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Remarks on the Poisson process.

A. Rényi

The (inhomogeneous) Poisson process on the real line is usually characterised as a

stochastic additive set function f (E) defined for each bounded Borel subset E of the
real line such that
a) the random variable f(E) has for each bounded Borel set E a Poisson distribution,

i.e. [A(E) e = A(E)

n!

(1) B(£(B) = n)

(n=0,T900s )

where A (E) is a nonatomic measure on the real line such that A (E) is finite for each
finite interval E, and
b) if E’l' E2,...,En are mutually disjoint bounded Borel sets the random variables

§ (‘E,] Yseeey §(E,) are independent.

If we put j;'b = f([O,t)) for t > 0, this means that §t is a process with indepen-
dent increments such that Jf ™ §s has a Poisson distribution with mean value
A(t) - A(s) where A (t) is the A -measure of the interval [0,5) if ¢t > O and
-A(t) 1is the A -measure of the interval [t,0) if t< 0. D.Szész (oral communica-
tion) asked the question whether there exists a point process for which a) holds but b) does

not hold.

We shall show in this note that such a process does not exist, i.e. the usual supposi-
tion about independence in the above characterisation of the Poisson process is unne~
cessary, as it follows from the Poissonity of the distribution of § (B); in other words
we prove that the supposition b) is a consequence of the supposition a).

' More exactly we prove the following

Theorem 1.

Let 3 denote the family of all subsets of the real line which can be obtained as the
union of a finite number of disjoint finite intervals [a,b) closed to the right and
open to the left. Let §(E) be an additive stochastic set function defined for each

Ee 7 , i.e. such that if E, and E, are disjoint one has {(Eq+ Bp) = §(E,I) +{(E,)
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Suppose that for each Ee ¥ j (E) has a Boisson distribution with mean value A (E) where
A (E) is a nonatomic measure on the Borel subsets of the real line, which is finite for
each Ee 7 . Then it follows that if E,], ""En are disjoint sets (Ek e ¥ ) the random

variables j(E,,), cion y j"(En) are independent, i.e. JS(E) is a Poisson process.

Proof of theorem 1, Let A(E) denote the event § (E) = 0, If E is the union of the
disjoint sets Ej € F (J =192400eyn) then (%) clearly A(E) = A(E,]) —_ A(En) be-
n

cause E(E) = % { (Ej) and thus f(E) =0 iff f(Ej) = 0 for J = 1,24ee0,n
But by supposition ’ »

n n
(2) P(AE)) = B(f(B) = 0) = ¢~ AMB) . TT e~ AEBp U P(ACE,))

J= J=

Thus it follows_ that if the sets E;y +s. , B are disjoint, the events A(E,I), wess. 3

n
A(En) are independent.

Now let 1A(E) be the indicator of the event A(E). Let E € SZ and Fe }be two disjoint
sets. For any € > O we can clearly decompose E into disjoint intervals E; (14ign)

and F into disjoint intervals such that

max A(E.) < € and max A(F.) < €
i - J J
n
Now evidently §(E) # Z,‘ 1A(Ei) implies max 5 (Ei) > 2
1= i

m
and §(F) £ ; 1(A(Fj) implies
. mex (B > 2.

J

On the other hand for any BeJ¥

(3 By® 22 = > < A%(B)
k=2 k!
Thus
n n
i=1

(%) Here and in what follows the product of events denotes the joint occurrence of these

events,
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and

m
=1 2
(40) P(§(F) # 3§=1 A(F) £ 32_1 AS(ED CEN (P

This implies, as the sums
D, m
; A(B;) and g A(Fy)
i= 3=1

are independent, that § (E) and §(F) are independent too.

As a matter of fact it follows from (4a) and (4b) +that for any n and m (n,m = 0,1,
2,...)

(5)  |RCF® =m, @ =mw -B(f® =0) P({@® =w| < 2eAE+ .

As £>0 can be chosen arbitrarly small, our statement follows. The independence of
the variables f (Ei) (1 = 1,2, oo 4r) with disjoint E; and r>2 is proved in exactly

the same way. Thus our theorem is proved.

Remarkl. Note that to prove the independence of 5 (Ei) (i=142y ee 4 T) for EiEj=¢
if i # j we have not used the full supposition that for each Ee ¥ \{(E) has a

Poisson distribution, omnly that

() R(f®=0) = & B
and (6b) P(§(B) > 2) = O(A(E)) if A(E) — O
uniformly in E.

Thus even these suppositions imply that the process f (BE) is a process of independent
increments. It is easy to show however that this together with (6a) and (6b) implies

that § (E) has a Poisson distribution.
Thus the following theorem is true.

Theorem 2.

Let 7 denote the family of all subsets of the real line which can be obtained as the
union of a finite number of disjoint finite intervals [a,b). Let § (E) be an additive
stochastic set function defined for E € ¥ , i.e. such that if E, € F and Eye 7 are
disjoint one has f(E’I + E2) = f(E,]) + 5(E2) . Suppose that j (E) is for each
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Ee 7 a non-negative integer valued random variable such that
(72)  P(§(®) =0) = & A(B and

(70) P(§(B)>2) £ A(E) §(A(E))

where & (x) is an increasing positive function defihed for x > O such that lim & (x)=0

x—+0
and A (E) a nonatomic measure on F . Then it follows that f (E) is a Poisson process,

i,e. if B, (i=142, +ee 4 r) are disjoint sets, E; € 7 the random variables § (Ei)

(i = 1,2, .o ,r) are independent, and (1) holds.

