*) I [P * Q) = I (P) + I (Q), further

 C2*) if w(P) + w (Q) 1 then
 w (P) I (P) + w (Q) I (Q)

 I (PU Q) =  w (P) + w ( Q)

 then I (P) = H (P) where H (P) is defined by (6.2).
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 An incomplete probability distribution P can be interpreted as the probability
 distribution of a random variable whose value can not be observed always only with
 probability w (P) .

 Note that the extension of the notion of information (entropy) to incomplete distri-
 butions has among others the advantage that it has a sense to speak about the entropy

 1

 of a single event with probability p, this being equal to log2 *.
 Thus introducing this extension of the notion of entropy one can say that the

 entropy of a probability distribution is equal to the weighted mean of the entropies
 of its terms, the weights being the probabilities themselves.

 7. AXIOMATIC CHARACTERIZATION OF MEASURES OF INFORMATION

 OF ORDER C

 By weakening to some extent the axiom C) one can obtain a characterization of
 the measures of information of order a. These investigations show that in a certain
 sense there are no other measures of information besides those of order a c 1 which

 have similar properties as Shannon's measure of information. This was conjectured
 by the author in [9], and his conjecture was proved by J. Aczil and Z. Dardczy in [17].

 Their result has been recently sharpened by Z. Dar6czy [18].
 We reproduce here only this last result which is as follows: If I (P) is defined for

 P e IH, satisfies the condition (6.1) further there exists a function f(x) such that
 1

 (7.1) 1 (P) = log2 M  M (P)
 with

 (7.2) M (P) = f-' ( Pkf(Pk))
 where f (x) is a strictly monotonic function, lim x f(x) = 0 and f(x) is continuous

 x -+0

 for 0 < x < 1, thenf (x) is either a linear function or a linear function of an exponen-
 tial function and correspondingly either I(P) = H (P) = I, (P) or I(P) = I, (P)
 with ac 1, cc > 0.

 Note that the continuity of I (P) follows from the continuity of xf(x) while the
 symmetry of I (pl,..., ,) from the symmetric form of M (P).
 The expression M (P) is called by J. Aczil and Z. Dar6czy a mean value of the

 probability distribution P.
 The mentioned theorem can be stated also in the following form: a mean value

 M (P) of the distribution P = (Pi,--..., Pa) which is of the form (7.2) where f(x)
 is strictly monotonic and x f(x) continuous for 0 x < 1 and which has the multi-
 plicative property

 (7.3) M (P * Q) = M (P). M (Q)

 is necessarily either of the form

 (7.4) M(P) = [I pkPk k=l

 or of the form

 (7.5) M(P)=(? P =k I-)lwith ac > 0, a # 1
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 Shannon's entropy can be uniquely characterized as follows: Let R { rijk
 (1 ?j < a; 1 ? k < b) be any distribution whose projections are the distribution
 P = {Pi,..., Pa) and Q = (q, ..., qb), i.e.

 b a

 Srik Pi (1 <j< a) and 1 r = qk (1 < k ? b).
 k=1 =l1

 We shall write R = [P, Q]

 If rk = pj. qk, i.e. if R = P * Q then one has for every

 a> 0 Ix(R) = Is(P) + s (Q).
 However the inequality

 (7.6) I (R) < Is (P) + Is (Q)
 holds for any R = [P, Q ], if and only if a = 1 .

 8. CHARACTERIZATION OF THE MEASURES OF INFORMATION OF

 ORDER C OF GENERALIZED PROBABILITY DISTRIBUTIONS

 In analogy with (6.2) the measure of information Is (P) of order a (a > 0, a # 1)
 of a generalized distribution P e IH* (P = {P1, ..., Pa }) is defined by

 a

 1 Pkol
 (8.1) la (P) = log2 a

 E Pk
 k=l

 Note that if P e II* consists of a single term i.e. P = {p } we have for each value of a

 1
 (8.2) I. ({p}) = log2 -  p

 Z. Dardczy [19] has shown that the quantities (6.2) and (8.1) can be characterized
 as follows: Let I(P) = I [p,.... ,Pa] be defined for Pe lH* and suppose that I(P)
 satisfies the following postulates:

 A*) I [p ] is a continuous function of p in the interval 0 < p ? 1, and I [ ] = 1

 CI*) I (P * Q) = I (P) + I(Q)
 C3*) There exists a strictly monotonic and continuous function g (x) such that if

 Pe H*, Q e Hf* further w (p) + w (Q) ? 1 then

 I(P ) (P)gg (I(P)) + W Q) g (I Q))
 wU(P) +- w(Q)

 Then g (x) is either a linear function or a linear function of an exponential function
 and correspondingly either I(P) = H (P) or I(P) = Is (P) with some reala c 1.
 J. Aczil [20] has simplified the proof of this theorem. He remarked also that the un-
 desirable functions Is (P) with a < 0 can be excluded by the additional postulate:
 D*) lim I[p, q] = I[p].

