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ON RANDOM MATRICES II

by

P. ERDŐS and A. RÉNYI

§ 0. Introduction

This paper is a continuation of our paper [1]. Let J£(n) denote the set of all 
n by n zero-one matrices; let us denote the elements of a matrix Mn£.J/(n) by sjk 
(1 1 ^ k ^ n ) .  Let p denote an arbitrary permutation p = (j>i, p2, •••> P„)
of the integers (1, 2, n) and 77„ the set of all 77! such permutations. Let us put 
for each p £ n n
( 0 .  1 )  s ( p )  S l p i ' £ 2 p2 • • •  S np„-

Thus the permanent perm (M„) of M n can be written in the form

(0. 2) perm (M„) =  Z  s(p)
pen,.

Thus each s(p)(p€.n„) is a term of the expansion of perm (M„).
Let us call two permutations p ' =  (p[, ..., p'„) and p" = (p'[, ..., p',',)

(p £n„, p " a n n) disjoint if p'k^p'k for k  = I, 2, ..., n. Let now define (for each
M„eJ^(n)) v-v(M „) as the largest number of pairwise disjoint permutations

..., p (v) such that £(p(i)) =  l (i =  l, 2, ..., v). Clearly

(0.3) perm (M„) S  v(M„)

thus v(Af„)S 1 is equivalent to perm (M„) >0.
Let us denote by Jt(n, N) the set of those n by n zero-one matrices, among 

the n2 elements of which exactly N  elements are equal to 1 and the remaining n2 — N  
to 0 (0 < N < n 2). Let us choose at random a matrix M n<N from the set Jí(n, N)

with uniform distribution, i.e. so that each of the elements of has the

same probability I to be chosen.

Let us denote by P(n, N, r) the probability of the event

vC^n,jv) — r (r =  l ,2 , ...)•

Clearly P(n, N, 1) is the probability of the event perm (M„,w) >0.
In [1] we have shown that if

(0.4) Ni(n) =n log n + cn + o(n)

where c is any fixed real number, one has

(0.5) lim P(«, N ^n), l) =  e~2e~c.
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This implies that if oj(n') tends arbitrarily slowly to +  °o for n -+ +  °° and

(0. 6) N't(n) —n log n +  co(n)n

then

(0.7) lim ?(n, N*(n), 1)= 1.n-> oo x 7

In the present paper we shall extend this result, and prove the following 

T h e o r e m  1. For any fixed natural number r, i f  

(0. 8) N*(n) = n log n + (r — 1 )n log log n +  nco(n)

where co(ri) tends arbitrarily slowly to +<*> for  » -*- +  °°, we have

(0.9) lim P(n ,N *(n),r)= l.
n-+ +  oo

Clearly (0. 7) is the special case r — l of (0. 9). (0. 5) can be generalized in a
similar way (see Theorem 2). Evidently, the interesting case is when co(n) tends
slower to +  00 than log log n.

The method of the proof of Theorem 1 and 2 follows the same pattern as that 
in [1],

In § 2 we formulate — similarly as in [1] — an analogous result for random 
zero-one matrices with independent elements, while in § 3 we add some remarks 
and mention some related open problems.

§ 1. Random matrices with a prescribed number of zeros and ones

We prove in this § Theorem 1. We suppose r ^ 2  as the theorem was proved 
for r — 1 in [1].

Suppose that M  is an n by n zero-one matrix belonging to the set Ji(n, N*(n)) 
where N*(n) is defined by (0. 8), and suppose that v (M )^ r  — 1.

Clearly we can delete from each row and column of such a matrix r — l suitably 
selected ones so that the permanent of the remaining matrix M ' should be equal 
to 0. As regards the matrix M ' we distinguish two cases: either the deletion can be 
made so that M ' contains a row or a column which consists of zeros only, or not. 
Let us denote by Qx{n, r) the probability of the first case, and by Q2(n, r) the proba
bility of the second case. Clearly if a row (column) of M ' consists of zeros only, 
the corresponding row (column) of M  contains at most r — 1 ones. Conversely, 
if M  contains such a row or column, then clearly v (M )^ r  — 1. Thus Qx(n, r) is 
equal to the probability of the event that in M  there is at least one row or column 
which contains at most r —l ones. Thus we have

( n2 — n \

(1-1) Qi(n, r) s  2n 2  f " | =  0 ( e ~ ^ )  -  o(l).
j — 0  \J) j n I

IvV,(k)J

S tlic ia  S c le n t la r u m  M a th e m a tic a r u m  H u n g a r ic a  3 (1968)



ON RANDOM MATRICES, II 461

Let us pass now to the second case. Let k  be the least number such that one can 
find in M ' either k  columns and 11 — k  — 1 rows, or k  rows and n — k —l columns, 
which contain all the ones of M '; according to the theorem of Frobenius (see [2]

Tl — 1
and [3]) as perm (M ') =  0, such a k  exists, and 1 S/c ^ because the case

k  =  0 has already been taken into account (this was our first case). We may suppose 
that all ones of M ' are covered by k  columns and n —k —l rows (the probability 
of the other case when the ones of M ' are covered by k  rows and n — k  — l columns 
being the same by symmetry). It follows — as in [1] — that M ' contains a submatrix 
C' consisting of k  +1 rows and k  columns, such that each column of C  contains 
at least two ones. Let C be the corresponding submatrix of M. It follows that

(1. 2)

where qk

[ V ]
Qi(n> 0  — 2 2  9k

k =  1

n — 1_ is the probability of the event that M  contains a k  +1

by k  submatrix C such that each column of C contain at least two ones, and the 
submatrix D of M  formed by the same rows as C and by those columns which do not 
intersect C, contains at most r — 1 ones in each row. Evidently

(1.3) k  + J p ; 1 2 1
j =  0

((& +  l)(n  — k)  j |k (tj—k —Y)+ k(k—1)
N * - 2 k - j

N*

It follows from (1. 2) and by an asymptotic evaluation of the expression at the 
right hand side of (1. 3) that

(1.4) 

As

(1.5)

Q2(n,r) = o( 1).

