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§ 1. Introduction

Yu. V. L1NNIK has discovered (see [1]) in 1941 a very powerful new method
of elementary nuniber theory, which he called the large sieve!. In his original
formulation the large sieve asserts that if we take any sequence S, consisting
of Z positive integers = N, and if Y denotes the number of those primes® p=y N
for which all the elements uf the sequence S are contained in = p(1— ¢) residue
classes mod p. where 00— s=1, then one has

20aN

11 . YV = - .
(, ) 27

" As shown by the second named author in [3], Linnik's method is capable
to prove much more, namely that tf 2 is not too small compared with N, then
the elements of the sequentce S, not only occupy “almost ali” residue classes
mod p with respect to most prinies p=F N, but are almost unifermly distributed

in the p residue classes mod p for most primes ,’J?“."N. More exactly, let us
denote by Z(a, p) (\«vhere @ = 0, 1, ..., p—1) the number of elements of the
sequence S, which are congruent to a mod p. Then one has, putting

oy \ = Zy
(1.2). rpy=p'3 (2@ p-2].

P p)
the inequatity®

' As regards important applications of the large sieve in number theory, see e.g, [2]
31, [4], (5}. [6); [3] and [6] contain many further references.
In this paper p always denotes a prime number.
4 Here and in what follows all the constants of the O-estimates are ahsolule, i.e. do not
depend on N, nor on the sequence Sy nor on £,
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(1.3) 2 B(p) = O(Z23NE3QL3)
n=Q

for Q= N353, Later, the second named author has found (see [7]), a new probha-

bifistic method for proving theorems of the type of the large sieve. This methosl

(developed further and generalized in the papers [8]. (9], [10]. [L1], [12]) gave

the resulf

(1.4) > (p) = O(LQ + \))
=6
for Q_é‘ ¥ N. This estimate is better than (1.3) for Q= N3'8, but weaker if N38 = Q=
=}N.
Especially for @ = N/* this result gives
{1.5) > Ay = O(N).

ﬁéN”'
The estimate (1.3) is essentialiy best possible, hecause if for instance S, is

. . AL
the sequence of odd numbers = N, one has Z(0, 2)=0and thus 2 {é({}"_’)—?] =

(&)

= % i.e. this single term is already of order NZ.

The probabilistic approach, besides leading 1o a very sharp estimate for
Q=N13, has thrown light on the reasons why an arbitrary sufficieatly dense
subsequence of the sequence 1, 2, ..., N has to be almost uniformiy distributed
among the residue classes mod p for most p = N'3; it became obvious that
this is due to the statisticai independence (more exactly: almost independerce)
of the distribution mod p and mod ¢ of the numbers #=N for any two primes
P, q=NBp =g,

In the last two ycars important progress was made on the large sieve. The
tirst essential improvement was obtained by K. F. Rota [13]. His result was
sharpened by BoMBIERI [14] who has shown that (1.5) holds also for Q@ = I'N.,
More exactly Bombieri proved

(1.6) 3 () = O(Z@QN)).

Clearly (1.6) is superior to both (1.3) and (1.4) for the full ranges Q= N3/

resp. Q=VN.

An important generalization of Bombieri's theorem has been obtained by
H. DavenpPoRT and H. HALBERSTAM [153]. To make this advance clear one has
to netice that putting

(]7) S(x) = 2 g2inx

HES"\:

one has

(1.8) A(p) = gi | S'%L .
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. Now DaAVENPORT and HALBERSTAM have proved that if =z, wy, ..., 2p
are arbitrary real numbers in the interval (0, 1) such that |¢;—o)l = §=0
for { # j, one has

D
(1.9) > S) =0 (/(%—J-N)’
i=1 :
Clearly, if the numherx— (¢ = 1.2, ..., p—1; p=0Q) are taken as the mumbers
i
!
ay ey up (D= 3 (1)) then & = — and thus (in view of (L&)} (1.9) inplies
p=t i
{1.6).

