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REMARKS ON THE POISSON PROCESS

by

A. RÉNYI

The inhomogeneous Poisson process on the real line is usually characterized 
as a stochastic additive set function Ç(E) defined for each bounded Borel subset 
E of the real line such that

a) the random variable Ç(E) has for each bounded Borel set E a Poisson 
distribution, i. e.

( 1) P ( { ( E )  =  n)  =
[/(£)]"

и!
(и = 0,1, ...)

where 1(E)  is a nonatomic measure on the real line such that 1(E) is finite for 
each finite interval E, and

b) if El , E 2,...,E„ are mutually disjoint bounded Borel sets the random 
variables £(£j), £(E„) are independent.

If we put ,̂ =  ̂ ([0,/)) for /> 0 , = — £([/, 0)) for 0, this means that Ç,
is a process with independent increments such that Çt — £s has a Poisson distribution 
with mean value A(t) — A(s) where A(t) is the Я-measure of the interval [0, t) if 
r> 0  and — A(t) is the Я-measure of the interval [t, 0) if f<0. D. Sz á s z  (oral 
communication) asked the question whether there exists a point process for which 
a) holds but b) does not hold.

We shall show in this note that such a process does not exist, i. e. the usual 
supposition about independence in the above characterisation of the Poisson 
process is unnecessary; by other words supposition b) is a consequence of the sup-
position a).

More exactly we prove the following

T h e o r e m  1. Let J  denote the family of all subsets o f the real line which can be 
obtained as the union o f a finite number of disjoint finite intervals [a, b) closed to the 
right and open to the left. Let £(E) be an additive stochastic set function defined 
for each EdJ,  i. e. such that i f  E l and E2 are disjoint one has Ç(El + E2) =  £(£)) + 
+ c,(E2). Suppose that for each E £J  £(E) has a Poisson distribution with mean value 
).(E) where 1(E) is a nonatomic measure on the Borel subsets of the real line, which is 
finite for each E£J.  Then it follows that if £j , ..., E„ are disjoint sets (Ek £ J) the 
random variables ç(£j), Ç(En) are independent, i. e. £(E) is a Poisson process.

P r o o f  o f  T h e o r e m  1. Let A(E)  denote the event £(£) =  0. If E is the union 
of the disjoint sets Ej£J ( j — 1, 2, ..., n) then1 clearly A(E)  = A (E t)...A(En) because

Ç(E)= 2  Z(e j) and thus £ (£ )=  o iff Z(Ej) = 0 for y =  1,2......n.
j= 1

1 Here and in what follows the product of events denotes the joint occurrence of these events
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But by supposition
n n

(2) P (A(E)) =  P ( ç ( £ )  = 0) =  e~À(E> =  J J  е~»ЕЛ = J ]  P (A (Ej)).
7 = 1 7=1

Thus it follows that if the sets F 1; E„ are disjoint, the events A (F,), ..., A(E„) 
are independent.

Now let Ki(E) be the indicator of the event A(E).
Let EdJ  and F £ J  be two disjoint sets. For any s >0 we can clearly decompose 

E  into disjoint intervals F ; (1 ^ г^ л ) and F into disjoint intervals Fj (1 S j ^ m )  
such that

max X (Ei) < e and max X (F.) < e.
i 7

Now evidently £(E J? 1 A,Ej) implies max ^(F;) S 2  and ' i ( F ) ^  2  1A(J7)
Î= 1  * j —1

implies max Ç(Fj)^2. On the other hand for any BdJ

(3)

Thus

(4a)

and

(4b)

“  X(BŸ- e-W)
P( W )  S  2) = 2  --------- Я2(Д)-

k = 2 Kl

p  ЩЕ) A 2  U №) s  2  l2(Ed <  sX(E)

7=1
« Л  *  2 1 V J  S  2  *2(Fj) <  82(F).

7=1

This implies, as the sums 2  lare,) mid J? lA(F , are independent that <j(F) and
■ = i  7 = i  J

Ç(F) are independent, too.

As a matter of fact it follows from (4a) and (4b) that for any n and m
(n, m =0, 1, 2, ...)

(5) \Щ(Е)=п,  £ ( F) =  «г) -  P (£ (F ) =  77) • P (£ ( F) =  772) | S  2e2 (F +  F).

