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ON THE N U M B E R  OF E N D P O IN T S  OF A A-TREE

by
A. RÉNYI

§ 1. Definitions

A A-tree (A= 1, 2, 3, ...) is the natural generalization to A dimensions of an 
ordinary (i.e. one-dimensional) tree (see [1], [2], [3], [4]). A А-tree can be considered 
either as a A-dimensional simplicial complex with certain properties, or as a graph. 
We shall take the second point of view.

A А-tree can be most conveniently defined inductively as follows: A A-tree 
of order A +  l is a complete (A +  l)-graph. A А-tree t}k)+i) of order n +  1 (л ê  A +  l)  
is obtained by choosing an arbitrary А-tree t {k) of order n, and adding a new vertex, 
joining it to A such points of t (k) which form a complete graph in t („k), i.e. to the 
points of a (A —l)-cell of t („k\  Thus a А-tree of order n contains n points (vertices), 
n —к А-cells (i.e. complete subgraphs of order A +  l) and k(n — k ) + l  (A —l)-cells 
(i.e. complete subgraphs of order A).

A point of a А-tree of order n A +  1) is called an endpoint if it belongs to a 
single А-cell of the A-tree.

It is easy to see by induction that the number of endpoints of a A-tree of order 
n ê  A +  l is at least 2 and at most n — k.

As a matter of fact two endpoints can not belong to the same (A —l)-cell if 
n ë A  +  2; thus if we take a A-tree t („k) o f order n S  A+  2 and form a A-tree t {kl , 
of order n +  1 by adding to d k) a new point (joining it with the points of a (A — l)-cell 
of tlk)) then the new point will be an endpoint, of t (kl  t and among the endpoints 
of tlk) at most one will not be an endpoint of t $ , ,  thus the number of endpoints 
is either unchanged, or is increased by one; as a A-tree of order A+  2 consists of 
two А-cells which have a (A — l)-cell in common and thus it contains exactly 2 end-
points, it follows that any A-tree of order n S  A + 2  contains at least 2 and at most 
n —k endpoints.

In this paper we consider labeled, more exactly: point-labeled A'-trees, i.e. such 
А-trees of order n, the points of which are labeled by the numbers 1, 2, ..., «. It has 
been shown (see [2] and [3]) that denoting by Tk(n) the total number of labeled A-trees 
of order n, one has

(1) Tk(n) =  (" )[А (и -А )+ 1 ]" -* -2 (A =  1 ,2 ,. . . ) .

The aim of the present paper is to determine the number Tk(ii, r) of labeled 
А-trees of order n having r endpoints (2 ^  r ^  n — k). The corresponding problem 
or 1-trees has been solved in [5].
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§ 2. Exact formulae

We prove first the following recursion formula

(2) Tk( n + \ , r ) r  =  (n +  l)[(k(n — k — r + \ ) + \ ) T k( n , r —l) +  rkTk(n,r)\

where 2 S r  S  n +  1 — к, n Ш к +  2.
To prove (2) let us mention that if we take any &-tree t {k) of order n having r 

endpoints, and join a new point to one of the ( k — l)-cells of t ik) containing an end-
point of t („k>, we get a Æ-tree of order n + 1  with r endpoints, because one end-
point of t {k) disappears and one new endpoint is created. On the other hand if we 
take a A:-tree t ik) of order n having r — 1 endpoints and join a new point to one o f  
the (k — l)-cells not containing any of the endpoints of t fk), we get a fc-tree 
o f order n +1 having r endpoints, because all the r — 1 endpoints of k„k> will be 
endpoints of and the new point will also be an endpoint of t^h-  If we do 
this with all A:-trees o f order n labeled by the numbers 1,2, n + 1  except j  (where 
j  =  1, 2, ..., n + 1 ), we get all possible £-trees of order и + l  having r endpoints, 
each exactly r times; taking into account that each endpoint o f a &-tree of order 
n & к +  2 belongs to к of its k(n — k ) + \  (к — 1 )-cells, (2) follows.

Let us put now

(3)

It follows that

tk(n, s) =
Tk(«, n —s)

(4) tk(n +  \, s) =  [ k ( s —k ) +  \ ] ‘ tk(n, s ) + k s t k(n, s — l) for k S s S n  — 1,

where 1k(k + 1, k) =  0.

Thus, putting

(5) Gk(z , s )  = 

we obtain

(6)

As however Tk(n, n

(7) Gk(z, k) =  j - U  

Thus it follows from (6) that

c! Jcs~̂
(8) Gk( z , s ) =  — k -

k\ I J  (1 - z U k + l ))
j= о

2  {k{n, s)z" 5 2 (s — к, k +  1, ...)
n=s + 2

Gk(z, s) =
ksGk(z, s — 1)

l-z [A -(j -A -)+ l]  '

- At) =  ^  j if /7 S  Ar 2, we have
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It follows in particular for k =  1 that

C ,(z, s) =  —
s'.

(9)

П  (1 — hz)
h= I

Now it is known (see [5]) that for к =  1

(10) Tt (n, n — s) =  S(n — 2, s)s\ 

where S(m, s) are the Stirling numbers of the second type, defined by

m

(H) ym = 2 s ( w ,j )K y - l ) . . . ( ) ' - î  + l).