Note that from (1.9) one obtains even more than (1.6), namely that

s % .Sl_l = )!Z(%+N‘)‘j

L?;Q ﬂnl
(a, g}-1
because if (¢, ¢) = 1, (¢, ¢°) = | (here (a, ) denotes the greatest common di-
. , p a’
visor of ¢ and ¢} one bas for g.¢" = Q and — = —
q
e a1
T T A
- | e

Recently P. X, GarracgHer [16] has found a very elegant and simple
method for proving (1.9). More exactly, he proved

) | 1
(1.10) b S(a_,,)z-_--—z’?+m\'}

r=1

which implies by (1.8)
(1.1H) 2 PPy =2(Q aN).
LA

ps
Thus we have for @ = I'N

(1.12) _l (p} £ (x4 AN,
p
In the paper [17] of the first named author it has been mentioned (without
giving the proof in detail) that by a probabilistic argument it can be shown
that (1.1Z) cannot hold if Q is of lasger order of magnitude than ¥Nlog N,
The aim of the present paper is to prove this statement in detail, and to get
some related results concerning the behaviour of 3 . 1%(p), when 8. is a random

p=Q
subset of the set {1,2, ..., N).
The results obtamcd throw sorie light on certain open problems connected
with the large sieve.
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§ 2. Equidistribution of random sequences in arithmetic progressions

Ina this § let §; denote a random subsequence of the sequence {1, 2, ..., N}
obtained as foilows: let g, &, ..., £y bhe independent random variables, each

. . I |
of which takes on the values |1 and 0 \Vlt]‘lpl‘()hﬂbl]lty7; et § denete the set
of those n=N for whichi ¢, = L. (It is easy to see thal under these suppuositions

each of the 2% subsets of the set {I, 2, ..., N} has the same probability to he
chosen.) [n this case

N
(2.1) L= 3¢,
n=1
N a
[
2.2) - Zap) = 5 e
R0

and consequentiy

(2.3) Hpy = pe !/(a p)_—‘
i =10
are all randoinn variables. One obtains easily
p1
(2.4) Hpy = p- 5 2 py- 22

and thus, putting!

(2.3) Q=2 p (r=0,12 ...)
pEQ
we have
N N
(26) R(Q) = Z I_’(p} = 2 Z I‘A‘(.?(”_””_'_-Tn(Q)knsm?
p=R n=1m=1
where
(2.7) Aoty = 2 p
Pk
poifd

and thus Ag(—k&) = Ag(k) and especially
{2.8) Ay(0y = 1,(Q).
Let us determine first the expectation® of R(Q). As

1
— if n=m

i l 4

(2.9) FEfe,) = = and Fe,r,) = |
. |—; if =m

* Thus z,(Q) denotes the number of prums = (.
* The expectation of a random variable 5 will be dennted by ().
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we gbtain

(2.10) E(RQ) = — 2 z (Agln —nt)— ’In(Q))+_"1(Q)
=1 m-=1
Now clearly

2.1 E‘ E'[Ao(u—m)—nﬂ(QN >p Z[”V aJ l] N2].

n=1m=1 P=q u i

Let us suppose that Nzr mod p, where 0=r<p. Then we have

l"l

(2.12)

N—
”1 a - l] ]] IN+r(p—r)+p-"2r.
Thus it follows that

(2.13}) Z Z [Ag(it —m)— mo(Q) = 2N (Q} + O{Q*1,(Q))

n=1 m=

Q

and thus, taking into account that =,(Q) = +0( l and
log @ log? @
2 2
(2.14) @ =L so0f Y
2l0gQ log? ()
it follows
NQ- QN
(213) ER@Q) = VD 1 o(@i@)) + 0f L
8 t log= }
Thus the expectation of R(¢) is smaller b'y a factor of order I—Q as NQ2
log
Note that the expectation of R(Q) can be interpreted as its average over ail 2N

subsequences of the sequence {1, 2, ..., N}. Thus the average of R(Q) is of order
O(N?) even for Q= O (YN log N} whiie for its maximum according to (1.6) this
is known only for @ = O(¥ N). It is an open question whether the estimate

(2.16) R{Q) = O(N?)

holds for all sequences Sy if Q~¥ Np(N) for some function »(N) such that
(N}~ e for N~ o, Qur method is not capable of giving such a result; however
by evaluating the variance of the random variable R(Q) we can show by Ce-
bishev’s inequality that the estimate (2.16) is valid at least for most subsequen-
ces Sy

To evaluate the variance® of R(Q) note that though the random variables
are not independeut, they are pairwise uncorrelated and thus the variance

J'i f”