Proof of theorem 2. Put for E ¢ ¥

fE(u) = M(eiu SC(E)) ( —o<u<+m) then clearly
8 lpgw /2 2B _jyjc1 - A®y 5 if
I < ’
S Y
Thus if -
B = Z Ei» where E;e7F and E;E; = @ if 1 # §, then for
i=7
! h
e
Jul < W we hav
r
9  pptw) = —I_ILFE.(H) # 0 and therefore
i=1 *
r
(10) log pg(u) = Z log ‘lpEi(u). As however
i=1 !

i - A(®;)
() Py = o AE)) + e (1 -6 i’) + OCA(E;) & (A (By))  we get

(12)  logpg (@) = A(B;)(e™ - 1) + O(A(E)(A (B + §(AED))
1
It follows that if ?\(Ei) L& LT L =12y oun 5 T

(13)  logyg(w) = A@(e™=1) +0( +8())
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that is, as & > O can be chosen arbitrarily small,

(W) pg = e MB (=)

which implies that 5 (E) has a Poisson distribution with mean A (E). Thus theorem 2

follows from theorem 1.

Remark 2. The proof can be carried over without any change to the discussion of a

Poisson process in more than one dimension or even in an abstract space. Thus we obtain

the following

Theorem 3.
Let X be any space, 7 a family of subsets of X and A (E) a non-negative finite va-

lued set function defined on 7 , such that

1) if E,ey,Eeey and E;E, = § , then E,+B, e F

2) BieJ,Ee7 , B4E, = @ then A(E; +Ey) = A(E)) + A(ER)

3) There is a constant of with O < A < 1 such that for every E ¢ 7 with A(B) > O
there exists a subset F of E such that Fe 7, E-Fe& ¥ and

o< FE 1.

Let us sippose a stochastic set function is defined on 7, i.e. to every Ee Y
there corresponds a random variable { (E) such that if E;e ¥, B, €7 and
EE, = @ we have )S(E’l + E2) = f(E,]) + ;(E2) and f(E) has a Poisson
distribution with mean value A (E). Then the random variables f (Ei) (i=1,2,4.
ees 5 T) are independent if the sets E;€ 7 (i = 142, «eey T) are disjoint,

i.e.& (E) is Poisson-process.

Note that condition 3) is not quite the same as that A is nonatomic, because we did not

suppose that 3‘ is a o -algebra of sets.

Remark 3. The question arises whether the condition that the process should be one with in-
dependent increments can be deduced from other suppositions for other processes of in-

dependent increments too.

The most interesting case is that of the Wiener process; for this process one has the

following (almost trivial) analogue of theorem 1.
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Theorem 4.
Let jt (-0 < t<+0) be a stochastic process such that gt - §s is normally distribu~
ted with mean O and variance c(t - s) (¢>0) for s<+t. Suppose further that if the

intervals [sj,tj) (3 = 142, eesy T) are disjoint, any linear combination

T
E ba.( 51:- - fs.) of the increments ft. - fs. with real
3=1 dJ dJ dJ d
coefficients bj is normally distributed. Then {.{t} is the Wiener process, i.e. the
random variables ft - st are independent if the intervals [s-, t.) are
3 J J J

disjoint.

Proof of theorem 4. | Clearly putting for I, = [ Spaty) Jf(Ik) = ftk - fsk (k=1, 2)
if I, and I, are adjacent intervals (s,|<t:,I = 52<t2) f (I,l +I,) = j‘(I,]) + f(Iz)

and thus >
M((; (I1 + 12)) ) = t2 -s»] = te-sa + t,] - S,] =
= M §2(1,)) + uC§ 2T,
and thus M(_§ (I,l)j (I2)) = 0 g deie 5 (I,]) and f(Iz) are uncorrelated. Now

let I,| and 12 be arbitrary disjoint intervals

I

1= [s08)y I, = [s5,t5) where 5,< t,< 8,< %,

and put I [t198,) « Then, taking into account that

MCE (LD (I) = 0 and MCF(IE(I)) = 0, we get

MCF2(Ty + Ty + I3)) = By = 5, = MCE2(T)) + M 2(T,) + M §2(1y) +
+ 2UC§ (T § (1))

Thus M(f (Iq) _§ (I2)> = 0

(We have used here the following elementary geometrical fact: if a,b,c are vectors in
the 3-dimensional Euclidean space for which ¢ is orthogonal both to b and to a + b, then

¢ is orthogongl to a too.)
Thus § (I,]) and §(12) are uncorrelated if I,] and I2 are arbitrary disjoint intervals.

It follows that if LisIsy eeey I,. are disjoint intervals and I'j has length | Ijl ’

and b1’ ooy br are arbitrary real constants then
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r r
uC Y by fIND = > 15 elly)
3= 3=1

iqu: b, £(IL) - 142 EE be o J1.)
Thus $5 jg J 2 ¢ j j
M(e ) = e

and thus for any real numbers Uy Upy seey Uy

*
13w f ) "
- u, ;
= J J r i .
_— 3 5 o T_T M(eIu3§ (IJ) ;
j=1

i, e, the j (Ij) (3 = 142y eeey T) are independent, i.e. 5't is the Wiener-process.

(Note that it would have been sufficient to suppose that

M

r
> 'b.§ (I:) is normally distributed for B - 1.)
J=’| J J J:’\ Jd

Remark 4., Returning to the Poisson-process, the question arises, whether if in
theorem 1 instead of the condition that f‘(E) has a Poisson distribution if E is any
finite union of intervals, one supposes only that f(I) has a Poisson distribution if I
is any interval, does this still ensure that the process is a Poisson process? It is
easy to show that in this case 5‘(11) and f(IZ) are uncorrelated if I, and I, are
disjoint intervals. The proof of this is essentially the same as the first step of the

proof of theorem 4.

Remark added on August 22, 1966
I have been informed by Jay Goldman, that the answer to the question in Remark 4 is: no.
This has been shown by a counterexample by L.Shepp; this example will be published in a

forthcoming paper of J.Goldman.



