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STATISTICS AND INFORMATION THEORY1

by
A. RÉNYI

§ 0. Introduction

In the present paper we deal with certain basic questions connected with the 
information-theoretic point of view on statistics. This paper is a continuation of 
the papers [1], [2], [3], [4], [5] of the author; most of the results of these previous 
papers are presented here in an improved (sharper or more general) form.

§ 1. On the Amount of Information in a Random Variable 
Concerning Another

In this section we collect the basic definitions and well known results needed 
in what follows.

Let S — (i2, j / ,  P) be a probability space, i. e. Q an arbitrary nonempty set, 
.я/ a (т-algebra of subsets of Ù and P a probability measure on sd. In what follows 
0 will always denote a discrete valued random variable in S, i. e., a function 9 = ()(<o) 
defined for a>£Q, taking on only a finite number of different values 0l5 02, ..., 0r 
( r ^ 2) for which the set (event) Hk={a>: 0(œ) = 9k) belongs to л/ for k=  1, 2, ..., r. 
Here 0,, 92, ..., 0r may be numbers, or any distinguishable symbols: their values 
will be in what follows irrelevant. We shall usually interpret 0 as the parameter 
of a probability distribution and the event Hk as the hypothesis that the true value 
of the parameter 0 is equal to 9k ; we shall use the notation

( 1 . 1 )  pk =  P(#*) =  P(0 =  0*) (k  =  1, 2 ,  ..., r )

and call the distribution (pk,p 2, • p,) of 0 (contrasting it with the conditional 
(or posterior) distribution of 0 given certain observations, to be introduced later) 
the prior distribution of 0. The (unconditional) entropy of 0 is defined by Shannon’s 
formula 2

(1.2) H(0) =  2 i P k\og2 ~
k  = 1 P k

where the numbers pk (k=  1, 2, ..., r) are those defined by (1. 1) H(0) will be inter-
preted as the amount o f missing information on 9 when nothing else is known about 
0 except that its prior distribution is given.

1 This paper has been presented to the 1st European Meeting of Statisticians held in 
London, 5— 10 September 1966.

2 logj.v denotes the logarithm with base 2 of the positive number x; 0 log2
1
0

always means 0.
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Let now Ç = Ç{(o) = (l;1( m } , £„(ю)) be an «-dimensional vector valued 
random variable, i. e., an ^/-measurable function defined on Q and with values 
in the Euclidean space E„ of dimension n. We shall interpret t, as an observed sample. 
As £ and в are random variables on the same probability space, by observing £ 
we usually get some information on в (except when в and £ are independent). After 
having observed £ we may consider the conditional (or posterior) distribution

(1 .3 )  л ю  =  Р (я*Ю

of Hk given the value of Ç. The conditional probability of an event A d s /  given 
the observed value of £ is as usual defined as follows: Let s/ç denote the least 
cr-algebra of subsets of Q on which £ is measurable (i. e., the tr-algebra generated 
by £). By supposition s i  % is a subalgebra of s i . The conditional probability P(T|£) 
of an event A, given the value of £, is defined as an j/^-measurable function (random 
variable) such that for every B d s /t, one has

(1.4) J'P(A\Ç)dP=P(AB).
в

As well known, P(A [£) is by (1. 4) uniquely defined up to a set of measure 0 and 
{P(//j |£), ..., P(Hr\Ç)} is with probability one a probability distribution, i. e.,

P I 2  P{Hk\0 — lj  =  L Let us consider now the entropy of the conditional (a pos-

teriori) distribution of 0 given f  i. e., the quantity

(1.5) H(0|O = 2 W O lo g 2- 4 w -k= 1 Pk\Ç)

We interpret H(0|£) as the amount o f information concerning в still missing 
after having observed the sample Clearly H (O f  ) itself is a random variable (which 
is not only ^/-measurable but also л/^-measurable) ; its expectation E(H(0|£)) is 
interpreted as the average amount of information still missing about 0 after having 
observed f  We shall call this quantity for the sake of brevity when there is no danger 
of misunderstanding simply „the amount of missing information” , and denote 
it by R ( f  0); i. e., we put3

( 1 . 6 )  R(0 , t )  =  E ( H ( 0 | O ) .

The amount o f information 1(0, £) in the observed sample £ with respect to 
the (unknown) parameter в is defined as the average decrease of the entropy of 
0 by observing £; that is, we put

(1.7) /(0,O  = H (6 ) - ä (0 ,ö .

