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1. THE RENAISSANCE OF COMBINATORIAL
MATHEMATICS

It is beyond doubt that we are witnesses of a renaissance
of combinatorial problems and methods in mathematics. This
process started slowly and became evident only gradually in the
last two decades, but its origins can be traced back to the 1920’s.
Without exaggeration one can say that all main branches of
mathematics contributed to some extent to this development.

Probability theory and statistics was even at the time of
stagnation of combinatorial mathematics in the nineteenth cen-
tury and the beginning of our century the main source of pro-
blems and the main consumer of results of a combinatorial
character. The rapid development of probability theory, which
has been going on with increasing speed since the 1930’s, meet-
ing successfully the constantly growing challenge of its applica-
tions in practically every branch of human knowledge, was also
the source of many problems of a combinatorial character. New
types of combinatorial problems were raised in statisties, con-
cerning the design of experiments and in the theory of order
statistics. Another source of combinatorial problems was the
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arc-sine law, which led to the development of an important com-
binatorial theory'. Recently information theory became a rich
source of combinatorial problems of a quite new type.

As a second source of the revival of interest in combina-
torial mathematics, graph theory has to be mentioned. Before
the second world war Hungary was one of the few countries
where graph theory:was taken seriously. The general opinion
of mathematicians before the war is reflected in that some
mathematicians called graph theory the “slums” of topology.
However, in the years after the war it has been quickly re-
alized all over the world that graph theory is a basic and in-
dependent chapter of combinatorial mathematics, having impor-
tant applications, e.g., in operations research, in chemistry, in
statistical physics, ete.. (Some such applications will be men-
tioned in what follows.)

A main cause of the revival of interest in combinatorial
mathematics was the recent development of numerical analysis.
The appearance of modern high speed computers led to a strong
shift to finite mathematics in general, and thus to combinatorics,
in particular.

Besides these main sources, stimulation came also from al-
gebra (finite groups, Galois fields, matrices, lattices, ete.), geom-
etry (finite geometries, discrete geometry), number theory, (dif-
ference-bases, combinatorial methods of P. Erdés), set theory,
topology and mathematical logic (Sperner’s theorem, Ramsey’s
therem) and also from statistical mechanics (Ising models), genet-
1cs, ete.. The wide spectrum of modern combinatorial mathe-
matics and its various applications is exhibited by [1].

2. GENERAL METHODS AND SCOPE OF
COMBINATORIAL MATHEMATICS

Characteristic for the present state of affairs of combina-
torial mathematics is the wealth of particular problems and the
lack of a systematic theory. Only a small number of basic
methods are available. Among these the method of generating
functions is to be mentioned first, which also plays a role in
several other methods: in the counting method of G. Polya,
generalized by N. G. de Bruijn, in symbolic methods, in the

1 These problems were discussed in detail at a meeting held in Aarhus in 1962.
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operator-method of G. C. Rota, etc.. The application of alge-
braic tools (finite fields, group theory, the Pfaffian, etc.) can also
be considered as one of the general methods in combinatorial
mathematics ; in the analysis of networks, methods and concepts
of Boolean algebra and mathematical logic are successfully ap-
plied. Another general method in combinatorial mathematics is
the application of probability theory as a tool. We shall deal
with this method in detail in the following sections of the present
paper. In spite of the availability of these general methods of
approach, if one is confronted with a particular problem of an
unusual type, usually one has to attack it in an ad hoc way,
and there is no general theory which would guide in the solution.
The main reason for this seems to be that the field of combi-
natorial mathematics is still far from being systematized.

It is rather difficult to define at all what combinatorial
mathematics really is, and to tell what its main chapters are,
or what basic types of problems can be distinguished.

