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ON A PROBLEM OF GRAPH THEORY

by

P. ERDŐS', A. RÉNYI1 and V. T. SÓS2

§ 0. Introduction

Let G„ be a non-directed graph having n vertices, without parallel edges and 
slings. Let the vertices of G„ be denoted by Pu ..., P„. Let v(Pt) denote the valency 
of the point Pj and put
(0.1) V(G„) =  max u(P,).

1

Let E(Gn) denote the number of edges of G„. Let Hd(n, к) denote the set of all 
graphs Gn for which V(Gn) = k and the diameter D(G„) of which is Sd,  
(k = 1, 2, n — 1 ; d = 2, 3, — 1).

In the present paper we shall investigate the quantity

(0.2) Fd(n, k) =  min E(G„).
a„iHd(n,k)

Thus we want to determine the minimal number N such that there exists a graph 
having n vertices, N  edges and diameter ^ d  and the maximum of the valencies 
of the vertices of the graph is equal to k.

To help the understanding of the problem let us consider 
the following interpretation. Let be given in a country n airports; 
suppose we want to plan a network of direct flights between these 
airports so that the maximal number of airports to which a 
given airport can be connected by a direct flight should be equal 
to к (i.e. the maximum of the capacities of the airports is pres-
cribed), further it should be possible to fly from every airport 
to any other by changing the plane at most d — 1 times; what is 
the minimal number of flights by which such a plan can be 
realized? For instance, if /2 =  7, k = 3, d=  2 we have F2(7, 3) = 9 
and the extremal graph is shown by Fig. 1.

The problem of determining Fd(n, к) has been proposed and discussed recently 
by two of the authors (see [1]). In § 1 we give a short summary of the results of the 
paper [1], while in § 2 and 3 we give some new results which go beyond those of 
[1]. Incidentally we solve a long-standing problem about the maximal number 
of edges of a graph not containing a cycle of length 4.

In § 4 we mention some unsolved problems.
Let us mention that our problem can be formulated also in terms of 0 — 1 

matrices as follows: Let M =  (e(j) be a symmetrical n by n zero-one matrix such
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216 P . ERDŐS, A. RÉNYI AND V. T. SÓS

tha te ;i = l, max ^  E,j = k + \  and all elements of Md are e l .  We want to
í s i s n  j =  1

determine
n n

Má(n, k) = min 2 2 Eu-
•=1j=1

Clearly

(0.3) Md(n,k) = 2Fd(n, k)+n.

This formulation shows the connection of our problem with non-linear programming.
We give for the case d = 2 a third formulation of our problem which displays 

its connection with the theory of block designs.
Let be given a sequence Alr A2, ..., An of subsets of the elements 1,2, ...,n  

such that if j £ A t then i Ç A j . Let us suppose that denoting by \A\ the cardinal number 
of the set A, we have max \Aj\ =k. Let us suppose that for any i (1 and

any j  i such that j  (£ A ; there is a set Ah which contains both i and j  (this is equivalent 
by our supposition of symmetry to the statement that the sets At and Aj are not 
disjoint). The problem is to determine

n

(0. 4) min 2 \Ai\ = 2F2(n, k).
i =  1

§ 1. Some Basic Inequalities, and some Asymptotic Results

It is easy to see that if there exists a graph G„ with V(Gn) = к and diameter 
S d ,  then

( 1. 1) n ^  l+ k
( k - i y - l  

k — 2

(1. 1) can be proved as follows: if V(Gn) = k  the number of points which can be 
reached from a given point, say, Pj by an edge is ^  к ; the number of points which 
can be reached from P1 by a path of length 2 is 5= k(k — 1) and finally the number 
of points which can be reached by a path of length d is Шк(к — l)“1-1. Thus if the 
graph has diameter S d  we have

(n — 1) S  k ( l  + (к — 1) + (к — l)2 + . . .  +  (k — I)“- *).

This proves (1. 1). If both n and к are odd, then Gn must contain at least one 
point of valency ^ k —l (because the number of points of odd valency cannot be 
odd) ; thus in this case we get

(1.2) n ^ l  + i k - l ) ^ ^ - 1 .

Note that for the graph shown by Fig. 1, equality stands in (1. 2). For the graph 
shown on Fig. 2 (the so-called Petersen-graph) equality stands in (1. 1) with n = 10,
Æ -3, d = 2.
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ON A PROBLEM OF GRAPH THEORY 217

As regards Fd(n, к) we obtain easily the lower 
bound

П 31 F (n к) ^  ” (” ~ 1)(А:~ 2)(1.3) t d(n,k) _  2((k— l)d — 1) '

(1. 3) can be proved as follows: every edge is itself a 
path of length 1 ; it can be contained in at most 
2{k — 1) paths of length 2, but in this way each 
path of length 2 is counted twice, thus the num-
ber of paths of length 2 cannot exceed E(G„)(k — 1). 
In general each edge can be contained in at most 
3(k — l)2 paths of length 3, butin this way each 
path of length 3 is counted three times, thus the 
number of paths of length 3 cannot exceed 
E(Gn)(k — l)2, etc. As in case G„ has diameter

Fig. 2

S d the number of paths of length S d  has to be at least we obtain

(1.4) E(G„)(l+(k-  1 )+ ...+ (* — I)"“ 1)

which implies (1. 3). Note that one has equality in (1. 4) for the Petersen graph shown 
on Fig. 2., further for n = 5, k = 2, d —2 because a cycle of length 5 has 5 vertices,

5-4
each of which has valency 2, it has diameter 2 and the number of its edges is 5 = .