Evidently the conditional (posterior) distribution {рк(£,), ...,pr(f)} of 0 is identical 
with its prior distribution {pt , ...,pr} if and only if £ and 9 are independent. In 
this case R(0, £) =  H(0), i. e., 7(0, £) = 0, that is the observation of the sample^ 
does not give us any information on 0. In every other case one has R(0, £)<H(0)

3 Here and in what follows E (t/) denotes the expectation of the random variable >/.
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and thus 1(0, £)>0. This can be shown by Jensen’s inequality as follows. As the 

function .X log, — is concave in (0, 1) and by Jensen’s inequality for any concave
X

function f(x )  and any random variable t] the values of which are lying in the domain 
of definition of f(x) one has
(1.8) E(/07))s /(E(»,))
it follows

(1.9) R(0,Ç) = 2  /л (£ )1 ° 8 2 Т Г 7 г Т ^ -
k = 1 11 Pk\S>)

because by (1. 4) 

( 1- 10)

-  é  ( f p k ( o dp)
1

( /

= H(0)

/  pk(i)dP = P  (Hk) = pk.
Í2

Evidently there is equality in (1. 9) if and only if the distribution {pfb,), . .. ,p r(f)} 
is (with probability 1) identical to the distribution { pk, ..., p r}, i. e., if £ and 0 are 
independent.

Let g(x) (x£En) be any /г-dimensional vector valued Borel measurable function 
defined on the и-dimensional space £„. We shall call the random variable g(f) 
a statistic. If after observing £ we consider the value of the statistic g(if) only, and 
disregard every information (on 0) contained in the observation of £ and not contained 
in g(Ç), we usually loose some amount of information, i. e.,

(1. И) l(g(0 , 0 )3 -/« , 0).

The inequality (1. 11) is clearly equivalent to

(1.12) R(Ç,0)sR(g(O,0).

To prove (1. 12) we need the following Lemma 1 which is an immediate consequence 
of the definition of conditional probability.

Le mma  1. Iff(x )  is any Borel measurable function and any event, we have

(1.13) Е (/(£ (0 )Р С % (Ш = Е (/(£ (0 )Р (Л Ю ).

Using Lemma 1, we obtain

(1.14) R(0,g(O )-R(0, О = E ( Д  P (Hk\0  log2 p g | ) .

Now we need the following simple

Le mma  2. I f  {qk, q2, ■■■, qr) and { Q i ,  Q 2, ■■■, Q r} are arbitrary probability 
distributions consisting of the same number r o f terms, we have

r

( 1 -  1 5 )  2 dkl°S2 — 0
*=1 fdk

with equality standing in (1. 15) i f  and only i f  qk — Qk f or k  = \,2 , ..., r.
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Applying Lemma 2, we obtain from (1. 14) that (1. 12) holds and there is 
equality in (1. 12) if and only if with probability 1, one has

(1.16) Р(Я*Ю = Р ( /Ш О )  (* =  l,2 ,... ,r ) .

If (1. 16) holds (with probability 1) we call g(f)  a sufficient function o f £, for 0 (or a 
sufficient statistic). Thus a function of the observations is called sufficient for a 
parameter if and only if it contains all information in the observation which is 
relevant to the parameter, in the sense that there is equality in (1. 11).

Note that if (1. 16) holds and the random vector £ has the conditional density 
<pk(x) under condition Hk, and g Up) has the density Uk(g(xj), then

<Pk(x) = 'l'k(g(x))x(x)
where the function %{x) does not depend on /с; as clearly <pk(x), Uk(g(x)) and y(x) 
are all independent from the prior distribution {/;,, . . pr) of 0, it follows that our 
definition of sufficiency is equivalent with the usual definition of a sufficient statistic 
in case both definitions are applicable. An advantage of our definition is that it 
does not depend on the existence of densities; besides it has a clear information- 
theoretical meaning.

Before proceeding further we prove the following

Th e o r e m 1. The conditional distribution /7 (£) = (/?, (ç), .... pfc)) o f в given £, 
considered as a statistic, is sufficient with respect to 0.

To prove our theorem it is clearly enough to show that

(1.17) p(H k\Ilf))= p kf )  (* = 1 ,2 ,..., л).

But (1. 17) is evidently true as pk(£) is j / n(i)-measurable (pk(ç) being the k -th 
component of the vector I l f ) ,  we get pkf )  by projecting the vector 11(f) to the
.Yfc-axis.)

The statement of Theorem 1 can be expressed by saying that the conditional 
distribution of 0 given c contains all information relevant on 0 which is present in the 
sample £.