 q -+0

 9. AXIOMATIC CHARACTERIZATION OF INFORMATION WITHOUT

 USING PROBABILITIES

 An interesting attempt has been made recently by R. S. Ingarden and K. Urbanik (see
 [21], [22]). They gave an axiomatic characterization of Shannon's measure of infor-
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 mation, which does not presuppose the notion of probability. Information is defined

 as a real valued function on a set X of finite Boolean rings. Each ring R  X is inter-
 preted as an experiment, the elements of the ring as events. As regards X it is supposed

 that if R1 is a ring belonging to X and R2 a nontrivial subring of R1 then R2 belongs
 to X also, further if R1 e X there exists an other ring R2 X such that R1 is a proper
 subring of R2. With respect to any real valued function F defined on X a distance
 function p, (R1, R2) is defined as follows: p ( R1, R2) = 1 if R1 and R2 are non-

 isomorphic, while PF (Rx, R2) = -E(R1, R2) I 1 +8 ( R, R2) if R1 and R2 are
 isomorphic, where , ( R1, R2) = min max I F (R) - F (9c (R)) I where R runs over 9) R
 all subrings of R1 and p over all isomorphisms of R1 onto R2. X is a pseudometric
 space with respect to pF. A ring R e X is called F-homogeneous if for every auto-
 morphism ? of R and for every subring R1 of R we have F (R1) = F ( (R1)). Let X,
 denote the class of all F-homogeneous rings from X and their subrings. The function
 F is called regular if XE is dense in X with respect to the metric p,. Let as usual u
 resp. n denote union (joint) resp. intersection (meet) and - difference of elements of

 a Boolean ring. For any A e R let us put A = 1 (R) - A where 1 (R) is the unity
 element of R.

 If R is a ring and A e R let A R denote the subring of R consisting of all B e R
 which can be written in the form B = A n C with C e R. If R e X and A e R let

 R I A denote the least Boolean ring containing A and all elements of A R where
 A = 1 (R) - A. (R I A can be interpreted as the experiment which differs from the
 experiment R only in that the outcomes belonging to A are "pooled".)

 A real valued function H = H (R) defined for R eX is called an information if
 it satisfies five axioms of which the first is as follows:

 I) (H(R) - H(R3)) H (R1) H (R2) = (H(R) - H(R1)) H (R2) H (R) +
 +( H(R) - H(R/2)) H (R) H (R3)
 Here R is any element of X, R1 = A R, R2 = B R where A and B are any disjoint
 elements # 0 of R, R3 = (A U B) R, R = RI A, R2 = RIB, R3 = R I A U B.

 The second axiom can be formulated as follows:

 II) If R, X, R2 X, A e Rl, B e R2 further if pH (A R1, B R2) = 0 and
 pH(R1 I A, R2 I B) = 0 (here of course B stands for 1 (R2) - B) then

 H(R1)- H(R1 I A) - H(R2)- H(R2 I B).
 The next two axioms postulate the monotonicity of information H (R2) < H (R1)

 if R2 is a proper subring of R1, further that isomorphic H-homogeneous rings have PH
 distance 0. The last axiom normalizes information by postulating that if R is an H-
 homogeneous ring having two atoms then H (R) = 1.

 Ingarden and Urbanik proved the following theorem:

 If H is an information on X then for every R e X there exists a unique strictly
 positive probability measure P (A I R) defined for A e R such that for every subring

 P(BIR) R1 of R and for every B e R1 one has P ( B R1) ( R) where 1 (R1) is
 P(1(R1) I R)

 1

 the unity element of R1, and H(R) = E P(A | R) log2 ( I R) where the base
 of the logarithm is 2 and A runs over all atoms of R.

 By other words the information as defined by the axioms of the authors (which do
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 not presuppose the notion of probability) can be expressed by Shannon's well known
 formula by means of a uniquely defined (conditional) probability measure, the
 existence of which follows from the existence of information. Thus the axiomatic

 approach of the authors shows that though the usual logical order, according to
 which information is defined by means of probability can be reversed, and one can
 introduce information first, without using probabilities, probabilities come in how-
 ever inevitably at a later stage.

 It seems to us that the fact that a theory which starts with the aim to define infor-
 mation without probability leads to the proof of the existence of (conditional) proba-
 bilities, supports the view that the notion of information can not be separated from
 that of probability. The situation becomes particularly clear if we adopt the point of
 view of ? 8, i.e. we consider also the information corresponding to an incomplete
 distribution (i.e. to an experiment whose result is not always observable.)

 In this case to each event A there correspond two numbers: its probability P (A)
 and its information content I (A), which are connected by the formulae

 1
 (9.1) I(A) = log92 P(A) = 2-'(A) P (A)

 Thus it does not matter which of P (A) or I(A) is taken as fundamental, the other
 can be expressed by it.

 An interesting feature of the result is that the probabilities whose existence is
 deduced from that of information are not ordinary but conditional probabilities in
 the sense of the author's paper [23].

 Let us add some remarks concerning the meaning of the axioms of Ingarden and
 Urbanik.