It is clear from the above proof that one can have equality in (1. 4) only for a
tîk

regular graph of order k, i. e. if E(Gn) = —  and if any two points are joined by

one and only one path of length S  d.
The first condition implies that if equality stands in (1. 4) then there is equality 

in (1. 1) too. For the case d = 2 this means that a necessary condition of equality 
in (1. 4) is n — k 2 +1. It has been shown by A. J. H o f f m a n  and R. R. S i n g l e t o n  [4] 
that a regular graph of order k, having k 2 +1 points and diameter 2 exists only 
for k = 2, 3,7 and perhaps for к = 57. Thus for d = 2  except for these values of 
к one has strict inequality in (1. 3). However it has been shown in [1] that there
exists an infinite sequence of pairs (kj, ttj) such that kj- and

(1.5) lim
F г К , kj) kj 

nÁ nj - 1)

This is a consequence of the following

T h e o r e m  1. I f  P is any prime power, there exists a graph G„ of order n — P2 + P -1- 1 
for which V(G„) = P + 1, which has diameter 2 and for which E(G„) ^  \  (n312 + n). 
The graph G„ has also the property that it does not contain any cycle of length 4.

To make this paper self-contained we reproduce the proof of Theorem 1 given 
in [1].
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218 P . ERDŐS, A. RÉNYI AND V. T. SÓS

P r o o f  o f  T h e o r e m  1. Let GF(P) be the Galois field with P elements. Let 
us represent the points of the finite plane geometry PG(P, 2) by triples (a, b, c) 
where a, b, c are elements of GF(P), not all three equal to 0, and (Xa, Xb, Xc) with 
X £ GF(P), X + 0 represents the same point as (a, b, c). The number of different 
points of PG(P, 2) is P2 + P + 1. A straight line in PG(P, 2) is the set of all points 
(x, y, z) which satisfy the equation ax + by + cz = 0; we denote this line by [a, b, с]. 
The point (a, b, c) and the line [a, b, c] are clearly conjugate elements with respect 
to the conic x 2 + y2 + z2 =0. As well known there are P + 1  points on each line, 
any two different lines have exactly one point in common and through any two 
given points there is exactly one straight line. Now we define the mapping T  which 
maps the point + = (a, b, c) into the line a =  [a, b, c] and conversely. We write 
TA=  a, Та —A. This mapping has evidently the properties: if the point В lies on 
the line a = TA then the point + lies on the line ß = TB-, if C is the point of inter-
section of the lines ТА and ТВ then TC is identical with the line passing through 
the points + and B; A=(a, b, c) is on ТА if and only if a2+fi2 +  c2=0, i.e. if A 
lies on the conic x 2 + y2 + z 2 =0. Now let us define a graph G„ (n = P2 + P+  1) 
as follows: the vertices of Gn are the points of PG(P, 2); the vertices A —{a, b, c) 
and A' =  (a b', c') are joined in G„ by an edge if and only if + ' is lying on ТА (and 
thus + is lying on ТА'). Clearly a vertex A in G„ has the valency P or P+  1 according 
to whether A is on the conic x 2+ y2+ z2= 0 or not.* Thus

(1.6) („з/2_ лг) ^  I p ( p 2  + F + 1 ) ^E(G„)

and

£(G„)S ~ (P + 1 )(P 2 + P+1) ^  | ( n 3/2 + «).

Finally the diameter of G„ is equal to 2. As a matter of fact any two points 
A and В can be joined by the path ACB where C is the point of intersection of the 
lines 724 and ТВ. Besides this + and В can be joined by a single edge if A lies on ТВ. 
But the point C such that the edges AC and BC both belong to G„ is in any case 
unique; thus G„ does not contain any cycle of length 4.

Thus our Theorem is proved.
We deduce from Theorem 1 the following corollaries.

C o r o l l a r y  1. Put nk = к2 — к + 1 ; then

(1.7) lim inf
k - > ° °

F2(nk,k )k  

nk(n,c-1 )

1

2 '

* If P is prime, there are P + 1 points on the conic and thus

E(G„) =
P(P+1)2

2
if n^n  0.
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ON A PROBLEM OF GRAPH THEORY 219

Pr o o f  o f  Co r o l l a r y  1. By (1 .3 )

„  F2(n,k)k ^  1

(L8)  2

further if k = P+ 1, nk = P2 + P +  1, by Theorem 1

(1.9) F2(P2 + P+  1, 7»+ l)S  i ( P + l ) ( P 2 + P + l) ;

thus in this case

(1. 10).
F2(nk,k )k  ^  J_f 1

nk(nk- \ )  2 {  P
this proves our assertion.

Theorem 1 enables us also to solve — at least asymptotically — a problem 
which was raised by one of us 27 years ago (see [2]).*

Let C„ denote the class of graphs having n vertices and containing no cycle 
of order 4. Put

( 1. 11) /((«) =  max E(G„). 
c„ec„

The problem is to determine the value of p(n). From Theorem 1 we deduce the 
following

Co r o l l a r y  2. We have

( 1. 12) lim
П —► 00

m
„3/2

1

2 '

Pr o o f  o f  Co r o l l a r y  2. It follows clearly from Theorem 1 that if P is a 
prime power, then putting n = P2 + P + 1

(1.13) ц(п) S  ~ (n 3'2-n ) .

