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 1969] MEASURES IN DENUMERABLE SPACES 495

 The power set, P(Q), is the a-algebra of all subsets of U. A measure A is called
 continuous if each singleton set A is measurable, and ,u(A) = 0 for all single-
 tons. The trivial measure is the measure on (P(Q) that vanishes identically.
 The symbol "0" denotes the empty set.

 Our results fill a small gap in the literature on measure theory concerning
 the possibility of extending a measure from a given u-ring to the power set.

 Let M denote the family of all measures on all a-rings of an arbitrary space Q,
 and let ot denote the family of all measures on 6P(Q). It may happen that each
 measure in Mt is the restriction of at least one measure in O, or loosely speaking,
 that the class of all measures on all u-rings is no richer than the class of all mea-
 sures on the power set. In this case we shall say that Q, or more precisely the
 cardinal number of Q, has the full extension property; it is clear that either
 all sets of the same cardinality have the full extension property or none do. It
 is evident also that if a cardinal X fails to have the full extension property, so
 does every cardinal M* with M*> N. (This is also true if "u-ring" is replaced
 by "u-algebra" in the formulation of the notion of full extension property.)

 Ulam [7] has shown that the only real-valued continuous measure on the
 power set of a space whose cardinality is less than the first weakly inaccessible
 cardinal is the trivial one. (A cardinal number Ma is called weakly inaccessible
 if (a) K,> No, (b) a is a limit ordinal, (c) k,, is not the sum of fewer than
 N,, numbers each of which is less than K,,.) Hence, in particular, if the cardinal-
 ity of Q is N,, d'(Q) cannot carry a nontrivial continuous measure. On the other
 hand, an example in Sect. 2 demonstrates the existence of a space Q of cardinality
 N, which has a u-algebra f of subsets containing all singletons and a nontrivial con-
 tinuous probability measure , on W. By Ulam's Theorem g cannot be extended
 to (P(Q), so that N, and hence all greater cardinals fail to have the full extension
 property. Intuitively it seems clear that if card Q <_ No, all measures on sub-
 u-rings of P(Q) should be compatible with the assignments of masses to points,
 and thus that 8o should have the full extension property. We shall show that
 this is so in Section 3. The connection between our results and Boolean algebra
 is described in Section 4. The implications for probability theory are discussed
 in Section 5.

 2. An example of a nonextendible measure. Let a be any ordinal greater
 than zero, and let Q, denote the set of all ordinal numbers less than a. Let a*
 denote the smallest ordinal a such that U. is uncountable. Then the cardinal
 number of Q is N,.

 We shall call a set A C,,,* a cosection if there exists a number #CQ<t* such
 that a>f implies aeEA. It is not difficult to verify from well-known properties
 of Q2t* ([2], p. 29) that the class of sets 1F consisting of all cosections and their
 complements is a u-algebra. Moreover, the function

 3 [0,11

 defined by setting
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 496 MEASURES IN DENUMERABLE SPACES [May

 (1, if A is a cosection
 A lo, if A- is a cosection

 is a probability measure which, by Ulam's Theorem, cannot be extended to
 (P(Qa*). We therefore have the following result:

 THEOREM 2.1. If card Q MI, Q does not have the full extension property.

 3. Structure of ?-rings and measures in a countable space. As is shown in
 Theorem 3.1, every a-ring of subsets of a countable space has a particularly
 simple structure, an important feature of which is implied by the following
 lemma:

 LEMMA 3.1. Let Q be a space containing a countable number of points. If f i-s
 a nonempty class of subsets of Q closed under countable union or countable inter-
 section, then f3 is closed, respectively, under arbitrary union or intersection.

 Proof. We give the proof only for the case of intersections; the proof for
 unions is similar.

 Suppose that 5F is closed under countable intersection. Let CCOF be an arbi-
 trary class of sets and put

 D= nA.

 Consider the complementary set DC. If DC is empty, then e is the class whose
 only member is Q, so that DES.

 If DC is not empty, to each wC-DC there corresponds a set A' such that
 co=A, and Ai,,Ge. Let

 E= nAfA;
 o,eDC

 plainly EDD. Since DG is countable and AW,, , we have ECT. Noting that

 X E Dwco E A.w co EC

 that is, DDE, we conclude that D = EC5.
 Now let a denote a o-ring of subsets of a countable space U. We define a

 binary relation " on U2 by setting

 C r ,

 if and only if every set in 61 that contains w' also contains w. It is clear from the
 definition that this relation is reflexive and transitive; it follows from the prop-
 erties of 6(P that the relation is also symmetric. For suppose that w--.co' but

 Co, W.

