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ON QUADRATIC INEQUALITIES IN PROBABILITY THEORY

by
J. GALAMBOS and A. RENYI

Summary

In this paper quadratic inequalities in the probabilities of Boolean functions
of n variable events are considered. For a special class of such inequalities — called
exact inequalities — a necessary and sufficient condition is given; this general
theorem is applied to deduce certain special inequalities. Generalization to in-
equalities of degree higher than 2 is also considered.

§ 0. Notations

Let S=(Q, o, P) denote a probability space, i.e. let Q be an arbitrary non-
empty set, o7 a o-algebra'! of subsets of Q2 and P a measure on & such that P(Q)=1.
We call the elements of <7 events and denote them by capital letters. We denote
by A + B the union and by AB the intersection of the sets 4 and B, and by A4 the
complement of the set 4 with respect to Q. As usual, A4 is interpreted as the event
consisting in the non-occurrence of the event 4, while 4 + B and AB respectively,
are interpreted as the event that at least one of the events 4, B occurs, resp. that
both the events A4, B occur.

Let p,, p,, ..., p, be any set of positive numbers such that

2P1=1
ji=1

We shall denote by S,(p,,...,p,) that (finite) probability space in which
the set Q consists of r elements w,, w,, ..., ®,. & is the set of all 2" subsets of £,
and P is defined by
0.1) P(A)= 2 p;

wjcA

Especially S,(1) is the trivial probability space which contains only two events:
the “certain event” Q and the “impossible event” 0 (the empty set). Further S,(3, %)
is the probability space (describing e.g. the throw of a fair coin) which contains
only four events: Q,0,a={w,} and f={w,} and P(x)=P(f)=1%.

A Boolean function F=F(A4,, A,, ..., A,) of n variable events A4,,..., 4,
is a function of these events which can be expressed by means of the variables

1 All results of this paper are valid also if 7 is only an algebra of subsets of 2 and P a finitely
additive nonnegative set function on &/ for which P(2)=1.
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Ay, ..., A, and a finite number of Boolean operations, i.e. the operations A4+ B,
AB, A. We introduce the notation

Al=A, A4 '=A4.

Let us denote by d,(m) the k-th digit of the binary representation of the non-negative
integer m, i.e. we put
0.2) m= 2 §,(m)2*
k=0
Let us put further
(O. 3) Sk(m) - 25,‘_1(7}1)—1 (kzl, 2, ...).

Clearly ¢g(m) = +1, and if m runs over the integers O, 1, ..., 2" —1, the n-tuple
{e,(m), ..., g,(m)} runs over all 2" possible n-tuples of the signs +1 and —1.

Let us put
0.4) B,(m) = AL™AZ™ ... A% O=m=2"-1)
We call the B,(m) the basic Boolean functions of the variables A4, ..., 4,. Clearly
(0. 5) B,(m)B,(my) =0 if m;#m,
and
2n—1
0.96) 2 B,(m)=Q
m=0

It is well known that every Boolean function F(A4,, ..., 4,) can be uniquely repre-
sented in a ,,canonical form” as the sum of certain basic functions B,(m); thus there
are only 22" different Boolean functions of » variable events.

§ 1. Introduction

Some time ago, the second named author has proved ([1], see also [2]) the
following

THEOREM 1. Let F;=F(A,, A5, ..., 4,) (j=1,2, ..., N) be arbitrary Boolean
JSunctions of the n variable events A,, ..., A,. The linear inequality

(1.1 ZchP(F,.)zo
J=1

(where cy, ..., cy are real constants) is valid in every probability space S if it is
valid in the trivial probability space S,(1).

This simple theorem is useful because it makes it possible to reduce the proof
of any linear inequality among probabilities of Boolean functions to a corresponding
combinatorial inequality.

To make this paper self-contained we reproduce here the proof of Theorem 1,
especially as the proof is very short.