As s >0 can be chosen arbitrarily small, our statement follows. The independence 
of the variables ç(F;) (7=1, 2, ... r) with disjoint Et and t"> 2 is proved in exactly 
the same way. Thus our theorem is proved.

Rema r k  1. Note that to prove the independence of £(F;) (/'=1,2, ... ,/)  for 
EiEj — 0  if i?±j we have not used the full supposition that for each E £ J  £(F) has 
a Poisson distribution, only that

(6a) P(£(F) = 0) =  е~я(Е)

and

(6b) P (£ (F )s2 ) = o(2(F)) if 2 ( F ) - 0

uniformly in E.
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Thus even these suppositions imply that the process b,(E) is a process of inde-
pendent increments. It is easy to show however that this together with (6a) and 
(6b) implies that £(2?) has a Poisson distribution.

Thus the following theorem is true.

Th e o r e m 2. Let J  denote the family o f all subsets o f the real line which can be 
obtained as the union o f a finite number o f disjoint finite intervals [a, b). Let £,{E) 
be an additive stochastic set function defined for E£J,  i. e. such that if E t £J  and 
E2€J are disjoint one has £(£’, + E2) = Ç(Et) + Ç(E2). Suppose that C(E) is for 
each E f J  a nonnegative integer valued random variable such that

(7a) Р(£(£)=0) = е -я<£>

and

(7b) Р(£(£)ё2)ёЛ(£)-<5(А(£))

where d (x) is an increasing positive function defined for x > 0  such that lim<5(x) =  0

and 1(E) a nonatomic measure on J. Then it follows that £(E) is a Poisson process, 
i. e. i fEi (i= 1, 2, r) are disjoint sets, Efi^J the random variables £(Ej) (i —1,2, ..., r) 
are independent, and (1) holds.

Pr o o f  o f  Th e o r e m  2. Put for E £J

cpE (u) = H(e‘“i(E)) (— °° <  и <  +  °°)
then clearly

(8) \(pE(u)\ g e - « £) - ( l - r J(£)) >  0

Г

if !(£■)-= log2. Thus if E = ^  Eit where Et£I  and £ ;£ } = 0  if iV j, then
/=1

if A(£j) <  log2 we have (as it follows from the proof of Theorem 1 that the 
random variables £(£,) ( i = \ , 2 , ...,r) are independent)

r

(9) <Pe (u) — П  (PEl(u) ^  0
i =  1

and therefore
r

(10) log q>E(u) = 'Z  Iog <?£,(«)•
i — 1

As however

(11) cpEi(u) =  e “ + еш( [ _  e - л(Е,)) + 0 ( 2 (Ej)ô( / (E,)))

we get

(12) log (pEt(u) = k ( E № » - \ )  + 0{k(Eù{X(Ei) + ô{k(Efi)).

It follows that if À(Ej)<e for /= 1 ,2 , ..., r

(13) log <рЕ(и) = ЦЕ)(е>“- 1 )  + 0(е + 0(e))
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that is, as e>0 can be chosen arbitrarily small, 

(14) (Pe (u) — e'XE)(-e'u - ’>

which implies that ME) has a Poisson distribution with mean X( E). Thus Theorem 2 
follows from Theorem 1.

R e m a r k  2. The proof can be carried over without any change to the discussion 
of a Poisson process in more than one dimension or even in an abstract space.. 
Thus we obtain the following

Th e o r e m  3. Let X  be any space, J  a family o f subsets of X  and X(E) a non-
negative finite valued set function defined on J  such that

1) i f  El dl, E2dJ  and E1E1 = 0 ,  then E1+E2dJ,
2) I f  E, €/, E2U , E ,E 2= 0  then X(E, + E2) = X(Ej) +X(E2),
3) There is a constant oc with 0 < a < l  such that for every E f  J  with /.(E) >0

ME)
there exists a subset F o f E such that FÇ.J, E — F £J and a-

ME )
1 — a. Let us

suppose that a stochastic set function is defined on J i. e. to every E d J  there corres-
ponds a random variable M E) such that i f  E t Ç_J, E2 Ç J  and E{ E2 = 0  we have 
£(Ei +  E2) = ç(T,) + MEf)  an(! ME) has a Poisson distribution with mean value 1(E).