 Then there exists a set A Cz such that w CA and w'<1 A. Setting Q,= UEE( E,
 it follows from Lemma 3.1 that Q(R CE a. Hence
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 Oa -A G Gts
 co' E ,- A,

 and w E Q- A, which contradicts the relation c-c''.
 Thus "" is an equivalence relation on U. Plainly w-'W' if and only if

 wXfnlEAq AA. Hence we have proved;

 LEMMA 3.2. The equivalence class, [co'], of w' is given by [X']-=,fnl,eAEG A.

 It follows from Lemmas 3.1 and 3.2 that the class of sets { [w']: co'EQit} is
 a measurable partition of QR, i.e., one in which each set is in (R.

 An atom of a ring (R of sets is a nonempty, 61-measurable set A whose only
 (R-measurable subsets are A and 0. The theorem below shows that a cr-ring in a
 countable space is generated by its atoms.

 THEOREM 3.1. If Q is countable and (R is an arbitrary a-ring of subsets of 0,
 there exists a countable, measurable partition of Om into atoms. The atoms are just
 the equivalence classes [W], WE 12,R, and each (R-measurable set A is the union of the
 atoms contained in A.

 Proof. Suppose there is a point coE Q2a and a set B E (R such that B is a non-
 empty, proper subset of [w]. Then there are equivalent points co'EB and
 c" [w] -B, which contradicts the definition of equivalence.

 Thus the sets [W], cof0, are atoms which form a measurable partition of
 Om; plainly there are no other atoms. To complete the proof we note that B E 6R
 implies

 B = BC = BCr U [coj= U BC [0 ] U [@],
 esenfl wEnG (w] cB

 since Bt) [w]- [wc] if [wX CB and is empty otherwise.
 Let 5F and f1 * be g-algebras of subsets of spaces Q and U*, respectively. We

 shall say that ff and d* are isomorphic if there exists a 1:1 mapping 4 of ?S onto
 i that preserves countable unions and complements, i.e.,

 (a) 4 U A ) U c(A,),

 (b) e(A c) = (q5(A))c

 It follows easily from (a) and (b) that 0 also preserves countable intersections,
 differences, and set inclusion. We can now state the following corollary to
 Theorem 3.1:

 COROLLARY. If Q is countable, any a-algebra 5f of subsets of Q is isomorphic to
 the a-algebra 3* of all subsets of the set Q? of all atoms of 5.

 Proof. We should like to emphasize that each point W*GQ* is a subset of Q.
 Thus if A is a subset of Q and A* is a subset of Q*, w* can bear the relation of
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 498 MEASURES IN DENUMERABLE SPACES [May

 inclusion to A and the relation of membership to A *. With this in mind, we
 define a mapping

 +: WI9C*

 by setting, for AEz, + (A) = {co E Q*: co* C A}.
 The mapping 4 is "onto" since, if A *ES*, then the set A defined by

 A U ( co*) E f

 has the property

 (A) = A*.

 Moreover, 4 is 1: 1; for if A ES, B ES, A $B, there exists a point w in one of the
 sets that is not in the other, say wA, wEB. Then [co] CA and [co] CBC so that

 +(A) Oq5(B).
 To show that f preserves countable unions, it suffices to note that for any

 sequence A1, A2, -of i-measurable sets,

 4(Ai)= {[w]: e Ai}
 and

 00 \ { t0 \ t ~ ~ ~~~~~~~0 00

 f U i= {[w]: i E U Ai = U {ic]: wE Ail = U O(Ai).
 i=l i=l i=l * =1

 Similarly the relation

 4(Ac) {[wo]: e Ac} = I[W]: w } - {[WI: co C A}
 -(4) -p(A) = Q*- =(A) = ((A))c

 shows that 4 preserves complements. Thus 5F and i* are isomorphic.
 It follows easily from Theorem 3.1 that N0 has the full extension property.

 For completeness the argument is given below.

 THEOREm 3.2. Let Q be a countable set, (R a o-ring of subsets, and ,u an arbitrary
 measure on (R. There exists a measure ,u* on the class of all subsets of Q whose restric-

 tion to (R is Iu.

 Proof. For each equivalence class [c], E.QiR, let p[,,,1: [wI-R+ be any func-
 tion such that

 EPt@w (a)= (].
 a [co]

 Assume that Oa= Q. Let p: Q-+R+ be the mapping whose restriction to [W]
 is p[,] for all w U. For each set A CQ define

 (A)- = P(w)
 wGeA
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 1969] MEASURES IN DENUMERABLE SPACES 499

 Clearly ,u*: @2)R+ is a measure and M*([co]) =M([co]), coEQ. More generally,
 for BE(R we have from Theorem 3.1,

 (B)= U [f)- = E #*(]) = E ([B]) ).
 [,] cB [/ I cB (c] cB

 If Oa Q, we define p on Oa as before and define it arbitrarily on Q-Q,R.