One possible and often used definition can be formulated as
follows. Combinatorial mathematics is the theory of finite sets:
it deals with relations and functions, and further, with sets of
functions defined on finite sets, especially with problems of enu-
meration, construction and existence. It should be added that
there are certainly some results concerning infinite sets (e.g.,
infinite graphs) which are undoubtedly of a combinatorial char-
acter. Thus in this respect the above definition seems to be a
bit too restricted. However, in another respect the definition
is not enough restricted, as clearly not every investigation con-
cerning finite sets is of combinatorial character. For instance,
though the study of the symmetric group of all permutations
of a finite set is certainly a part of combinatorial mathematics,
and in spite of the fact that every finite group is isomorphic to
a subgroup of a symmetric group, nevertheless the main body
of the theory of finite groups belongs to algebra and is not of
combinatorial character.

Somewhat vaguely, problems concerning finite sets which are
of a combinatorial character can be characterized by the fact
that these problems are usually independent of the labelling of
the elements of the basic set, i.e. invariant under any permuta-
tion of these elements. This is a common property of most
(but not all) of those problems which we feel to be of combi-
natorial character. Problems in which the elements of the basic
finite set have individual character and the set possesses an al-
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gebraic structure, belong usually to some other field of mathe-
matics, e.g. algebra, number theory, etc.; nevertheless such
problems may also exhibit combinatorial features.

3. PROBABILITY THEORY AS A TOOL OF
COMBINATORIAL MATHEMATICS

Most classical results of combinatorial mathematics have
been developed—since the time of Pascal and Fermat—with the
aim of being applied in probability theory. However this rela-
tion between probability theory (as the field of application) and
combinatorics (as a tool) can be reversed, and this led to interest-
ing and even surprising results. Many important combinatorial
problems can be attacked only in this way, or at least this is
the easiest way of approach. For instance, in order to prove
that combinatorial objects having certain properties exist, often
the only available method is to show that by introducing a
probability measure in a certain (finite) set of combinatorial ob-
jects, the subset of objects possessing the required properties has
a positive probability and thus cannot be empty. This method
of proof of course does not lead to an effective construction,
only to proofs of existence. However, often such a proof shows
not only that there exist objects of the required type but also
that most of the objects of a certain set have the required
properties, i.e., it is an exception if an object of the given type
does not have the required properties.

As a matter of fact, the probabilistic approach is particu-
larly useful if one wants to study typical properties of members
of a class of combinatorial objects (like graphs, matrices, parti-
tions, permutations, ete.), i.e., properties possesed by a major-
ity of objects belonging to the class considered, as contrasted
with properties which are possessed only by a negligibly small
minority of these objects. In some cases in this way problems
of enumeration can be solved also, at least asymptotically. In
the following sections we shall illustrate these statements with
some examples.

The aim of this paper is to present a few characteristic
examples for the different ways in which probabilistic methods
can be used in combinatorial mathematics. No attempt is made
to achieve completeness in any respect and the selection of ex-
amples is of course strongly biased in favor of examples con-
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nected with my own work, done mainly in collaboration with
P. Erdos.

4. PROBABILISTIC EXISTENCE PROOFS

One of the earliest examples of the application of probabi-
listic ideas in graph theory is the following theorem of P. Erdds

[3]:

For every sufficiently large n there exist graphs G,, having
n vertices, such that meither G, mor its complementary graph
G contains a complete subgraph with more than 2logn[log 2
vertices.

The proof can be told in two different ways: its probabi-
listic nature can be disguised or be emphasized. We shall choose
the second way, and prove slightly more than stated above,
namely the following :

For every fixed p with 0 < p <1 and for every m = ny(p)
there exists a graph G, having n vertices such that G, does mot
contain a complete graph with more than 2log n/[log (1/p) ver-
tices and G, does mot comtain a complete graph of more than
2log m/log (1/(1 — p)) wertices.

This can be proved as follows: Let H, be a set having »
elements. Let I", be the random graph obtained by connecting
any pair of points of H, by an edge with probability p, inde-
pendently for each pair. Let I', denote the complementary
graph of I', (i.e., two points P and Q of H, are connected by
an edge in I', iff they are not connected in I',). Let v(G,k)
denote the number of complete sub-graphs of order %k in the
graph G and let E, denote the expectation with respect to the
probability measure introduced. We shall show that for suffi-
ciently large n,

s

+v<1‘*n,[v21}?lg—fg}+11))<1.

