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ON RANDOM MATRICES II

by
P. ERDOS and A. RENYI

§ 0. Introduction

This paper is a continuation of our paper [1]. Let .#(n) denote the set of all
n by n zero-one matrices; let us denote the elements of a matrix M, €M (n) by e
(1=j=n; 1=k=n). Let p denote an arbitrary permutation D=(D1,:Ds5 s ls)
of the integers (1,2, ..., n) and II, the set of all ! such permutations. Let us put
for each p€ll,

(O. 1) 8(p) :81171 .82112 & 8"1’11'
Thus the permanent perm (M,) of M, can be written in the form
0.2 perm (M,) = 2> &(p)
pelly
Thus each &(p) (p€II,) is a term of the expansion of perm (M,).
Let us call two permutations p’ = (pi, ..., pn) and p” = (p{, ..., py)

(p’€ll,, p”€Il,) disjoint if p,=py for k=1,2,...,n. Let now define (for each
M, eM(n)) v=v(M,) as the largest number of pairwise disjoint permutations
p@, ., p® such that e(pP)=1 (i=1,2,..., v). Clearly

0.3) perm (M,) =v(M,)

thus v(M,)=1 is equivalent to perm (M,)=0.

Let us denote by .#(n, N) the set of those n by n zero-one matrices, among
the n? elements of which exactly N elements are equal to 1 and the remaining n*> — N
to 0 (0<N<n?). Let us choose at random a matrix M, y from the set #(n, N)

2
with uniform distribution, i.e. so that each of the [’;V] elements of .Z(n, N) has the

2 Y=1
same probability ’;V to be chosen.

Let us denote by P(n, N, r) the probability of the event
: V(Mn,N)Er (r=l, 2, ).

Clearly P(n, N, 1) is the probability of the event perm (M, ) =0.
In [1] we have shown that if

0. 4) N,(n)=nlog n+cn+o(n)
where ¢ is any fixed real number, one has
(0. 5) lim P(n, Ny(n),1) = e~ 2",

n—»oo
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This implies that if w(n) tends arbitrarily slowly to + e for #—~ + o and

(0. 6) Ni(n)=nlog n+w(n)n
then
0.7) lim P(n,Ni(n),1)=1.

In the present paper we shall extend this result, and prove the following
THEOREM 1. For any fixed natural number r, if

(0. 8) Ni(n)=nlog n+ (r— 1)n log log n + nw(n)

where w(n) tends arbitrarily slowly to + e for n— + =, we have

(0.9) IiI_P P(n, N} (n),r)=1.

Clearly (0. 7) is the special case r=1 of (0.9). (0. 5) can be generalized in a
similar way (see Theorem 2). Evidently, the interesting case is when w(n) tends
slower to + - than loglog n.

The method of the proof of Theorem 1 and 2 follows the same pattern as that
in [1].

In § 2 we formulate — similarly as in [1] — an analogous result for random
zero-one matrices with independent elements, while in § 3 we add some remarks
and mention some related open problems.

§ 1. Random matrices with a prescribed number of zeros and ones

We prove in this § Theorem 1. We suppose »=2 as the theorem was proved
forsr==1 i1 [1].

Suppose that M is an n by n zero-one matrix belonging to the set .#(n, N;(n))
where Nj(n) is defined by (0. 8), and suppose that v(M)=r—1.

Clearly we can delete from each row and column of such a matrix » — 1 suitably
selected ones so that the permanent of the remaining matrix M’ should be equal
to 0. As regards the matrix M’ we distinguish two cases: either the deletion can be
made so that M’ contains a row or a column which consists of zeros only, or not.
Let us denote by Q,(n, r) the probability of the first case, and by Q,(n, ) the proba-
bility of the second case. Clearly if a row (column) of M’ consists of zeros only,
the corresponding row (column) of M contains at most r—1 ones. Conversely,
if M contains such a row or column, then clearly v(M)=r—1. Thus Q,(n,r) is
equal to the probability of the event that in M there is at least one row or column
which contains at most »—1 ones. Thus we have

n*—n ]
r—1 [ .
(1.1 Q,(n,r)=2n > [’;] i(n"—z):] = Ofe~ ™) = o(1).
j=0
(N,(n))
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Let us pass now to the second case. Let k be the least number such that one can
find in M’ either k columns and n—k —1 rows, or k rows and n—k —1 columns,
which contain all the ones of M’; according to the theorem of Frobenius (see [2]

and [3]) as perm (M")=0, such a k exists, and léké[n—;l] because the case

k =0 has already been taken into account (this was our first case). We may suppose
that all ones of M’ are covered by k columns and n—k —1 rows (the probability
of the other case when the ones of M’ .are covered by k rows and n—k —1 columns
being the same by symmetry). It follows — as in [1] — that M’ contains a submatrix
C’ consisting of k-1 rows and k columns, such that each column of C’ contains
at least two ones. Let C be the corresponding submatrix of M. It follows that

n=

2
(1.2) Q,(n, 1) =2 k=21 9

—1]] . a2 :
where g [l =k= [n_z ]] is the probability of the event that M contains a k41

by k submatrix C such that each column of C contain at least two ones, and the
submatrix D of M formed by the same rows as C and by those columns which do not
intersect C, contains at most —1 ones in each row. Evidently

(k+ 1)(n—k)] [n(n—k—l)+k(k—1)

" n k1) (k+1)(r—1)[ 7 N2y
i ‘-”‘=[k][k+1][ 2] . T
N?