 4. Related theorems of Boolean algebra. Let at be a Boolean algebra and
 let m be an infinite cardinal. a is said to be m-complete if for every indexed

 family {At}tET, where card T=m and At ,, the join UtETAt exists in at.
 This is equivalent to the condition that for every m-indexed family { AttETI
 the meet nteT At exists in a. If a, is an m-complete Boolean algebra for every
 m, then a is said to be a complete Boolean algebra. (For the definitions of
 Boolean algebra, infinite joins, and infinite meets, see [4].) A Boolean algebra a
 is said to satisfy the m-chain condition provided that every set of disjoint ele-
 ments in a has cardinality<? m. (Since an algebra of sets may be viewed as a
 Boolean algebra, the terminology introduced in this section may also be applied
 to algebras of sets.)

 In this terminology, Lemma 3.1 of the previous section has an obvious
 corollary.

 COROLLARY TO LEMMA 3.1. A o-algebra of subsets of a countable space is a
 complete Boolean algebra.

 It is interesting to note that this corollary is a special case of a much more
 general theorem of Boolean algebra due to Tarski.

 THEOREM (Tarski). Every m-complete Boolean algebra (a satisfying the m-chain
 condition is a complete Boolean algebra.

 For a detailed proof of this theorem the reader is referred to [4, 5]. The
 proof rests on the inductively proved fact that if the join UtET A t exists for any
 m-indexed set {At} teT of disjoint elements of a Boolean algebra a, then ai is
 m-complete. Under the hypothesis of Tarski's Theorem it is evident that the
 join of any indexed set of disjoint elements exists.

 Since a ou-algebra of subsets of a countable space is not only 8o-complete but
 also satisfies the No-chain condition, the corollary to Lemma 3.1 is a special
 case of Tarski's Theorem.

 Our Theorem 3.1 also has a more general Boolean algebra counterpart. An
 element A O of a Boolean algebra e is said to be an atom of a if for every
 BE (i the inclusion

 BC A

 implies that either B = 0 or B = A. A Boolean algebra is called atomic if for every
 element A 0O there exists an atom BCA. The following theorem, due to
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 Lindenbaum and Tarski [4, 6], relates completeness to atomicity:

 THEOREM (Lindenbaum and Tarski). A complete Boolean algebra a, is iso-
 morphic to a complete algebra of sets if and only if a, is atomic. In this case a, is
 isomorphic to the algebra of all subsets of the set of all atoms of (a.

 Two Boolean algebras are called isomorphic if there exists a 1: 1 mapping
 of one onto the other that preserves binary join and complement.

 Since, as we have seen, a --algebra of subsets of a countable space is com-
 plete, it follows from the Theorem of LIindenbaum and Tarski that it is atomic.

 It is evident that the atoms of a Boolean algebra are disjoint. Hence, there are
 only countably many atoms in a ar-algebra of subsets of a countable space U.
 Clearly the union of these atoms is Q, so that they form a countable, measurable
 partition of the space.

 5. Implications for probability theory. In the Kolmogorov formulation of
 the axioms of probability, the mathematical description of a random experiment

 8 consists of a triple (Q, 5, P), where Q is a set, 5f is a a-algebra of subsets of Q,
 and P: 5--* [0, 1] is a probability measure. In applications of the Kolmogorov
 model each point in Q is interpreted as a possible "primary" or "indecomposable"
 outcome of 8, and each set A CE is interpreted as the event that "the outcome
 of g is one of the points in A." Thus the intuitive notion of event is formalized
 as a set and, moreover, it is postulated that the only events of g to which prob-
 abilities are associated are the sets in 5. These probabilities are given, of course,
 by the measure P.

 In this approach any a-algebra of subsets of Q is admissible as an event class;
 in particular, for example, it is not required that the singleton sets themselves
 be events, despite the fact that each point is intuitively thought of as a possible
 outcome. Keeping this intuitive interpretation of the points of Q in mind, it
 is natural for the student of probability to wonder why an arbitrary subset of
 Q should not be regarded as a possible event to which a probability is attached.
 Indeed, from the point of view of the scientist or engineer interested in applica-
 tions, the definition of an event as a member of a distinguished u-algebra of
 subsets may seem decidedly unnatural. Certainly the problem of justifying it is
 faced by every teacher of probability.

 One argument, which we shall not elaborate here, rests on a distinction be-
 tween events and observable events [3]. This argument gives an intuitive
 interpretation of the fact that probability is not defined for all events, only for
 observable events. However, a purely mathematical argument can also be given,
 based on the theorems proved in the previous section. Although in every appli-
 cation of probability the governing probability measure must satisfy the axioms
 of probability, i.e., be _ 0, countably additive, and have P(Q) =-1, each applica-
 tion typically involves its own additional set of conditions, conditions dictated
 by a combination of empirical and theoretical considerations peculiar to the
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 particular application; these additional restrictions may, in a certain sense,
 clash with the general probability axioms.