1 -  P(n, N*(ri), r) = Qt (n, r) +  Q2(n, r)

it follows in view of (1.1) and (1. 4) that (0. 9) holds. Thus Theorem 1 is proved.
By the same method we can prove the following result, which generalizes 

(0. 5) for rS 2 .
T h e o r e m  2. I f

(1.6) Nr(n) — n\ogn+ (r—l)n\og\ogn + cn + o(n)

where r S  1 is an integer and c is any real number, we have

(1 .7) lim P(n,Nr(n),r) = e (r- 1>! .
+oo
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§ 2. Random zero-one matrices with independent elements

Similarly as in [1] let us consider now random n by n matrices M  =
(1 S i ,  j  Sri) such that the eu are independent random variables which take on the 
values 1 and 0 with probabilities pn and (1 —p„). It can be shown that the following 
result is valid:

Theorem 3. For any fixed natural number r, put

n  n  „ _  \ogn + { r - l)log log«  +  co(«)
vz - l )  P n  — n

where co(n) tends arbitrarily slowly to + °° and let M  be an n by n random matrix 
the elements o f which are independent random variables, taking on the values 1 and 0 
with probability pn and 1 —pn respectively. Then the probability o f v (M )^ r  tends 
to 1 for n —  +  C O ,

Note that the special case r — 1 of Theorem 3 is contained in Theorem 2 of our 
previous paper [1],

As the idea of the proof is essentially the same as that of (0. 9), and the compu
tation even somewhat simpler, we omit the proof of Theorem 3. Theorem 3 can be 
sharpened in the same way as Theorem 2 sharpens Theorem 1.

§ 3. Remarks and open problem^

Let us put

(3.1) p(n,k) =  (permCM„)).
Ai„£4n)

Clearly 1)=1 and n(n, 2) =  2; however,for 3 the question concerning
the value of p(n, k) is open. We have clearly fi(k, k) = k\ and

(3 .2 ) p(k, k  — 1) =  k\
2! 3! k\

but the value of \x(n, k) for n ^ k  + 2 is not known. Clearly for determining n(n, k) 
it is sufficient to consider those matrices M n which contain exactly k  ones in each 
row and in each column. As each such matrix is the sum of k  disjoint permutation 
matrices, i.e. for such a matrix we have v(Mn) — k, thus the problem of determining 
p(n, k) is the same as the problem raised by Ryser (see [7], p. 77) concerning the 
minimum of the permanent of n by n zero-one matrices having exactly k  ones in 
each row and each column. Of course for particular values of n and k  one can 
determine p(n, k) (e.g. p(5, 3) =  12), but what would be of real interest is the asymp
totic behaviour of p(n,k) for fixed k ^  3 and +°°.

Let us put

(3. 3) lim inf ip(n, k) =  pk.
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It seems likely that 1 for &S 3. One reason for this conjecture is that if the 
conjecture of V a n  d e r  W a e r d e n  is true, we have

If in particular M„ is the matrix defined by S jj= £ jj+1 =sj j - 1 =  1 (we put 
=  for tn>n) and sj7= 0  if \ l - j \  S 2 , then’it can be easily shown that

perm (M„) =  Ln +  2 where Ln is the n-th Lucas number, i.e. the n-th term of the 
Fibonacci-type sequence

This was conjectured by M a r s h a l l  H a l l  and proved by R. S in k h o r n  [8]. As 
a matter of fact, S in k h o r n  proved n(n, 3 )£ «  for all « S3. Of course (3. 7) implies 

lim n(n,k) =  +=» for k  — 4, 5, ... too.

An interesting open problem is the following: evaluate asymptotically 
P(«, n log n + (r — 1 )n log log n, r) if r is not constant, but increases together with n.

There is a striking analogy between Theorem 1 and the following well .known 
result (see e.g. [4]): If N*(n) balls are placed at random into n urns, and N*(n) is 
given by (0. 8) (with w(n) -► +«) then the probability of each urn containing at 
least r balls, tends to 1 for n — +  °o. The relation between this problem and that 
of § 1 is made clear by the following remark. If we interpret the rows (columns) 
of M  as urns and the ones as balls, then there are n urns, and each of the N*(n) 
„balls” falls with the same probability 1 /« in any of the „urns” .

In another paper ([5]) we have proved the following theorem (Theorem 1 of [5]): 
a random graph T(/?, N ) with n vertices where n is even and N  = %n log n + n <x>(ri) 
edges where co{n) -* +  <*> for n-+ contains a factor of degree one with probability
tending to 1 for n

Theorem 1 of the present paper suggests the following problem: does a random 
graph r(n, N) where n is even and

where co(n) -* +  °°, contain at least r disjoint factors of degree one with probability 
tending to 1 for /;-*■«>? To prove this, besides the method of [5] the results of [6] 
have to be used.

(3. 5) 1,3, 4, 7, 11, 18,...

and

(3.6)

As regards /x(n, k), at present it is known only that

(3.7) lim n(n, 3) =  +  °o.
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