Then the random variables £, ( E j ( /=1,2,  are independent if the sets
Et Ç_ J  (i = l, ..., r) are disjoint, i.e. ME) is a Poisson process.

Note that condition 3) is not quite the same as that X is nonatomic, because 
we did not suppose that /  is a c-algebra of sets.

R e ma r k  3. The question arises whether the condition that the process should 
be one with independent increments can be deduced from other suppositions for 
other processes of independent increments, too.

The most interesting case is that of the Wiener process. For this process one 
has the following (almost trivial) analogue of Theorem 1.

Th e o r e m  4. Let £t ( — +°°) be a stochastic process such that f  ~  f
is normally distributed with mean 0 and variance (t — s) for s < t. Suppose fur-
ther that if the intervals [5^, tfi ( /=  1,2, ..., r) are disjoint, any linear combination

r

2  bj (£,. — Mj) ° f  the increments Ç,. — M with real coefficients bj is normally distributed. 
j= 1
Then {£,} is the Wiener process, i. e. the random variables ÇtJ — ÇS] are independent 
i f  the intervals [s,-, tf) are disjoint.

Pr o o f  o f  Th e o r e m  4. Clearly putting for Ik = [sk, tk) Mfi) =  — Mk (k =  1, 2)
if 7 X and I2 are adjacent intervals (st < t 1 = s 2 <  t2) <Wf +  / 2)  =  M D  +  MM)  and thus

M((£(A + A))2) =  t2 -  s, = t2 — i 2 +  A — A = M {M(h)) + M (М(Г2))

and thus M(^(/1)^(/2)) =  0, i. e. M f )  and f(A) are uncorrelated. Now let f  and 
I2 be arbitrary disjoint intervals

h = [ si>ti ) , h  = [s2, t 2)  where sl < t l <s2<t2
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and put /3  = [ t i , .ŝ )- Then, taking into account that M(^(/1)^(/3)) =  0 and 
M (i(/3)C(/2»  =  0, we get M (^ (/1 + / 2 + / 3)) =  t2 - 5 1 = M(i2(/1)) + H (^ (/2)) +
+ M (ia(/3) +  2M ({(/,) {(/*)).

Thus
И («Л ){(/2))=0.

(We have used here the following elementary geometrical fact: if a, b, c are 
vectors in the 3-dimensional Euclidean space for which c is orthogonal both to 
b and to a + b, then c is orthogonal to a, too.) Thus Ç(Iy) and £(/2) are uncorrelated 
if Iy, and I 2 are arbitrary disjoint intervals.

It follows that if Iy, I2, •■,Ir are disjoint intervals and I} has length |/,|, 
and b y ,  . . . ,  b r  are arbitrary real constants, then

Thus
.  .  (  in £  - - ï “ 2 £  b j  | / / |

M (e ■'=* ) =  e 2 J = 1

and thus for any real numbers м1 ,м2 , . . . ,м г

н ( ; ^ , д а ] =  я м ( ^ ' )
j= 1

i. e. the Ç(Ij) ( j  = 1, 2, ..., r) are independent i.e. Ç, is the Wiener process.

Re m a r k  4. Returning to the Poisson process, the question arises whether 
if in Theorem 1 instead of the condition that £ (£ ) has a Poisson distribution if 
E is any finite union of intervals, one supposes only that £(/) has a Poisson distri-
bution if I is any interval, does this ensure that the process is a Poisson process? 
We can prove only that in this case Ç(Iy) and £(/2) are uncorrelated if I  у and / 2 

are disjoint intervals. The proof of this is essentially the same as the first step of the 
proof of Theorem 4.
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(Received June 14, 1966.)

Remark added on August 22, 1966.

I have been informed by Ja y  Go l d m a n  that the answer to the question in 
Remark 4 is: no. This has been shown by a counterexample by L. Sh e p p ; his 
example will be published in a forthcoming paper of J. G o l d m a n .

Remark added on March 15, 1967.

P. A. P. M o r a n  has obtained independently from L. Sh e pp the same results. 
His paper will be published in this journal.
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