PRrROOF OF THEOREM 1. Let the expression of the functions F,, ..., Fy in canonical
form be

(12) Fj= Z‘Bn(m) (j=l,2,""N)

meE;
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where E; is some subset of the set {0, 1, ..., 2"—1}. It follows from (0. 5) that

(1.3) PE)= 2 P(B,(m))
and thus . ’
N 2n—1
(1.4) 2 ¢;P(F)= 3 d,P(B,(m))
=1 m=0
where :
(1.5) dy= 2 ¢
mekE;

Now evidently if 4, =Q if g(m)=1 and 4, =0 if g(m) = — 1, then B,(m)=Q
and B,(/)=0 for I#m,0=[=2"—1, thus for this special choice of the values
of the variables 4,, ..., 4, we have

(1.6) ZN'ch(Fj)=d,,,
j=1

Thus if (1.1) holds on S,(1) we have d,=0 for m=0, 1, ...,2"—1 and thus
it follows from (1. 4) that (1.1) holds for every choice of the values of the events
Ay, ..., A, in every probability space S. Thus Theorem 1 is proved.

It is evident that Theorem 1 can be used also to prove identities. To prove that
a relation

j=1

is valid, according to Theorem 1 it is sufficient to verify that (1. 7) holds if all 4,
are equal either to Q or to 0.

A typical example of an inequality which can be obtained as a special case
of Theorem 1 is the following inequality, due to GuMmBEL ([3]): Putting
(1. 8) o™ = =2 P(4;,4;, ... Ay) (k=12 ...,n)

1=i1<iy<..<ix=n

one has for 2=k=n
(1.9) n—k+Do®, = (Z)-}—(k—l)a,ﬁ"’.

By means of Theorem 1 the proof of (1. 9) is reduced to a simple inequality between
binomial coefficients (see [2], p. 30).

The aim of this paper is to prove a theorem similar to Theorem 1 for quadratic
(instead of linear) inequalities. This will be done in § 2. In § 3 we give some applica-
tions of the general theorem of § 2. In § 4 we discuss the possibility of generalizing
the result of §2 to polynomial inequalities of the third and still higher degrees.

§ 2. A General Theorem on Quadratic Inequalities

In this § we consider quadratic inequalities of the form

N
@.1) b

i=]1 j=

N

¢, P(F)P(F)=0
1
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where the c; ; are real constants, and F,, F,, ..., Fy are Boolean functions of
the variable events A4, ..., 4,.

Note that it is no restriction that in (2. 1) no linear terms occur, because one
of the F; may be equal to © (which is also a Boolean function, namely a constant
function) and thus inequalities which contain both quadratic and linear terms can
be also written in the form (2.1).

We shall call an inequality (2.1) exact, if in (2.1) the equality sign is valid
every time when each A4, is equal either to € or to . By other words (2.1) is exact
if equality is valid in (2.1) when the variables A4,, ..., A, are restricted to events
in the trivial probability space S,(1).

We shall prove now the following

THEOREM 2. Let (2.1) be an exact inequality. In order that (2.1) should be
valid on every probability space S it is sufficient (and of course also necessary) that
it should be valid on the probability space S,(%, }).

PrOOF OF THEOREM 2. Let again (1. 2) be the expression of the function
Fi(1=j=N) in canonical form. In view of (1. 3) we get

N N 2n—12n—1
(2- 2) g Z; ci,jP(Fi)P(Fj)= 2(; Z(; dr,sP(Bn(r))P(Bn(s))9
= Jj= r= S=
where
(2. 3) d”sz 2 c,'.j
rcE;
s€E;j

Now let us choose 4, =Q if g(r)=1 and A4,=0 if g(r) =—1 (k=1,2,...,n).
It follows that P(B,(r))=1 and P(B,(s))=0 if s=r; thus for this special
choice of the values of the variables 4, ..., 4, we have

N N

(2.4) 21 2 ¢, jP(F)P(F)=d,,
1= J=
As we have supposed that the inequality (2.1) is exact, it follows that
(2.5) d,=0 for 0=r=2"-1.
Putting
(2. 6) D,,=d  +d,, for rs#s
we obtain
N
2.7 21' 2; ci,jP(Fi)P(Fj)=o 22 1Dr,sP(Bn(r))P(Bn(s))
Y o Sr<s=2"-

Now let us choose an arbitrary pair (r, s) of integers, 0=r<s=2"—1, and let
us choose the values of the events A4, as follows:

(2. 8) A,=2 if g(r)=¢g(s)=1
Ay=a if g(r)=1 and g(s) = —1
A.=p if g(r)=—1 and g(s) = +1
A,=0 if gr)=¢g(s) =—1
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where « and f are the events o= {w,}, f={w,} of the probability space S,(4, 1).
For this special choice of the values of the variables 4, we have clearly

2.9 B(r)=a, B(s)=p and B,(t)=0 for t#r, t#s.
Thus we obtain for this choice of the values of the A4,
(2.10) P(B,(r))=P(B,(s)) =14, P(B,()=0 for &str, tss,
and therefore
N N
(2.11) Z 2 ¢, jP(F)P(F)=1D,

Thus if (2. l) is valid on Sz({; 1), then we must have D, ;=0 for all pairs
(r, s) and thus in view of (2. 7) it follows that (2.1) is valid on every probability
space S and for every choice of the value of the variables A4,.

Thus Theorem 2 is proved.

Similarly as Theorem 1, Theorem 2 can be used also to prove identities. As a
matter of fact we obtain from Theorem 2 the following

COROLLARY. If
@.12) > 3 o, P(E)P(F)=0
=

holds on S,(1) and on S,(3, %), then it holds identically on every probability space.

§ 3. Some Applications of the General Theorem of § 2

In this § we consider some examples of quadratic inequalities which can be
easily proved by means of Theorem 2.

EXAMPLE 1. Let us put ¢f” =1 and
(3. 1) O']S"):—— 2 P(Ah Aiz woe Aik)

1sij<iz<..<ix=n

We shall prove that the inequality
3.2 ko = e, (e{” —k+1) (k== l 2 )
is valid.

To prove (3.2) we first remark that it is a quadratic inequality of type (2.1).
Further it is easy to see that (3. 2) is an exact inequality. As a matter of fact if /
among the events A4,, ..., 4, are equal to Q and the other n—/ to 0, then three
cases are possible:

a) either /=k —2, in which case o{™ =0, =0 and thus both sides of (3. 2)
are equal to 0,

b) or / = k—1 in which case ¢f™ =0 and ¢{” —k+1 = 0 and thus again
both sides of (3. 2) are equal to 0,

¢) or /=k, in which case a{”)=(£), a,ﬁ"_)1=( f 1) and o{" =1I. As however

| 3.
I\(,i) = (kil)(l—kﬂ)
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we have equality in (3. 2) in this case too. Thus (3. 2) is exact. Now let us check
that (3. 2) holds for S,(3, 1). Suppose that among the events A,, ..., 4, [, are
equal to Q, /, to o, I3 to B (/;+1,+13=n) and the remaining n—1, — I, —1I; to 0.

In this case
1{17,+!1 I, +1
(")—m 1 2 1 3 e
& 2[[ j ]'[ j ]] R Ak

and thus
(3. 3) folD =2, (6 =Bl = A =1 [(ll"l’lZ) (1124:113)] -

Thus by Theorem 2 (3. 2) holds on every probability space S for any choice of the
events A, ...; A;.

It is interesting to compare (3.2) with GUMBEL’s inequality (1.9). The fact
that (3. 2) is exact, while in GUMBEL’s inequality we have equality (as seen from
the proof) on S,(1) only if /=n or I = n—1, shows that, (3. 2) gives sometimes
a better estimate than (1.9). Another such instance is when the events all have
probability 4, and k=2. In this case (1.9) gives for ¢4 only the trivial lower
estimate 0, while (3. 2) gives the non-trivial (in fact, asymptotically best possible)

lower estimate ag")z”—("—gi).
For k=2 we obtain as a special case of (3. 2) the well known inequality
(n)’
3.4 o =("% )
It follows from (3. 2) by induction that
(n)
3.5) o >[";C )
It should be noted that one can deduce from (3. 4) the following inequality :
It o =|" p? then o = np+—l—(1 —p)+— =
Sl e 2 4p(2n —1)
As a matter of fact, it follows from (3. 4) and the inequality J/1 tx =1+ % that
1+Y1+8 _ 1 1 V 1—p?
(n) = 2 = — —_ — —_—
oM = 5 =3 + > (2np —p) 1+(2np—p)2

and thus that

l—p, 1-p*
(n) <
o =MW+t on—1)
ReMARK. The exact maximum of ¢{ under condition o¢{” = (n] p? was
determined in [4]. '