 Clearly the axiom C) of Faddeew can be expressed with the present notations as
 follows:

 (9.2) H(R) = H(R I A) + P(A) H (A R)

 Thus if H (A R) > 0, we have

 H(R)-H(RIA)
 (9.3) P (A) =

 H (A R)

 Now in the light of the formula (9.3) the meaning of the axioms becomes clear. As a
 matter of fact if we define the probability P (A) by (9.3) then evidently the first
 axiom expresses the additivity of probability. As regards the second axiom it expresses
 the fact, that while in the definition (9.3) of P (A) there occurs the ring R which can
 be chosen arbitrarily with the single restriction that it should contain the event A,
 nevertheless the value of P (A) does not depend on the choice of R. Thus axioms I)
 and II) together imply axiom C). In view of this it is now clear why the axioms of
 Ingarden and Urbanik characterize Shannon's measure of information.
 The axioms of Ingarden and Urbanik can be formulated also in term of finite alge-

 bras of sets instead of Boolean rings. We do not go into the details here.

 10. CONCLUDING REMARKS

 In addition to what has been said in the previous ? about the relation of the notions
 of probability and information, one remark has to be added. While when speaking
 about a simple event A, both its probability P (A) and its information content I(A)
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 are positive numbers5, connected by formula (9.1) further in this case the measures
 of information of order a have all the same value, the situation changes when we are

 dealing with a system of (disjoint) events (Ax, A2,..., Aa). In this case we have a
 corresponding probability distribution P = (P (A1), P (A 2), ... , P (A)a) being a
 set of numbers (or to put it otherwise, the probability distribution is vector-valued).

 On the other hand we have different measures of information I, (P) corresponding
 to the distribution P, all of which are number-valued. All these measures of informa-
 tion are obtained from the information-distribution J = (I(A,), I(A 2), . . . , I (Aa))
 corresponding to the events A,, A2, ..., Aa by some method of averaging, i.e. they
 are all mean values. This explains why different measures of information are possible:
 the situation is the same as taking different (arithmetic, geometric, harmonic etc.)
 mean values of a set of numbers. Shannon's measure of information is clearly the
 simplest among them, and plays a role analogous to that of the ordinary (linear) mean
 value. Nevertheless in certain situations the other non-linear mean values of infor-

 mation (i.e. the informations of order a > 0, a # 1) may also be useful.
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 RESUME

 L'auteur expose les diff6rentes d6finitions de la quantit6 d'information. On peut distinguer deux
 types de d6finitions. Les d6finitions axiomatiques partent de certaines propri6t6s plausibles qu'une
 mesure d'information raisonnable doit poss6der; ensuite intervient le probl6me d'ordre purement
 math6matique de trouver les expressions ayant les propri6t6s postul6es. Les autres d6finitions peuvent
 etres appell6es des d6finitions pragmatiques: on prend comme point de depart certains probl6mes
 concr6ts de la theorie de l'information; en resolvant ces probl6mes, on constate que certaines expres-

 sions figurent dans la solution, et par cons6quent on considre ces expressions comme des quantit6s
 d'information. L'auteur montre que les deux points de vue ne sont pas antagonistes; bien plus, ils se

 compl6tent l'un l'autre, et l'on peut arriver "A la quantit6 d'information de Shannon, ainsi qu'aux
 quantit6s d'information d'ordre a introduites par l'auteur, en partant aussi bien du point de vue
 axiomatique, que du point de vue pragmatique.

 DISCUSSION

 C. R. RAO: Is there any special advantage in choosing a = 1/2 in the measure of information?
 1 k

 Pa (P) = logs 1 pia~

 It was found useful in theory of statistical inference as a measure of distance between (pi,..* Pk) 1 1

 and the uniform distribution (k. k).
 A. RENYI: In answer to the question of Professor Rao, I should like to mention that in a previous

 paper I made reference to the work of Indian mathematicians concerning the case a = 1/2 in con-
 nection with the information - theoretical distance of two probability distributions. In the present
 paper, however, I dealt only with the amount of information connected with a single distribution,
 and it seems to me that in this case the information of order 1/2 does not play the same exceptional role.

 D. G. KENDALL: In ? 6 of his paper Prof. R6nyi recalls the theorem of Fadeev, that Shannon's
 function is uniquely characterised by the conditions A, B, and C. The assumption that h (t) = I ( t, 1-t)
 is continuous for 0 < t < 1 is very natural, but the more severe assumption (used by Fadeev) that h (.)
 is continuous for 0 < t < 1 is not so natural; it excludes the possibility of solutions for which
 h (t) - - oo when t 4 0. A different argument (due to H. Tverberg) replaced the continuity assumption
 of Fadeev by the requirement that h e L (0, 1), but this is not at all natural, and is still undesirably
 restrictive. I have shown that Shannon's function is uniquely characterised by B and C, the condition
 that h (1/2) = 1, and the condition that h (.) is to be non-decreasing for 0 < t < 1/2. In a sequel to
 this work Mr. P. M. Lee has shown that Shannon's function is uniquely characterised by B and C,
 the condition that h (1/2) = 1, and the condition that h (.) is to be Lebesgue measurable on (0.1).
 It seems likely that Lee's theorem is incapable of further improvement, in the sense that there may
 exist non-measurable solutions to the functional equations, but attempts to construct such non-
 measurable entropies have so far proved unsuccessful. It is not, of course, suggested that the question
 of their existence has any practical relevance.
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