It is possible that for these n the graph of Theorem 1 is extremal but we can-
not prove this. Clearly ц(п) is an increasing function of n, and thus it follows that 
for any n we have

(1. 14) ц(п) ^  l [ p i  + p + \ y i 2 _ (p2 + p +1)]

where P is the largest prime power such that P2 + P + lä n .  Now evidently for 
one can choose a prime p so that

(1.15) У п -  J -5 -  s  p g  I
log n

* After having written this paper we have been informed by W. G. B r o w n  that independ-
ently o f us he has proved (1.12), in the same way as we did. His paper will be published in the Bul-
letin of the Canadian Mathematical Society.
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which implies for п ё « !

= P2+P+  1 =  n.

Thus we have for any пШп1

(1. 16)
' W s  г " 1' ' ! 1 log*

and thus

(1.17)
. ß(ti) 1 

“  ® 2 •

On the other hand it is easy to see (this follows also from the results of I. R e i m a n  
in [3]) that

Pin) Ä 1
я3/2 ~ 2 '

(1. 18) lim sup

As a matter of fact, let Gn be a graph containing no cycle of order 4. Let Pu P2, ..., Pn 
be the vertices of Gn and let us denote their valencies byvl,v2, vn. Now clearly one

can select from the set Et of vertices joined by an edge to Pt pairs, and no

pair (Pj, Ph) can be contained in both Et and Et with l ^ i  because otherwise Pt Pj Pl Ph 
would be a cycle contained in G„. Thus we must have

(1.19)

Now we have

(1. 20) 

and thus 

(1. 21)

As clearly ^Vi = 2E{Gn), we have
i= 1

( 1. 22)

which implies

(1.23)

Thus

(1.24)

4E2(Gn)-2nE(Gn) ^ n 3

nn3'2 i /  1
l+ 4 -я ■ 4

ü M s l i / 1 + _L +  _ L
n3'2 2 j  4n 4 j/n

which implies (1. 18). Thus Corollary 2 is proved.
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ON A PROBLEM OF GRAPH THEORY 221

Let us note that weaker results have been obtained previously by E. K l e in  

(see [2]) and I. Re ima n n  [3], who proved lim inf
П-+ °°

graph does not contain triangles either; it is possible that among such graphs it is 
optimal.

Note that for the pairs (J i j , k j ) for which according to Corollary 1 one has

M O.
« 3 / 2  : 2]/2

Re ima n n ’s extremal

(1.25) lim
Fiinj, kj)kj 1

2« ,(« ;- D

Í rij. It was shown in [1] that there exists another sequence of pairs 
(kj , иj ) such that

F 2 (/7j , kj )  k j  _

one has kj

(1.26) lim
«j(«j — 1)

but for this sequence of pairs one has lim —  =+ «> .
7 — rij

It remains an open question what is the value of the function g(c) defined by

(1.27) g(c) = lim inf
k2 >nc 
n~* °°

F2(n, k)k  
n(n— 1)

for 1 we know only that g(c) is nondecreasing, \  ^g(c)and lim g (c )s l.
C-* OO

§2. Some Exact Results for d = 2.

n
In this § we deal with the exact value of F2(n, k) for - ■ = k S n  — 1. Evidently,

F2(n, n — \) = n —\, because the graph G„ in which one vertex is joined by an edge 
with all others, has diameter 2, further F(G„) =  n — 1 and E(G„)=n — 1. It has 
been shown in [1] that F2(n, n — 2) — 2n — 4 (a graph Gn with V(G„) — n — 2 and 
E(G„) = 2 n -4  and having the diameter 2 is shown by Fig. 3; another graph with 
the same properties is shown by Fig. 4), further that F2 (n, n — 3) = F2 (n, n — 4) = 
= 2n — 5. (The corresponding extremal graphs are shown by Figs. 5 and 6.)

V(Gn) = n-2  
ECGnU  2 n -U

Fig. 4
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We shall prove now 

T h e o r e m  2. We have for  и =? 13

(2. 1) F2(n,k) =  2« — 4 for П' = к = и—5.

Р/ Рг

P♦
VCGn ) = n - 3  

ECGn ) = 2 л - 5

Д?. 3

P r o o f  o f  T h e o r e m  2. The extremal graph Gn with 

V(G„) = к = n — l, (5 -  * -

and E(G„) = 2n — 4 and having diameter 2 is exhibited by Fig. 7.

V(GJ = n - l ,  E(Gn) = 2/2 — 4, n S  13.
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ON A PROBLEM OF GRAPH THEORY 223

Note that all vertices of G„ except Px, P2 and P3 have the valency 2, further 
v(Pt) =n — l, v(P2) = n — l, v(P3) = 2I—2 and by supposition 2 / - 2 s n - / .  Thus 
V(G„) = n — I. Clearly G„ has diameter 2 and the number of edges of G„ is

n, r  4 2 (n — l) + 2 l — 2  + 2(n—3)
E(G„) = ----------------- = 2/7 — 4.

We prove that for any G„ with n S  13, K(G„) =  /7 — and diameter

2 one has £ ( G „ ) s 2 / i - 4.
1 "

As E(G„) — — 2j v (Pí) we т а У suppose that Gn contains at least one point
2 i = 1

of degree S 3 . If Gn would contain no point of degree S 2 , then let us choose a point 
of degree 3; let this point be P{. Let the points connected by an edge with Px be 
denoted by P2, P3 and P4. As every point can be reached from Px by a path o f  
length S 2 , we must have v(P2) + v(P3) + v(P4) S/7 — 1.