§ 2. A Bayesian Version of the Fundamental Lemma of Neyman and Pearson

If we have to make a decision concerning the parameter 0, on the basis of the 
observed value of the sample £, i. e., after observing £ we have to select one of the 
possible values of 0, this decision can be described by a Borel measurable function 
D(£) of £, the set of values of which is the set (0t , 02, ..., 0,.} of possible values 
of 0. The error e of such a decision is simply the probability of the decision being 
false, that is
(2.1) e = P

We define the standard decision A(f) as follows : we decide always in favor of that hypo-
thesis Hk (that value 0k of 0) which has the largest conditional probability given 
the value of £,; in case there is more than one value к such that pk(£) = max p . f ) ,1-^j^r J
we select in some way one among those values—say the least such value of k. If another 
rule is applied we call the corresponding decision a variant o f the standard decision.
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It is easy to see that it does not matter much which one of these values of к we 
choose (i. e., whether we use the standard decision or one of its variants) as the 
error of the decision is independent from this selection. As a matter of fact if e 
denotes the error of the standard decision, we obtain by the definition (1.4) of con-
ditional probabilities

( 2 .  2 )  e  = P ( J « ) * 0 )  =  1 - P ( 4 ( ©  =  Ö ) = 1 -E(P(0 =  4 « ) | 0 ) .
Clearly if we change the definition of the standard decision for some value of £ 
from 4 ( 0  =  0», to 4 (0  = 0», where р»1(0= Л ,(0>  then e remains unchanged, 
because P(0 =  4(O |£)= /,4({)(O is by definition not affected by such a change.

Now let 0 ( 0  be any other decision, and e its error. Then we get, similarly 
to (2. 2)
(2.3) e = 1 — E (P (0 =  0(010)-
Thus we have
(2. 4) e - e  = E(P(0 =  4 « ) | i ) - P ( 0  =  ^(010)-
The random variable, the expectation of which gives the difference e — e, is clearly 
always non-negative, because for each value of £ we have for some value of к 
(namely к = 0 (0 )

(2. 5) P(0 -  4 ( O I O - P ( 0  = О Ш )  =  m a x ^ ( 0 - A ( 0  S  0.

Thus we have proved the following

Th e o r e m 2. No decision can have a smaller error than the standard decision.

Clearly if the decision 0 (£) is such that P(0 =  O(O|‘ü)?£P(0 = 4(OI£) with 
positive probability, then e>e. However, if P(Q = D(f)\^) = \>(0 = with
probability 1, this means that the decision 0 ( 0  differs from the decision 4 ( 0  only 
in that in case a tie presents itself, i. e., if the value of к for which pk(0  is maximal 
is not unique, the decision 0 ( 0  prescribes another choice among those values 
к for which pk{0  is maximal as 4 (0 ; thus except for variants of the standard decision 
every other decision has a definitely larger error than the standard decision (or any 
of its variants).

Note that the difference between Theorem 2 and the usual form of the Neyman—- 
Pearson lemma consists in that we have supposed that the parameter 0 is a random 
variable, i. e. we have taken the Bayesian point of view. Thus we do not distinguish 
between errors of the first and second kind: only one sort of error is possible. A de-
cision is namely either correct, or wrong, and the error of a decision is the probability 
of it being wrong. A formal difference of minor importance is that by using the 
general notion of a conditional probability we did not need any supposition concern-
ing the existence of densities.

Note that it follows from Theorem 2 that the error of the standard decision 
is S  1/2 in the case r = 2, because if 4 means the decision which is the opposite 
of 4, 4 has the error 1 — e and thus by Theorem 2, е Ш 1 — £.

As regards the standard decision 4 (£), we may compute the amount of infor-
mation contained in the value of 4(£) with respect to 0, i. e., the quantity /(4(^), 0). 
Clearly one has /(4(£), 0)ё/(£ , 0) with strict inequality except when 4 (Ç) is a 
sufficient function of \  concerning 0; thus even when the best possible decision is 
adopted some information is lost. The explanation of this somewhat paradoxically
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sounding statement is that usually the information on 0 contained in the observed 
value of 1 is not enough to decide with certainty which is the value of the parameter, 
it only gives us a (conditional) probability distribution on the possible values. If, 
nevertheless, we insist on choosing one of the possible values and rejecting all the 
others, we naturally lose by this a certain amount of information.

§ 3. Estimating the Error of the Standard Decision 
by the Amount of Missing Information

We prove in this section the following 4

Th e o r e m  3. Let г denote the error o f the standard decision and R = R(0, f) the 
amount of missing information, then the following inequality holds

(3.1) log2 S  R,

or expressed otherwise

(3.2) e ^ l - ^ .