As a matter of fact
k k
B, (T ) = (1) o < wp®) ke

and thus
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(2) E,,<v<l"n, [i;of/’;] 4 1)3 = (1),

Similarly we obtain

(3) E,,(v <fn, [Kg%} n 1)) = o(1),
because

EP(v(Fn! k)) = El—p(v(Fn’ k)) ’

and thus (3) follows from (2), replacing p by 1 — p. Thus, for
sufficiently large =, (1) holds, i.e. there exists at least one graph
G, having n vertices, for which

v<G,,, [i;"f/m 1 1) 3 v(é,., {miﬁ%] s 1) —0

as was to be proved.

Clearly for p = 1/2 we obtain the theorem of Erddés men-
tioned above. It should be added that no method of construc-
tion is known for the graphs, the existence of which was shown
above, '

As another, more involved, example of the same type let
us mention the probabilistic proof [8] of the fact that most of
the graphs with n vertices are, for large values of n, almost
as asymmetric as possible.

We consider only non-directed graphs without multiple edges
and without loops. We call such a graph symmetric, if there
exists a non-identical permutation of its vertices which leaves
the graph invariant. In other words a graph is called sym-
metric if the group of its automorphisms has order greater than
1. A graph which is not symmetric will be called asymmetric.
The degree of symmetry of a symmetric graph is evidently
measured by the order of its group of automorphisms. The
question which led us to the results mentioned is the following :
how can we measure the degree of asymmetry of an asymmet-
ric graph ?

Evidently any asymmetric graph can be made symmetric
by deleting certain of its edges and by adding certain new edges
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connecting its vertices. We shall call such a transformation of
the graph its symmetrization. For each symmetrization of the
graph let us take the sum of the number of deleted edges—
say r—and the number of new edges—say s. It is reasonable
to define the degree of asymmetry A[G] of a graph G, as the
minimum of 7 + s where the minimum is taken over all pos-
sible symmetrizations of the graph G. Clearly the asymmetry
of a symmetric graph is according to this definition equal to 0,
while the asymmetry of any asymmetric graph is a positive
integer.

The question arises: how large can the degree of asym-
metry be for a graph of order »? We shall denote by A(n)
the maximum of A[G] for all graphs G of order n.

We have shown that the asymmetry of a graph of order
n cannot exceed (n — 1)/2 if » is odd, while if » is even the
asymmetry cannot exceed (n/2) — 1; further, that this esti-
mate is asymptotically best possible, that is, for any ¢ > 0 there
can be found an integer m, such that for any n = n, there ex-
ists a graph G, of order n for which A[G,] > (n/2)-(1 —¢). In
other words,

lim A®)

noo N

1
5 -

Our proof is not constructive, only a proof of existence.
It uses probabilistic considerations. This method gives, how-
ever, more than stated above: it shows that for large values
of m most graphs of order » are asymmetric, the degree of
asymmetry of most of them being larger than (n/2)-(1 —¢),
where ¢ > 0 is arbitrary.

I would like to add that no method is known to me to
construct effectively a graph G, with degree of asymmetry k
for any k, even if no restriction on the number n of vertices
is made.