From (10) we can deduce (9) directly as follows.
It follows from (11) that

(12) ^ (e -- l ) !
s'.

and thus for Izl <  — 
ä

(13) 2 s ( m , s ) z ~ =  Z
m=s m = s

S(m, s)z"

I

.  .  (ezy — 1 )s
J  y me y dy =  J ------ ------e y dy.
r\ r\ S •

It follows by partial integration that

(14)

i. e.

(15)

2  S(m ,s )z m =  —

П  ( l —hz)

f
G ,(z ,s) —s! 2  s (m> ■y)zm_s =  - — -

/ / ( 1 - A z )

in accordance with (9).
To get an explicit expression for Tk(n, r) we need the following identity

(16)
1

J J [ \ - z ( j k  +  l)\
7=0

1 у Ы  ( - \ ) m- J( j k + i r  
m \ k m jTo [ j  ) 1 —z{jk  +  1)

which can be proved e.g. by elementary function theory. 
It follows from (8) and (16)

(17) G к (z, s) =
у  is -  k] ( - i y - k- J ( j k + i y - k 

k ) j é o {  j  j 1 —z ( j k +  1)
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and thus

(18) tk(n,s)
Tk(n, n - s )

'
n

s _

(— i y ~ k~J( jk  +  l)"- *-2 .

Thus we obtain finally

(19) Tk(n, n - s ) ( - i y - k- j ( j k + \ y

By adding the values of Tk(n, n —s) for s =  к, k +  1, n — 2 we must o f  
course get the known formula (1) (see [2], [3]) for the total number Tk(n) of k -trees 
o f order n. As a matter of fact we get from (19)

(20)

n-2

Tk{n) =  2  Tk( n , n - s )
s—k

\ n- к —.

l \  2
j=0

n — k

j

Taking into account that

n — k
n ~ k — 2

( j k +  l ) n~ k ~ 2 ( n  — k —j — 1 ) ( — 1 )«-*-> .

( jk  +  l)n~k~2(n — k —j — 1)

=  V [ ( k ( n - k -  1 )+  1)Я (л- А:- 2> (0 )-Я <п- ‘ - 1)(0)]

where

H ( x )  =  e x [ (ek x - l ) n - k +  ( n - k ) e kim~ k ~ 1 ) x - e Hn~ k)x]

and we have

2)(0) =  ( n - k ) [ k ( n - k - l ) +  \]"-k~2- [ k ( n - k ) + l ] " - k- 2
and

Я ( n-fc-i)(0) =  (n - k ) [ k { n - k - \ ) + \ ] n- k- i - [ k { n - k ) + \ ] n-k- 1

and thus

т [ ( Л с ( я - Л - 1 )  +  1 ) Я ‘" - ‘ - 2) ( 0 ) - Я < — ‘ “ « (О )]  =  [ k ( n - k ) +  l f ~ k ~ 2
/V

it follows that (1) holds.

Thus as a by-product we obtained another proof of the formula (1). Notice 
that for k = l  (1) reduces to C a y l e y ’s celebrated formula Tl (n) =  nn~2 for the total 
number of ordinary (one-dimensional) trees of order n. (For other proofs of this 
formula see [6] and [7].)
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§ 3. The moments of the distribution of the number of endpoints

Let us first consider the mean value and the variance of the number of end-

points of a Л-tree of order n. For the mean value

j n — k

( 21) Mk(n) =  T 2 j  rTk(n,r)
1 k W  r=2

we get from the recursion formula (2) immediately

nTk( n -  1)
( 22)

and thus 

(23)

Mk(n) =

Mk(n) =

Tk(n)
[Л(я —Л —1) +  1]

-Л

Thus we have 

(24) lim

к

к (я - к -  1)+ 1

for к =  1,2, 3,
Мк{п) =  1

я е

Similarly we get from (2) for the variance

1
n — k

(25)

(26)

+

and thus 

(2. 7)

D2k(n )=  ' 21  [ r - M k(n)]2Tk(n, r)
1 к W  r~2

Dk(n) =
(n — k — 1)(я —Л)[(я —Л—2)Л +  1]"

+
[Л(л —Л)+ 1 ]и- fc - 2 

( n - k ) [ k ( n - k -  О-Ы]"-*1- 3 ( n - k ) 2[ k ( n - k - \ ) + l ] 2n- 2k~6

[к (n — Л) +  1 ]п - к - 2 [ t i n - t i + i ] 1

t a  № = , , 2 , . . . ) .
n-+~ п e I e )

It is remarkable that the asymptotic formulae for Mk(n) and Dk (n) do not depend 

on k, i.e. are the same as those obtained in [5] for lc= 1.
In [5] we have proved that if we choose at random one of the n"~2 labeled trees 

of order /?, so that any one of these is chosen with the same probability, then denot-

ing by v„ the number of endpoints of this random tree, the distribution of the random

variable
M\ (n)

tends for az— + ° o to the standard normal distribution. By
£>,(/?)

considering moments of every order one can prove that the same holds for every 
k, i.e. if we choose at random, with uniform distribution one of the Tk(n) labeled 

Л-trees of order n, and denote the number of its endpoints by v(„k>, then the distribu-

tion of
..(*). Mk(n)

Dk(n)
tends for я — +  °° to the standard normal distribution.
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