Now if there would be a point among the points P5, ..., P„ which would be 
connected with more than one of the points P2, P3, P4 we would have v(P2) + 
+ v(P3) + v(PA)^rr, as all other points have degree ^ 3  it would follow

Z  v(Pt) /7 + 3(77-3) =  4/7-9
i — 1

and thus E(G„)>2n — 5 i.e. E(G„) S2/7 — 4, which was to be proved. Thus we may 
suppose that all points Рх( 5 ^  i^=n) are connected with one and only one of P2, P 3 

and PA\ similarly we can suppose that P2, P3 and P4  are not connected with each 
other because this would again imply v(P2) + v(P3) +v(PA) ^ n  and thus E(Gn 
s2/7 —4. If there is at least one among the Pt with 5 S /S /7  which has degree > 3 , 
it again follows that E(G„) ^2rt — 4. If however all have degree 3, let us suppose

that v(P2) =  min(v(P2), v(P3), v(P4)) which implies v(P2) ^ — . Let Ps be

connected with P2. Then v(P5) = 3 and let the three points connected with Ps be 
P2, Pt and Pj\ clearly /> 5  and 5. But then v(P2) + v(Pi) + v(Pj) ^ n — 1
and thus

6 =  v(Pi) + v(Pj) ё  2(И~  1}

that is /7^10.
As we supposed /7^13, this case is settled.
The case when there is a point Pt of valency 1 is easily settled, because if this 

point is Plt and Pt is connected with P2 only, then P2 has to be connected with 
the remaining n — 2 points too, and thus would have valency /7 — 1. Thus the only 
case which remains to be settled is when min v(P^) — 2. Suppose v(Px) = 2 and

1 ^i^tt
let PI be connected with P2 and P3. Then all remaining points have to be connected 
either with P2 or with P3 or with both.

Let С, denote the class of points Pt with / ^ 4  connected only with P2, and 
c, the number of elements of C[ ; let C2 be the class of points P-t with / ^ 4  connected 
only with P3 and c2 the number of elements of C2 ; finally let C3 be the class of points 
connected with both P2 and P3, and c3 the number of elements of C 3. Clearly
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C1 +C 2 +  C3 =  /7 —3. As the valency of P 3 cannot exceed n — l and P 3 is connected 
with every point in Gn except itself and the points in C i5 we have с2ё /  —2 ^ 3 . 
Similarly c2=/  —2 ^ 3 .

The number of edges in Gn the existence of which is already established is 
clearly c1 +c 2  + 2c3+2 = n + c 3 — l. Let us call these the edges of the first kind, 
and the remaining edges those of the second kind. As the graph has diameter 2, 
every point of Ci has to be connected by a path of length with every point of C2. 
Such a path can not contain an edge of the first kind. Thus the graph G' consisting 
o f the edges of the second kind has to be connected. Now three cases are possible. 
Either G' contains besides the points of Cj and C 2 at least one further point from 
the class C3 ; in this case it contains at least ct +  c2 +1 points and thus there are 
a t least ct +c2 edges of the second kind, and thus the total number of edges is 
E(G n)^ n - \ r c3 — l + c 1 + c 2  = 2/7 — 4. Or P2 and P 3 are connected by an edge; 
in this case we get again E(Gn) ^ 2 n  — 4. Or P 2 and P 3 are not connected and G' 
consists only of the points of Ci and C2. In this case the connected graph G' is 
either a tree or not. If it is not a tree, it contains at least Ci + c 2 edges and thus we 
obtain again E(Gn) ^ 2 n  — 4. If  G' is a tree, it must have at least two end-points. We 
may suppose that C t contains an endpoint of G'. Let x be the total number of end-
points of G' in Ci. Then the sum of valencies (in G') of the points of C t is at least 
x  + 2(c 1 —x). As G„ has diameter 2 and P2 and P 3 are not directly connected, any 
endpoint of G' in Ci has to be connected by a path of length 2 to P3, it follows that 
for every endpoint P of G' in Ci the single edge starting from P ends in C2. Let 
y  denote the number of points in C2 which are connected with an endpoint of G’ 
in C 1 . If Q is such a point, clearly Q has to be connected with every other point 
o f C 2, because otherwise there would not exist a path of length 2 from P to 
these points. Now clearly no point of C2 can be an endpoint of G', because it must 
be connected to at least one point in Ci and also to Q. Thus the sum of valencies 
in G' of the points of C 2 ist at least 2(c2 —y )+ y (c 2  — l) + x. It follows that the 
number of edges of the second kind is at least

~  {x + 2 {c1 - x )  + 2 (c2 - y ) + y ( c 2- \ )  + x) = c t + c 2 + +  c2,

because, as we have shown, c2&3.
Thus we have shown that E(G„) S 2n — 4 and the proof of Theorem 2 is complete. 
Note that the restriction 13 in Theorem 2 is necessary, because for n <13

2n — 2
there is no value of к  between -  - and n — 5.

2n —2
As regards the value of F2 (n,k) for — -—  we can show that for /7^  15

3/z — /c — 6

(2. 2) F2 (и , к) =  ' 5/7 — 4A' — 10 for

4/7 — 2Ä: — 13 for

for
3/7 — 3 2/7-2

5 3

for
5/7-3

^  к <
3/7-3

9 5

for
n+  1 5/7-3

2 9
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ON A PROBLEM OF GRAPH THEORY 225

We give in what follows the extremal graphs for these 3 cases. That these are really 
extremal can be proved in a way similar to the proof of Theorem 2, therefore we 
leave the details to the reader.

Th e  e x t r e ma l  g r a ph  f o r
3/7 — 3

S  к
2 / 7 - 2

5 -  3 '
The graph has four points of high degree; let us denote them by А, В, C, D 

and four groups of points.
There is a group denoted by AB, the points of which are joined to A and to B. 