As a third example for a probabilistic proof of existence
1 mention the proof of the existence of codes with given pro-
perties by the method of “random codes” (see e.g. [26]). The
basic idea of this method—due to Shannon—is similar to that of
the proof of Theorem 1; an additional complication arises be-
cause one has to distinguish between the average error and the
maximal error of a code.
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5. PROBABILISTIC PROOF OF TYPICAL PROPERTIES
AND ASYMPTOTIC ENUMERATION PROBLEMS

We start with the following simple example: in a tourna-
ment in which every player plays against every other exactly
once and no game can end in a tie, the expected number of
cyclic triples is exactly equal to one fourth of the total number
of triples. (See e.g. [15]). This can be shown simply as follows :
select any three players A, B and C. We can suppose that B
has defeated A. In this case the triple A, B, C is eyclic if and
only if C has defeated B and A has defeated C. If the chances
of every game are equal (i.e. 1/ 2) for each player, and inde-
pendent from the outcome of every other game, then the prob-
ability of C defeating B and A defeating C is equal to 1 /4,
which proves our assertion. It should be noted that it has been
shown by Kendall and Smith that the maximal number of
cyclic triples is asymptotically the same: if the number of play-
ers is denoted by =, the maximum is (n® — n)/24 if n is odd
and (n® — 4n)/24 if n is even; thus the result can be stated as
follows: “in most tournaments the number of cyelic triples is
asymptotically maximal.”

Many results of this type have been proved by P. Erdés
and A. Rényi, in the theory of the evolution of random graphs
([4], [5], [6], [7], [12]). We mention here the first of these results:
if n is large most graphs having n vertices and N edges are
connected provided that (2N — nlogn)/2n is a large positive
number, while only a small minority of such graphs is connected
if (2N — nlogn)/2n is a large negative number. More recent-
ly we have shown that in case (2N — nlogn)/2n is a large
positive number the majority of graphs having n vertices and
N edges contains a factor of degree 1 (see [12]). The theory
of the evolution of random graphs has been recently applied
also in chemistry, see e.g. [2].

Another recent result, due to A. Rényi and G. Szekeres
[25], states that the order of magnitude of the diameter of
most trees of order n is ¢y7m. Such results can usually be
sharpened to results concering asymptotic distributions. For in-
stance the result on random trees containing the above men-
tioned statement is as follows: let us consider the set I , of
all labelled trees of order =, with vertices P,, P;,..., P, and let
h(T,) denote the height of the tree T, € J, over the point P,
(i.e., the length of the longest path in T, starting in P,). Let
F,(x) denote the probability that choosing at random a tree 7T,
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from_ the set &, (with uniform distribution) one has A(T,) <
zv'2n. Then the limit distribution

lijn F,(x) = F(x)

exists and is given by the formula (1.c [25])

2 & 22,2
477.'3 Enze—nn/z (O <x <+ OO).

n=1

F(x) =

Hence the expectation of A(T,) is ~+ 2zn.

Note that in this problem it is trivial that A(7,) can take
on every value between 1 and n — 1; the question is not one
of existence, but one of (asymptotic) enumeration.

Let us mention in this direction a recent result of J. Komlos
[18]: the great majority of all » by = zero-one matrices are
non-singular if n is large, and the same holds for matrices with
elements + 1. (Note that though the two questions are closely
related they are not identical: the probability of a random =
by m» matrix with elements + 1 being non-singular is the same
as the probability of a random = by n zero-one matrix being
non-singular provided all elements of its first row are equal to 1).

A similar result (see [10]) which we obtained with Erdds is
that most of the » by m zero-one matrices containing N ones
and n? — N zeros have a positive permanent provided that ¢ =
(N — nlogn)/n is large. More exactly we have proved that

2
if we select one among the <%> such matrices at random

(with uniform distribution), the probability of its permanent
being positive is ~ e *°. We have also proved that if (N —
nlogmn — (k — 1)nloglog m)/n is large then the permanent of
the majority of such matrices is >k for k =1,2,... .

Recently P. Erdés and P. Turdn have studied random per-
mutations (see [11]). They have shown that if O(//,) denotes
the order of a permutation /I, of n elements, then except for
a(n!) permutations log O(11,) lies between the limits — (1/2) log*n
+ (log n)**** where ¢ > 0 is arbitrary small.