£ The variance of a random variable I will be denoted by D).
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of the sum on the right hand side of (2.6) is equal to the sum of the variances

of the single terms. As D?(r,2,,) = 6 if 7 m and D%(e?) = ]jé

J N N N
(2.17)  DARQ) = 16 ;’ b (Ao(n—m)~-‘fo(Q))2+E(ﬂx(Q)—fra(Q))”-

1m=1
Now clearly
N N
(218) 3 3 Ajn—m) = NH{ay(Q) + 7 (Q) — 7o Q) + 2NaHQ) + =3(Q)-
n=1 m=1

As further from (2.11) we have

g' g’ Agln—m) = N2rg(Q)— 2Nny(Q) + =,{Q)
n=1 m=1

it follows

(2.19) DAR(Q) = — N¥my(@— (@) +

+ 2 1@y + 2@y + D=, 3 gy Y om@),

In view of (2.14), it follows

(220 DAR(Q) =0 [% e :; f;‘

ie.

(2.21) D_(&Q)l =0 ‘L@ i_l_o '_I:} .
E(RQ) VN

It follows from Cebishev’s inequality that for 2= 1 with probability = 1 _EI;

R{Q) is contained in an interval
[E(R(Q) - 2D(R(Q)), E(R@)}+2D(R(Q)}.

N

(log Q)™= log Q.

Choosing for 7 the value 7=min it follows that for all but

2N .

m possible exceptions for all other sequences, i.e. for the large majority of all
NQ2 ] 2

sequences, R(Q} is of order ——Q— +0 e
8logQ llog?Q 1

Thus we have proved the foliowmq
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THEOREM 1. Lef us consider all 2> subsequences Sy, of the sequence {1,2, ...
’ N

., NY. We hiave for all these subsequences with the possible exception of —?; such

sequences

(2.22) RQ = N 10|22
3log @ Tog* Q:

where Q=N and

(2.23) A = INin [ S, N I
(log Q° %' logQ

Thus, if Q=¥ N log N, (2.22) holds except for ul mosf Qg q sequenices, white

—- bhY 4
for Q=¥ N ioqN 2.22) holds, excepd for af most w sequetces.

]

CoroLLary, If Q= FANIlog N (A=1) then R(Q) ~ el

except for at

2V logt N
most —————— sequences.

N
f.et us now consider the quantity

Max Max |/(a p)____
p=l) |0=sas=p-- 1 |J

[t is easy to show [using the central limit lheorcm and the fact that for
any given p the quantities Z{a, p) (a = 0,1, ..., p—1) are independent], that

(2.24) Pl Max |7, p)— VN log pQ) o[_'. !
|[)-‘a*‘p 1i )p Q ‘

J‘J\
and thus except for at most O I_E exceptional sequences we have

L VN log pQ
=~ 20

' Z(a_.p) _ 4 5

. 7
for alf ¢ and p O=a=p—1, p=Q).
On the other hand, using again the independence of the random variables

Zla, (e = 0,1, ..., p— 1) and the centrat limit theorem it follows that for
N _
all except for at most O HWJ sequences SN, one has, for all p such that

N
Clog Nuepa ———
Vog N

I*tpy = ﬁfll-— (v )]

if Cis a sufficiently large positive number,
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§ 3. The values of a random trigonometrical polynomial at well spaced points
In this § we shall consider the sum
(3.1) T(e, 8) = 2 i S(e,) *
r=1

where «,, #,, ..., zp are real numbers “well spaced” in the sense of Davenport
and Halberstam, satisfying

Owoy=ay=<...<op=<{ and
(3.2) oo —x,zd=0 forv=12 .., D~1
and S8(e) is the random frigonometric polynomial
B
3.3) Sy = 3 g, et
n—=1I

where ¢, ..., &y are independent random variables, each taking on the values
. ey 1
1 and O with probability re

We first evaluate the expectation of T(x, 8). We have clearly
(34) T(t‘t, 5) - Z Z‘ £ Em Z et —ntyx,

H=1 =1

and thus

_ I PN Nl N
(3.3) E(T(ss, S)) = —2— > ,\; + Z’ (N —Dcos 2xle,. ]+£—4£-}
v=11 2

Now it is well known that
. N N s5in? Nz,
3.6 — + N—=Dcos 2xfe, = — ———.
-5) 2 ;Z; { ) 2sin? e,