ExAMPLE 2. Let us consider the quadratic relation
(3.6) P2(4 + B)+P?(AB) = P?(A)+P?*(B)+2P(4B)P(4AB)
It is evidently valid on S,(1) and also on S,(4, }), thus it holds identically.
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§ 4. Cubic Inequalities

Theorem 2 can be generalized for cubic inequalities

“4.1) Z' Z’ ZC., iz, P (Fi,)P(F,)P(Fi)) = 0

li=1ia=1is=1

where F,, ..., Fy are Boolean functions of the variable events 4,,..., 4,. The
inequality (4.1) is called exact of order 2 if for every p (0 =p=1) equality stands
in (4.1), if 4, ..., A, are all events of S, (p, 1 —p). (Clearly an inequality which
is exact of order 2 is exact.)

We prove the following

THEOREM 3. Let (4.1) be an inequality which is exact of order 2. If (4.1) holds
on S5(4, 4, 1), it holds on every probability space.

Proor. If (1.2) is the canonical form of F; we have

2 2 2 annPEIPEPE)=

@.2) R
2n—1 2n—1 2n—
—rZO rZO r; d("x,"z,"s)P(B ("1))P(B ("z))P(B ("3))
where . ’ ’
4.3) dry,ry,r3)= B Ciyin,ix(1=1,2,3)

rn€E, (h=1,2,3)
Clearly (4.1) being exact implies that

d(r, r, r)=0 O=r=2"-1).
Let us put for r#s
D(r,s) =d(r,r,s)+d(r, s, r)+d(s, r, r).

Now from the supposition that in (4.1) equality holds on S,(p,q) (¢ = 1—p)
it follows that for any pair of numbers r, s (r#s)

4.4 D(r, s)p+D(s, r)g =0

By supposition (4. 4) holds for p=14 and also for some p for which O<p<1% ;
it follows that

4.5) e, £)=0 ‘" 3:Er.
Thus we obtain, putting

D(ry,ry, r3) = d("ls"z,"a)'*‘d("'l, ry, 1) +d(ry, ry, r3)+

+d(ry, ry, r)+d(rs, ry, ry)+d(ry, ry, ry)
that

N N N
g :Jy § cz.,i,,:,P(E,)P(Fiz)P(Fu):
= 2 D(ry,ry, rs)P(Bn("x))P(Bn("z))P(Bn("s))

O=ri<ra<ry=2"-1

(4.6)
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Now let ry,r,,r; be any three different numbers, 0=r, <r,<r;=2"—1.
Let us denote the atoms of S;(4, 4, §) by o, o, and a;. Let us put

A= 2 o

e(ri)=1

It is easy to show that for this choice of the values of the variable events A4,
we have

(4' 7) Bn(ri) =0 (l:' 1: 23 3)'
As a matter of fact Aj02a; (k=1, 2, ..., n) thus

4.8) B,(r)= [T A2,
k=1

As however the events B,(r,), B,(r,), B,(r;) are disjoint, (4. 8) implies (4. 7).

Clearly (4.7) implies that for any s, different from each of r,, r,, r3, one
has B,(s)=0. Thus for the above choice of the values of the variables 4, ..., 4,
we have

@9 3 2 3o PEIPEPE) = 57 Durary)

As by supposition (4.1) holds on S5 (4, 4, 1), we obtain from (4. 9)
(4.10) D(ry,ry,r3)=0 for O=ri<r,<r;=2"-1.

In view of (4. 6) it follows that (4.1) holds for every probability space S.
As an example consider the following cubic inequality

(4.11) P(AB)P(BC)P(AC) = P?(ABC)[P(4B)+P(AC)+P(BC)—2P(4BC)]

Clearly (4.11) is exact of order two. Thus we have to check only that (4.11)
holds on S; (4, %, 4), which is easily done.

Theorem 3 could be generalized also for polynomial inequalities of degree
greater than 3.

i [\42
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