The group contains 2k — n points. In the group BCD (connected with В, C and D) 
there are n —k — 1 points. In the group AC (whose points are connected with A and C)

Д2_Jç__^
points; finally in the group AD (the points of which are con-there are

/7 — Л: — 3 
2

points. Further the graphnected with A and D) there are /г — Ä: -— 3 —

contains the edges AB, AC, AD. The points A and В have the degree k. The whole 
graph has 3n — k  — 6  edges.

5/7 — 3  , 3/7 — 3
Th e  e x t r e ma l  g r a ph  f o r

There are 5 points of high order, A, B, C, D, E. 
The group AB has 2 k — n points,

The group BCD has - — ^— -I  points.

The group BCE has n —k — 1 —
- к - 1 
2

points.

The group AC  has 2k — n points.
The group ADE  has 2n — 3k — 4 points.

Further the edges AB, AC, AD, AE, DE belong to the graph. The points A, В 
and C have the valency n — k ; the total number of edges is 5n — 4fc—10.

Th e  e x t r e ma l  g r a ph  f o r
/7+1 5 / 7 - 3

9

There are 6 points of high order, A, B, C, D, E, F.
-n points. 

n — k — 1
The group AB  contains 2k 

The group BCE contains points.

The group BDF  contains n — k —l 

The group ADC contains

- k — l

2
■k — 5 
2 "

The group AEF  contain; n —k —5 —

points.

n —k — 5

2

points.

points.

The graph contains further the edges AB, AC, AD, AE, A F. The graph has 4/7 — 2k — 13 
edges.
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fl -)- 1
For k <  2  we cannot determine F2 (n,k)  exactly. However, we can get

a fairly good upper bound by constructing graphs of diameter 2 by the following

principles. We divide all but j of the points of a graph G„ into r groups of

approximately the same size. We connect the points of each pair of groups with 
one of the remaining points, and connect as many of these points with each other

Fig. 8

as needed. For instance if r = 4, n = 41 +  6, we put / points in each of 4 groups, connect 
each of the 6 pairs of groups with one of the remaining 6 points, and connect each 
of these points with that point which is connected with the other two groups. The 
graph obtained is shown by Fig. 8. It follows that

(2.3) F2(4/ +  6, 2 /+ 1 ) s=12/+3.

§ 3 . Some Results for 3.
We prove first

Th e o r e m  3. We have for every n, every кШ п—l and 3

(3 .1) Fd(n, к) s
kd~l

Pr o o f  o f  Th e o r e m  3. Let us put

1 - 4 Ш

(3 .2) Ö =

Clearly we may suppose <5 
evidently

(3 .3)

1, because otherwise (3. 1) is trivially fulfilled. We have

Ô
4
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We may suppose rt^~kd~1, because any graph G„ with diameter S d is connected 
and thus has at least n — 1 edges; thus F3 (n, k ) ^ n  — 1 and if n ^ k d~l the inequality

kd
(3. 1) is trivial. Thus we have to prove (3. 1) only for kd~ 1 < — i.e. for (64n)1,d<

64

Let Gn be a graph having n vertices, diameter d  and such that V(G„)=k.
Ли

Let us denote by X t, ..., X s those vertices of G„ the valency of which is <  _ t ;
К о

let Ylt ..., Y„-s be the remaining vertices of Gn. We have clearly

(3.4) 

Thus if

we have

(3.5)

s S  n 1 <5(1-<5)
2

E{Gn) ^ ~ r (l-<5).

Thus we have to consider only the case

, ,  «5(1- á )
(3.6) s >  it 1 1 —

We distinguish two cases. Either every X t (1 S z 'S i)  is connected with at least 

| l  — y j  of the vertices Yj, or not. In the first case we have

(3.7) E(G„) =  í  11
«5 I n

2 F 3 7
( 1 - 5 )

k d~'

Thus we may suppose that there is an Xt — say X 1 — which is connected with less

than 11 — y j  ^d_ l Yj-s. We shall show that this case is impossible. By supposition

we can reach, starting from X lt every vertex of G by a path of length ë d . Let us 
consider first those paths starting from Xlt the next vertex of which is an Yj .

As Yj can be chosen in < | l  — y j  ways, and all vertices of Gn have valency

= k, the number of such pathes is at most

(3' 8) | l _ l ) ^ ( 1 +  (fc_1) + (A:_1)2 + - +(A:_1)‘'"1) -  f l - l ) " -

We may also suppose that к  >64.
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Let us count now the pathes of length ^  d  starting from X x, on which the point 
next to X x, is an X t. The number of such pathes is clearly at most

(3.9)
An

k* - l 8

An
1 + ^ - i 5 ( 1 + ^ _ 1 ) +

ön

T ’

It follows from (3. 8) and (3. 9) that the total number of vertices which can be reached

from X x by a path of length ^  d, can not exceed "(‘ 4 )
12

which is ~  n — 2 if /7 =  — , 
d

and this is true if /7—1 64; thus we arrived to a contradiction and this proves
our theorem.

n2

To show that the order of magnitude —2- of the lower estimate of F3 (n, k)

is best possible, consider the following graph G„: Take a complete graph Gr having 
r vertices, and connect each vertex of Gr with r — 1 new points. Thus we obtain 
a graph G„ with r(r—\) + r = r 2 = n vertices. Clearly one has k =  V(Gn) = 2r — 2,

л /  2

D(Gn) = 3 and В Д  =  у г ( г - 1 ) .  Thus E(Gn) ~  .