It follows from (1. 2) and by an asymptotic evaluation of the expression at the
right hand side of (1. 3) that

(1.4) Q,(n, r)=o(1).
As
(15) I_P(’Z,N;k(n)’r)= Ql(nsr)"_QZ(n’r)

it follows in view of (1.1) and (1. 4) that (0.9) holds. Thus Theorem 1 is proved.
By the same method we can prove the following result, which generalizes
(0. 5) for r=2.
THEOREM 2, If

(1. 6) N,(n) = nlogn+(r—1)nloglogn + cn+o(n)
where r=1 is an integer and c is any real number, we have

2e-°

sl | tim_P(n, N,(),r) = ¢ D
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§ 2. Random zero-one matrices with independent elements

Similarly as in [I] let us consider now random n by n matrices M =(g )
(1=1i, j=n) such that the g; are independent random variables which take on the
values 1 and 0 with probabilities p, and (1 —p,). It can be shown that the following
result is valid:

THEOREM 3. For any fixed natural number r, put

logn+(r—1)loglog n+w(n)
n

@21 Pn =

where w(n) tends arbitrarily slowly to + < and let M be an n by n random matrix
the elements of which are independent random variables, taking on the values 1 and 0
with probability p, and 1—p, respectively. Then the probability of v(M)=r tends
to 1 for n— + oo,

Note that the special case =1 of Theorem 3 is contained in Theorem 2 of our
previous paper [1].

As the idea of the proof is essentially the same as that of (0. 9), and the compu-
tation even somewhat simpler, we omit the proof of Theorem 3. Theorem 3 can be
sharpened in the same way as Theorem 2 sharpens Theorem 1.

§ 3. Remarks and open problems

Let us put

@3.1) u(n, k) = v(gl“i)xlk (perm (M,)).
My € M(n)

Clearly u(n, 1)=1 and pu(n,2)=2; however,for k=3 the question concerning
the value of u(n, k) is open. We h'1ve clearly u(k, k) =k! and

(3.2) uk, k—1) = k|- 31| Pl kf)k

but the value of u(n, k) for n=k +2 is not known. Clearly for determining u(n, k)
it is sufficient to consider those matrices M, which contain exactly k& ones in each
row and in each column. As each such matrix is the sum of k disjoint permutation
matrices, i.e. for such a matrix we have v(M,) =k, thus the problem of determmmg

H(n, k) is the same as the problem raised by RySER (see [7], p. 77) concerning the
minimum of the permanent of n by n zero-one matrices having exactly k ones in
each row and each column. Of course for particular values of » and k one can
determine u(n, k) (e.g. u(5, 3)=12), but what would be of real interest is the asymp-
totic behaviour of u(n, k) for fixed k=3 and n— + .

Let us put

(3.3) lim inf VG, ) = py.

n—co
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It seems likely that p,>1 for k=3. One reason for this conjecture is that if the
conjecture of VAN DER WAERDEN is true, we have

' knt _ (k)

e ,u,,§§>l for k =3. We guess that g, is even larger than e

If in particular M, is the matrix defined by &; ;=¢; j+1 =¢; ;-1 =1 (We put
€;m=E;m—n for m=>n) and &;=0 if |/—j|=2, then it can be easily shown that
perm (M,)=L,+2 where L, is the n-th Lucas number, i.e. the n-th term ofthe
Fibonacci-type sequence

3. 5) 18,400 18,0
and o
(3.6) tim VI, = V52+1 >%.

As regards u(n, k), at present it is known only that

3.7 liIP u(n, 3) = +oo.

This was conjectured by MARSHALL HALL and proved by R. SINKHORN [8]. As
a matter of fact, SINKHORN proved pu(n, 3) =n for all n=3. Of course (3. 7) implies
lim w(n, k) = +o for k=4,5, ... too.

n— +co

An interesting open problem is the following: evaluate asymptotically
P(n, nlog n+(r—1)nlog log n, r) if r is not constant, but increases together with 7.

There is a striking analogy between Theorem 1 and the following well known
result (see e.g. [4]): If N¥(n) balls are placed at random into »n urns, and N;(n) is
given by (0. 8) (with o(n) - + o) then the probability of each urn containing at
least r balls, tends to 1 for n— + =-. The relation between this problem and that
of § 1 is made clear by the following remark. If we interpret the rows (columns)
of M as urns and the ones as balls, then there are n urns, and each of the N}(n)
,,balls” falls with the same probability 1/n in any of the ,,urns”.

In another paper ([5]) we have proved the following theorem (Theorem 1 of [S]):
a random graph I'(n, N) with n vertices where n is even and N =% nlogn+n a(n)
edges where w(n) - + oo for n — + oo, contains a factor of degree one with probability
tending to 1 for n > + co.

Theorem 1 of the present paper suggests the following problem: does a random
graph I'(n, N) where n is even and

N = ;’ nlogn+ Z:;’l nloglogn+w(mn

where w(n) -~ 4 o, contain at least r disjoint factors of degree one with probability
tending to 1 for n-—<-? To prove this, besides the method of [5] the results of [6]
have to be used.
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