 Consider, for example, the idealized experiment of making an infinite se-
 quence of tosses of a coin. Suppose that each toss is made independently of the
 others and that the tosses are made under identical conditions. A possible out-

 come of this experiment is an infinite sequence of heads and tails such as

 H,T T, T, H, T,H Hy , * ,

 where H stands for head and T for tail. The sample space 2 for this experiment
 may be taken to be the collection of all infinite sequences of H's and T's. Let
 p, O<p <1, denote the probability of head in a single toss. The set of all se-

 quences having exactly k H's amnong the first n coordinates corresponds to the
 event that exactly k heads occurred among the first n tosses, and elementary
 probabilistic considerations lead to the conclusion that to this set of sequences

 we should associate the probability (t)pk(l-p)n-k. It can be shown that this
 assignment of probabilities leads to a unique probability measure on the ring of
 all subsets of Q determined by conditions on a finite number of coordinates. (A
 set A is said to be determined by conditions on a finite number of coordinates
 if there exists an integer n such that for each point c in i2 the first n coordinates

 of w determine whether or not o is in A.) It is evident that the singleton sets do

 not belong to the ring of sets to which we have thus far attached probabilities.
 Suppose now that we try to extend the probability measure we have defined to

 some a-algebra of subsets of 2 containing all the singletons. Consider the single-
 ton set whose only member is the point (H, H, H, * * ). For every integer n,
 this event is contained in the event "n heads in the first n tosses." Since prob-
 ability is monotonic, it follows that the probability of the singleton is, for every
 n, less than or equal to pn. This implies that the probability of the singleton is
 zero. A similar argument leads to the conclusion that each singleton set must
 have probability zero. Thus, if we could extend the probability measure we
 originally defined to some cr-algebra containing all of the singleton sets, the ex-
 tended probability measure would have to be continuous. Since the cardinality
 of the space under consideration is that of the continuum, it follows from Ulam's
 Theorem [7], under the continuum hypothesis, that (P(Q) cannot carry a non-
 trivial continuous measure. (This was also shown independently by Banach and
 Kuratowski [1 ].) Yet physical considerations dictate that each singleton in Q
 must have probability zero. Hence, if the probability model is to be faithful to
 the physical situation, it is impossible in the present example to define an event
 to be an arbitrary subset of Q. (At least this is so if the continuum hypothesis is
 adopted as an axiom of set theory. Even if it is not, if the question of whether
 or not P(92) can carry a nontrivial continuous measure is decidable from the
 other axioms of set theory, it must be decided in the negative, since this is the
 conclusion when the continuum hypothesis is used.) It is, of course, possible to
 define a continuous measure on the u-algebra generated by the ring with which
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 we started, which is done in the usual treatment of this problem in probability
 theory. By restricting the notion of event to such a a-algebra, we obtain a model
 that fits the physical situation at the price of seeming artificiality in the defini-
 tion of event. This example illustrates the fact that the class of probability
 measures on arbitrary a-algebras in a space whose cardinality is that of the
 continuum is more useful than measures obtained by restriction from the power
 set. Hence, the decisive advantage of Kolmogorov's definition of event is that it
 leads to a larger and more useful class of probability spaces than would result
 from defining an event to be an arbitrary subset of a sample space.

 The treatment of countable spaces in probability is in striking contrast to
 that of uncountable spaces. In the former case it is assumed invariably that the
 event class is the power set of the sample space. There appears to be no justifica-
 tion for this in the literature other than the fact that the procedure of assigning
 probabilities to all singletons leads in a simple way to a measure on the power
 set. Yet how can we be sure that we shall not encounter an experiment in which
 the sample space is countable and the conditions associated with the experi-
 ment are incompatible with all measures arising from point masses? The assur-
 ance is given by Theorem 3.2 which shows that the class of all measures on all
 a-algebras of subsets of a countable space is no richer than the class of measures
 on the power set, i.e., the class arising from point masses.

 Another way of viewing the situation in the countable case is suggested by
 the corollary to Theorem 4.1, which shows that no theory in which events are
 defined as elements of an arbitrary a-algebra can be more general than one in
 which events are defined as members of the power set; for each a-algebra TY of
 subsets of a countable space is isomorphic to the power set @P of some space, so
 that a mathematical model involving TF can be replaced by one involving (P. In
 the countable case, therefore, the definition of an event as an arbitrary subset
 of the sample space is not only natural but correct.

 The work of the second author was supported by the Office of Naval Research, Contract
 Nonr-285 (38). Reproduction in whole or in part is permitted for any purpose of the United States
 Government.
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