In this example к = 2(Уп — l); by slightly modifying this example we obtain that

F3 (n, к )
к 2

( ^ + l ) 2 l i  +  T

if k ~ c n  where 0 < c < l .

7 7 2

To show that F3 (n, k) is of order of magnitude ^  for к ~ к У п  where

0 < A < 1  we have to apply a more involved construction. Let us consider a graph 
G„ which has the vertices Pgij where 1 ^ g ^ I ,  l ë i ë j ,  l S / S s  and the vertices

Qghi where \ S g < h ^ l  and l ^ i S t ;  thus /7 =  /s2 +  Suppose that the edges

of Gn are as follows:

a) Pgij and Phij are both connected with Qghi for 1 i , j=  1, 2, s.

b) Qghi, is connected with <29a ;2 for l S t ' j S j ,  1 =  /2 =s, ix Ф /'2, l= g < /7  =  /;

c) Qgih,i and Qgihli are connected for 1 ^ g x< h x^ l  and l S g 2< //2S /, 
i = l , 2 ,  s.

Clearly

E(G„) = 2

further v(Pgij )—s — 1 and

t’( Qghd — s +  l — 1 + - 1
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and thus V(G„) =s + /+ — 2. Thus we obtain

0 ‘
F3  +1,, S’, J +  /+

( / + ! ) / ( / - ! ) ( / - 2) 

8
2 ^ 2 5 2 + +

By other words by choosing for / an arbitrary fixed natural number and for 5  tending 
to +  we obtain an infinite sequence of pairs n, к  such that

and F3 ( n , k ) S ^ l ( l - 1).

Thus for arbitrary small Я > 0  there exists an infinity of pairs n, к such that к ~  and

Let us study now the behaviour of F3 (и, k) for large values of k. Clearly

F3 (n, k) = n — 1 if fcs-”- because the graph G„ shown on Fig. 9 has diameter 3

V((?„) =  к  and Gn is a tree, thus it has n — 1 edges ; this result is best possible because 
a connected graph G„ cannot have less than n — 1 edges.

Fig. 9

We prove now the following

Th e o r e m  4. I f  - ^ - r  + s - l ? £ k ^ ~  + s - 2  
j + 1 5

F3 (n, *) =  и +  ^ ) - 1 -

where 5 = 1 ,2 , 3, . . . , then

Pr o o f  o f  Th e o r e m 4. The case 5 = 1  has been settled above. Let us consider 

first the case 5 =  2. Suppose Gn would be a tree of diameter 3 and K (G „)=A :Sy, 

and let Py be an endpoint of Gn (such a point exists as every tree has at least two
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endpoints). Let P2  denote the single point connected with I \  by an edge, and let 
P 3, Pi be all the other points connected with P 2 as V(G„)=k we have Ш к +  1. 
The remaining п —к —1 ^ к — \ш 1 —2 points have to be connected with one of the 
points P3, ...,Pi because otherwise it would be impossible to reach them from 
P x by a path of length S 3 . But they can not be all connected with the same point 
Pj (3 Sy S I) because this point would have valency >k.  Let Pr and Ps be two 
points ( /< r < S / i )  such that Pr is connected with P t and Ps with Pj (3S /< y 'S /) . 
Then the (unique) path from Pr to Ps has length 4; this contradiction shows that

F 3 {n, k ) S n  for ^ — 2  •

n n
On the other hand Fig. 10 shows a graph Gn with V(G„) = к where — +  1 s L s  y  

which has diameter 3 and contains exactly one cycle (a triangle) and thus E(G„) = n.
П  Y l

This completes the proof of the fact thrt F3 (n, k) = n for у  +  1 S  к  S  —.

Note that for n = 2 k + l  there is another extremal graph G2fc+i of diameter 3, 
for which V(G2 k+i) = k  and E(G 2 k+\) = 2 k + \ ,  shown by Fig. 11.

Now we pass to the case î S 3.
3

Let G. be a graph with V(Gn) = k , + д — 1 SA:S — + s  — 2;
( s  + 1  s

and D(Gn) = 3. Let X u X , be the endpoints of Gn. As the remaining n — l points
all have valency &2, and at least one among them has valency k, we have

F (G „)S  i ( /  +  L +  2 ( n - / - l ) )  =  n - - 2 + ~ - L
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Now if E(Gn) ё и  + Í 2 J — 1, we have nothing to prove; if however E(G„)<n + 

we get

l> k  — s(s — — 1

thus / S 2. Let Ylr ..., Yv denote those vertices of G„ which are connected with 
at least one Xj (1 ^ j ^ l ) .

Clearly YI and Yj are connected by an edge ( lS i< /S t> )  because otherwise 
there would not exist a path of length 3 connecting the Xh-s. Thus it is sufficient 
to consider the c a se rn s , because every connected graph G„ containing a complete

л+  1-graph has at least n — 1 + j edges. Let us suppose therefore that v ^ s .

We prove first that v S i .  Let the endpoint X t be connected to Yx. Let Z t , ... Z r 
denote all the points connected with Y 3 which are not endpoints of G„. As every 
point of G„ can be reached from X l by a path of length S 3 , if Yt is connected

r

with p  endpoints then we have v(Zh) ^ n —p — 1 thus
/1 = 1

E(G„) s  ( n - p - l  +p + r + l + 2 ( n - l - r -  1» =  ~ 2  ~

thus in case Е(С^)<п + ^^  j — 1 we get

/S n  —r —i( i  — 1).