Pr o o f  o f  Th e o r e m  3. Let us denote for the sake of brevity the event A(Ç) =  0j 
by Aj (j = 1,2 , ...). Then we have clearly

(3. 3) R = E(H(0|O) -  Z  Р(Л,.)Е(Н(0|£)|Л;)-
j=i

(Here and in what follows E(//|B) denotes the conditional expectation of the random 
variable q with respect to the condition B, when В is an event such that P (B) >0.) 
Now by definition under condition Aj we have pk{f)^p j{ f)  for k = 1, 2, ..., r; 
in view of (1.5) we get that

(3.4) í s 2 p ( ^ e
7=1

Iog2
1

P j(0

Applying now Jensen’s inequality to the convex function log2 -  (O S xS l), it follows 
that x

(3. 5) R P i l l o g ,  - Щ Д Щ -

Now it follows from (1.4) that

J'P(0 =  0j\OdP

(3. 6) E(p j(0 \A j) = --------=  P(AM  -  e\A,).

4 in our previous paper [3] we have proved only the weaker estimate e ^ R .  Clearly (3. 1)
E

implies not on ly e^ /?  but a ls o ------^  R.
In 2
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Thus we obtain from (3. 5)

(3- 7) R - JÍ 1 P(/4J),og2 P ( A ( 0  =  0| A }y

We need now Jensen’s inequality, in the form that if f(x )  is a convex function, 
..., x r any values in the domain of definition off{x) and и>,, wr non-negative 

numbers with sum equal to one, then

(3. 8) 2  wj f ( x j) ^ / (  2

Applying (3. 8) it follows from (3. 7) that

(3. 9) R i= log2 —  -  = log2 0(А(^ _ аЛ = log2
2  P(Aj)P(A(Ç) = 0\Aj

7 = 1

and this proves (3. 1).
In our previous paper [4] we have shown for the special case r = 2 that the 

inequality 26SÄ holds; for this special case this is slightly better than (3. 1). We 
reproduce here the proof of this inequality as it requires only a few lines. Let the 
possible values of 0 be 0O and 0,, the corresponding hypotheses 0 = 0O and 0 =  0, 
shall be denoted by H0 and //, respectively. Put

(3. 10) h(x) =  X log2 ~-f- (1 -* )lo g 2 y ^ r

Then we have evidently h(x) = h(l — x) and h (x )^2 x  for 0 ^ x S l/2 .  Let us put

{Po(0 if i.e. if 21(0 = 0,
(3. 11) P 4 0  =

Pi(£) if Po( t)= i  i-e. if A( 0  =  0O.

Then we have clearly p*(£) =  i  further

(3.12) Ä =  E(A(p*(0))^2E(p*(0).

Denoting the event A(Ç) = 0o by B0 and the event d(£) =  0, by Bi we obtain

(3.13)

As by (1. 4) we have

« S  2Í f p 0(QdP+ JpA O d P ).
Vß, Bq '

(3.14) jpo iO dP  = P (H 0Bl) and f  Pl (£)dP = P(tf, BQ)
B \ B q

it follows that
(3.15) Ä S 2 (P (0 oß,) +  P (0 ,ß o)) =  2£, 
which was to be proved.
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Returning to the general case, we mention that one can also get an upper 
bound for the amount of missing information by means of the error of the stand-
ard decision. In this direction the following theorem is known (see [6] p. 35.).

T h e o r e m  4. One has

(3.16) Rmh(s) + £\og2( r - 1)

where h(x) is defined by (3. 10).

My thanks are due to G. K a t o n a , who called my attention to the fact that the 
estimation (3.16), proved first by R. M. F a n o  [7], is slightly sharper than a similar 
estimate which I have found previously.

§ 4. Conclusion

It follows from Theorems 3 and 4 that if we have an infinite sequence of ob-
servations Çi, £2, ... each £„ being a random variable on the probability
space S  (it is not a restriction to suppose that each ç„ is real valued), and £(n) denotes 
the sample (£1; £2, • ••> {„) further A„ the standard decision concerning the true 
value of 0 taken on the basis of observing the sample ç<n) and s„ the error of the 
decision An, and if finally R„ denotes the average amount of information on 9 still 
missing after having observed the sample £,<n>, then lim e„ =  0 if and only if

П -*оо

lim R„ = 0. This shows that to get in the limit all information on в which is needed,
И —> CO

is equivalent with having the possibility to make decisions on the true value of 
в  the probability of correctness of which is in the limit equal to 1. By other words 
the information-theoretical point of view is in accordance with the usual point 
of view of statistics.
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