As a matter of fact the formula (3.6) is well known as a formula for Fejér's
kernel of the arithmetic means of Fourier series,
[t follows from (3.5) and (3.6) that

D TiEhY !
3.7 E(T(w, $)) = — Z SNz, (ND
y—=1 Sll’l2 :'!0!,, 4
Let us now consider the special case when o = (af, ..., «}}) is the set of

o . .
altnumbers — with (a,¢) = 1, i=a=¢q, | <=¢=Q=N, 1t is easy to se¢ that
q

. a
sin? Nx-—

38 3 3 —L -ow
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thus, deneting by ¢(g) the number of numbers a<gq relatively ptime to ¢, we
have

., N 8
(3.9) E(T(e ) = 5 3 9(0)+0(@Y-
As however ”~
Q 3Q
(3.10) > olg) +0(Q|0gQ)
g=1

it follows that

@3.11) E(T(a, 5)) = “Q SN (NG log Q) +0(@2).

It follows that for @ = o(N) there exists for each e>0 a sequence S, for which

32N (1 —c)
442 ’

(3.12) T(af Sn) =
Thus the estimate

q
(3.13) -

which according to the theorem of Davenport and Halberstam is valid for

Q=¥ N cannot be vaiid if Q is of larger order of magnitude than ¥ N. By evaluat-
ing the variance of T(«, §) one can prove even more, namely that T(af,Sy)~

L 3Q°N
:.52.
ticular one can prove that

(3.14) | > Z s( )l—o(wu)

4ﬂer

for ali except o(2V) sequences Sy, if —é = ofl) and o =0(l). In pai-
]

"?)—1

exceptional sequences

. _
which implies that except for at most O 2 lj‘\’,rg N,

a
q

23N

(3.15) > Z!( Bes

-
=IN et

Let us sunmmarize now our results: Theorem 1 shows that the estimate
(3.16) R(Q) = O(N?) .
cannot hold if Q is of larger order of magnitude than YN log N. It remains an

open question whether (3.16) holds it YN=Q=VN log N. However, (3.11)

shows that even if (3.16) is true for the range Y N=Q=VNlogN it cannot be
proved by the methods used up to now, as all these methods gave estimates
for R(Q) through estimating 7(«§, S).
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§ 4. Some open problems

Let §); denote a subsequence of the sequence {1, 2, ..., N} which contains
at least cN elements (O<c<1). Let Y{x, &) where 0= eal and 1f2=a<1 de-
note the number of those primes p=N=* for which at least pe residue classes
mod p do not contain any element of S... It fnllows already from Linnik’s

1 .
result (1.1) that YV {,{}_, s] is hounded. namely that

1 20;
(4.1) ‘l'{——,e w 2T
2 ce’
From (1.12) one obtains the slightly better estimate
] a+1
.2) Y '—.s] =TI
2 et
As regards Y(o, &) with 1/2.=e-< | we get from (1.11) the estintate
\21—1 -
+.3) Ve, e) = —— + X,
& &C

1t seems probable that (4.3) is far from being best possible; it is an open problent

. o, ]
whether ¥Y(w, &) is bounded for every e with - <a-=1, or not. Of course,

¥(1, ¢) is not bounded: as a matter of fact if S, is the sequence of numbers

N
= Ne ‘0 =< })) and Q=g —})— then for all primes p owith ; <=p-=N at
2 2 —z

least pe residue classes mod p do net confain any element of S... and thus

V(l, g} =

|1 —----——] *Ol

10;1 1 —¢ log> N

Anotiher related plohlem is the following: if O=<e=<1 let S, be a subse-
quence of the sequence {1, 2. ..., N} such that for every p with A, ~p=N=
where A,=0, D=g-=1 thure, are at least #p residue classes mod p which do
1ot contain any element of S... What is the maximum M. (e, z) of the number
of terms of such a sequence S,.? [t is easy to show that for each e with Q=g =1/2
Myle, D=[¥N]. As a matter of fact let S, denote the sequence of squares
= N. Clearly if & is a quadratic nen-residue mod p, then there is no element of
the sequence 12,27, ..., k%, ... which is congruent to & mod p; thus for each

P=1 i pes,

p the number of empty residue classes is at least
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