As however each Yj has valency Sfc, it can be connected to at most к of the Af;-s, 
and YI only to k  — r X r s; thus

(v— l)k + k  — r ^ n  — r — i ( i  — 1)

3

and therefore, in view of s S we obtain v =-i — 1 i.e. v S i .  Thus we have only

to consider the case v = s. Now if v = s there exist in Gn at least s points which 
are not connected to any of the Yj-s because these have valencies S/c and thus 
the total number of points connected with them is — (s — l))S n  — s. Let W
be such a point.

Now clearly W  has to be connected with each Xh by a path of length 3 and 
therefore with each Yj by a path of length 2. Let Ulf ..., U, be the points connected 
with W, then each Yj is connected with some Uz Thus it follows

E(Gn) s  ~  (2l+s(s— l )  +  2s+2t + 2(n — l —s —t — l ) )  =

=  / + [2 ] +5  +  i+  t — 1 =  л +  j^J —

Thus F3 (n, k) S /г +  — 1- On the other hand consider the graph G„ of the follow-

ing structure: let us take a complete graph Gs+l having i+ 1  points, and connect
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each of these points except one with k — s endpoints, and the last with n — s(k — s) —
— (s+ 1 )  points. (Clearly 0 ^ n  — s(k — s) — ( s + l ) S k —s).

Thus we obtain a graph G„ with V(Gn) = k, D(Gn) = 3 and F(G„) =  n +  j — L

This completes the proof of Theorem 4.
____Let us consider now F4 (n, k). Clearly

F4 (n, k) = n — 1 if k ^ ^ n — 1.

This can be seen as follows. Fig. 12 exhibits a tree of diameter 4 showing that 
F4 {k2  + \ , k )  — k 2

Clearly if (/c — l ) 2 +  1 к 2 +1, we obtain a graph Gn exhibiting F4 (n, k) =
— n — 1 by omitting from the graph on Fig. 12 k 2 + l —n endpoints. We shall

prove now

T h e o r e m  5.

F4 (k2 + 2 ,k )  ë  k 2 + l + -  ÿk (k = 2 ,3 ,...) .

P r o o f  o f  T h e o r e m  5. Let Gkz+2 be an ext-
remal graph i.e. one which has k 2  + 2  points, 
diameter 4, satisfies the condition V(Gk2+2) = к  and 
has F4  (k2  + 2 , k) edges.

Let Xi,  ..., Xm be the points of Gk 2 + 2  having 
valency ё 2 , and let G* be the subgraph of Gk2 + 2  

spanned by these points. We assert that each point 
X t has the valency S 2  in G* too. Suppose that 
X k is an endpoint of G£, and that X 2  is the only 
point of G* to which X i is connected. Clearly X k 
is connected with at least one endpoint Yk of 
Gk2 + 2  because it has valency ^ 2  in Gk2+2, thus it 
is connected with some point of Gk2 + 2  different 
from X 2  and this point cannot be in G* and 

thus is an endpoint of Gk2+2. Every point of Gk 2 + 2  can be reached by supposition 
from  Yk by a path of length S.4. However the number of points which can be 
reached from Yk by such a path is clearly

^ 2 k - \ + ( k - l ) 2 = k 2

which is a contradiction. Thus in G* each point has valency s 2 .  As the diameter 
of G* is s 4 ,  it follows from (1. 1) that G* contains at least one point of valency

Fig. 12

ÿ m — 1; thus the number of edges of G* exceeds (m — X)+ % {Ím— l). Each point 
in Gfn can be connected with at most k — 2 endpoints of Gk2 + 2 thus /с2 +  2 ^  m +

k 2 + 2
+ m (k  — 2 ) = m (k  — l) and therefore m S------ r sA :+  1 ; thus

E(Gk 2 + 

Thus Theorem 5 is proved.

2 ) ^ k 2  + l + j ^ m - l ) k 2
■1 +  1 ^ -
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Note that the statement of Theorem 5 is trivial for 16, because it states 
only what we know already that if D(Gk2 + 2) =  4 then Gki + 2 can not be a tree.

To get an upper estimate for F4 (k2 +2, k) — k 2 consider the following graph. 
Take a graph Gk + 5  with V(Gk + 5) = k, D(Gk + 5) = 2 and E(Gk + 5) = 2k + 6 ; such 
a graph exists according to Theorem 2 if к  S  8 (see Fig. 7 with /= 5 ). This graph 
has к + 2 points of valency 2. Connect к out of these points with /с —2 new points 
each and one with к  — 3 new points. Thus we get a graph G„ with n =  k 2  +  2 points, 
such that V(G„)=k, D(G„) = 4 and E(Gn) = k 2 + k  + 3. Thus

Fd(k2 +  2, k) к 2 +  к  +  3.

§ 4. Some further Remarks and Unsolved Problems

First we formulate some general principles of construction which were implicitely 
used above.

If G„ is a graph of diameter d, and such that V(G„) — k, then if Gn is not regular, 
we may construct from Gn a graph GN of order N  = n + k n — E(G„) with V(GN) —k  
and diameter d+2,  by connecting each vertex Pt of Gn which has valency v(Pt) <  к  
with к —v(Pi) new points. Thus

(4. 1) Fi+2(n + k n - 2 F d(n, к), к ) ш к п - Fd(n, к).

For instance we have shown that F2 (n, n — 5) = 2n — 4. It follows immediately 
from (4. 1) that

F4 (n2 — 8/1 +  8 , n — 5 )S n 2 — In + 4.