The proof of these statements consists of two parts. Let
a, denote the number of cycles of length k in the permutation
II,. Then clearly O(/1,) is equal to the least common multiple
of those numbers &k for which a, = 1. Now it is proved in [11]
by a number theoretic argument (this is the hard part of the
proof) that for the majority of the permutations log O(/7,) is not
too far from S a.logk = S,. On the other hand it is easy to
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show that the mean value of S, is asymptotically equal to
—(1/2) log*n and its variance to (1/3)log®n; from this the re-
sult follows by Chebyschev’s inequality. More exactly we have

(4) E(s) = 5 18k

and

(5) DZ(S):ZIngk_ s M,
T = Rt M

Formulas (4) and (5) can be deduced from the following remark,
due to L. A. Shepp and S. P. Lloyd: if /7, is chosen at ran-
dom with uniform distribution on all n! permutations of order
n, the joint probability distribution of (ay, a, .. ., a,) is the same
as the conditional joint distribution of the independent random
variables 3, 8,, ..., 8, such that B has Poisson distribution with
parameter z*/k (0 <2< 1; k=1,2,...,7n) subject to the con-
dition ?‘_ kB = m.
=1

Erdés and Turdan have proved also in another paper (in
print) that log O(/1,) is asymptotically normally distributed with
mean E(S,) and variance D*S,). To prove this, besides the
number theoretic estimations mentioned, a possible starting point

is the following explicit formula for the characteristic function
of the random variable S,:

(6) E(e“sn)=(1—z)exp{iklz—f”}.

k=1

(6) follows also from the mentioned remark of Shepp and Lloyd.

6. OTHER USES OF PROBABILISTIC METHODS

Probabilistic methods can also be applied in the theory of
search; it turns out that under certain conditions a random
strategy of search may be asymptotically almost as good as
the (usually much more complicated) best systematic strategy
(see [21], [22], [23], [24]).

In other cases the number of operations to be carried out
when applying a random strategy of search is larger by a con-
stant factor only, compared with the corresponding number for
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the best systematic strategy. This is the case, for example,
for the much discussed problem of separation of the fair and
the counterfeit coins (see [9] and [19]) and for a related prob-
lem where the factor is log,3 = 1.58... .

We have proved that the random search algorithm needs
(log, 9)-n/log, n weighings, while Lindstrom has shown that the
best systematic algorithm consists of 2n/log, n steps only.

It should be mentioned that in the asymptotic evaluation
of combinatorial results, the analytic methods developed under
the influence and in close connection with probability theory
may be successfully used even without a probabilistic interpre-
tation. In this context I would like to call attention to the re-
sults of W. K. Hayman [17], who has shown that the moduli
of the terms around the maximal term of the power series of
an entire function are asymptotically normally distributed pro-
vided the function belogs to a certain rather wide class- called
by Hayman the class of admissible functions. This class con-
tains, e.g., the function e”; in which case one gets as a par-
ticular case of Hayman’s result an asymptotic formula for the
number 7(n) of partitions of a set of » elements, namely the
formula

exp(n(rn+l—1) —1>

n

L) = vlogn

where 7, is defined as the positive root of the equation 7, =
(Compare [20]).

Another way to deduce this result is by the following prob-
abilistic interpretation of the Bell-numbers T'(n): let x,, x,, ...,
z,... be independent random variables each having a Poisson
distribution with mean value 1. Let v be a random variable,
independent from the x,s, having a Poisson distribution with
mean value e. Then the random variable y =o, + 2, + ... + =,
has the distribution

P(y:n)=£§"—)e"‘ m=01,...).

The asymptotically normal distribution of many combina-
torial functions has been proved by V. Gonéarov [14] without
a direct probabilistic interpretation. Those results where a
probabilistic interpretation is found are more elegant, like that



12

Alfred Rényi

given by W. Feller [13] concerning the asymptotically normal
distribution of the number of inversions and cycles of a random
permutation and that given recently by L. H. Harper [16] on
Stirling numbers.

We did not discuss in this paper the probabilistic proofs

of combinatorial identities, because it has long been well known
that this method of proof is available for a large number of

identities.
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