Notice that for each value of d, the extremal graphs Gn with V(G„) = k, D(G„)=d  
and having a minimal number of edges, are trees if к  is sufficiently large, к  S  Ud{ri) say. 

We have implicitely shown that

(4.2)

(4. 3)

(4.4)

It can be shown that 

(4. 5)

U2(ri)=n — \

U ,(n )  =  j

UA{ri) =  j/й ^ Т .

U M  =
1 +  Í 2 n  — Í

further that for any fixed s ë 3  and

(4.6) U2 s( n ) ~ í n

and

(4. 7) U 2s+1(.n )~  I/ у  .

The extremal tree of diameter 2s has a center, while the extremal tree of diameter 
2 s + 1  has a central edge.
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Notice that if к  decreases by one below the critical value Ud(ri), i.e. to Ud(n) — 1, 
there is a considerable increase in the value of Fd(n, k) if d is even, but not if d is 
odd. As a matter of fact

F2 (n, U2 ( n ) - l ) - F 2 (n, U2 («)) =  (2n — 4) — (л — 1) = n -  3 

F3 (2k + l, k ) - F 3 (2k+ l, k + l) = (2k + l ) - 2 k =  1
and

F3 (2k + 2, k ) - F 3 (2k + 2, Аг+1) =  (2k + 3 ) - (2 k +  1) =  2

further as proved by Theorem 5

F^(k2  + 2 , k) — F4 (k2  +  1, k) S  ~  Í'k.

The situation is similar for d > 4.
We call attention to the following problems, left open in this paper:

P r o b l e m  1. Is the graph of Theorem 1 extremal in the sense that among all 
graphs with n vertices and not containing any cycle of length 4 does it have the 
maximal number of edges? (We have proved only that it is asymptotically extremal.)

We can prove the following result, which is connected with Problem 1.

T h e o r e m  6 . If Gn is a graph in which any two points are connected by a path 
of length 2 and which does not contain any cycle of length 4, thenn =  2 /c+ l and

Gn consists of к triangles which have one common 
vertex (see Fig. 13).

P r o o f  o f  T h e o r e m  6 . Let G„ be a graph 
with the required properties. Let P, be a point of 
G„ having maximal valency. If I \  is connected with 
all the remaining points of G„ then evidently these 
have to be connected by pairs, and Gn is of the 
type described in Theorem 6 . Thus we may suppose 
that Gn contains at least one point P 2 which is 
not connected with P , . It is easy to see that in this 
case K(P2) =  F(P i).

As a matter of fact there is a point P3 in Gn 
which is connected with both P 1 and P2. As there 
must be a path of length 2 between P, and P3 

there is a point P4 which is connected with both P 1 and P3. As there has to be a path 
of length 2 between P 2 and P3, there is a point P 5 connected with both P 2  and P3, 
which is clearly different from Pt , P2, P3 and P4. Let Qu Q2, ..., Qk ~ 2  be the 
remaining points (besides P3 and P4) which are connected with P ,. Clearly P 2 

and P s are not among the Qt; we have 4 because u(P3) s 4  and by supposition 
P l has the maximal valency.

Now from each of the points Qt there is a path of length 2 to P2 ; thus for each 
Qi (i — 1, 2, ..., k  — 2) there exists a point which is connected with both Qt and P2. 
Clearly RfT^Rj if i ^ j  because otherwise Gn would contain the cycle P, 6 ,P ,0 (. 
Further P; is different from P3 because if R t would be identical with P3 Gn would 
contain the cycle P^Q^P^.. Finally Rt is different from P5 because otherwise Gn

Fig. 13
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would contain the cycle P lQiP5 P3. Thus v(P2) = k  and as k = V(G„) we obtain 
v(P2) = k  = v(Pl). Thus any point of G„ which is not connected with P 1 has the va-
lency k = v(Pi). Repeating the same argument with P 2  instead of Px it follows that 
v(Qd = k  ( /=  l ,2 , . . . ,k  — 2). As P 3 is not connected with Qt (because otherwise G„ 
would contain the cycle P t Qy P 3 P4) repeating the same argument for Q instead of 
P t it follows that v(P3) = k. Thus the graph G„ is regular.

Now if V(Pj) — k  (i=  1 , 2 , n) and Gn does not contain a cycle of length 4 
and between any two points there is a path of length 2, then clearly if S t denotes 
the set of points connected with P, then the sets S t and Sj have exactly one point 
in common, and for any two points Pt and Pj ( j ^ i )  there is exactly one point Ph 
such that Sh contains both Pi and Pj. Thus if we define the sets of points S t as lines 
we obtain a finite plane geometry, with k = P + l  points on a line, and thus having 
n = P 2 + P + \  points. But then in this geometry there would exist a one-to-one 
mapping beween points and lines such that no line contains the point corresponding 
to it, and such a mapping is known [5] to be impossible. This proves Theorem 6 .

ft
Pr o b l e m  2. To determine the exact value of F2 (n, k) for y , or at least 

the asymptotic value of F2 (n, [ис]) with 0 < c <

Pr o bl e m 3. Is the lower estimate in Theorem 3 asymptotically best possible,

i.e. do there exist for each d ^ 3  a sequence of graphs Gn (n — °°) with V(G„) = k ~ c n d ~ 1

n 2 n
where o O  is a constant, D(Gn) — d and E(Gn) ~  d_ t ~  ?

К с

P r o b l e m  4. Determine asymptotically F4 (k 2 + 2, k) — k 2.

Problems similar to those considered in this paper can be asked for directed 
graphs. We hope to return to these problems in an other paper.

( Received February 1, 1966.)
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