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ON THE NUMBER OF ENDPOINTS OF A k-TREE

by
A. RENYI

§ 1. Definitions

A k-tree (k=1,2,3,...) is the natural generalization to k dimensions of an
ordinary (i.e. one-dimensional) tree (see [1], [2], [3], [4]). A k-tree can be considered
either as a k-dimensional simplicial complex with certain properties, or as a graph.
We shall take the second point of view.

A k-tree can be most conveniently defined inductively as follows: A k-tree
of order k +1 is a complete (k + 1)-graph. A k-tree t{¥), ;, of order n+1 (n = k+1)
is obtained by choosing an arbitrary k-tree 7{¥) of order n, and adding a new vertex,
joining it to k such points of #{* which form a complete graph in 7, i.e. to the
points of a (k —1)-cell of +{*). Thus a k-tree of order n contains n points (vertices),
n—k k-cells (i.e. complete subgraphs of order A +1) and k(n—k)+1 (k—1)-cells
(i.e. complete subgraphs of order k).

A point of a k-tree of order n (= k + 1) is called an endpoint if it belongs to a
single k-cell of the k-tree.

It is easy to see by induction that the number of endpoints of a k-tree of order
n = k+1 is at least 2 and at most n—k.

As a matter of fact two endpoints can not belong to the same (k —1)-cell if
n = k+2; thus if we take a k-tree 7 of order n = k+2 and form a k-tree 1%,
of order n+ 1 by adding to 7{¥ a new point (joining it with the points of a (k — 1)-cell
of 7{¥) then the new point will be an endpoint, of 7}, and among the endpoints
of #{¥ at most one will not be an endpoint of 7!, thus the number of endpoints
is either unchanged, or is increased by one; as a k-tree of order k +2 consists of
two k-cells which have a (k — 1)-cell in common and thus it contains exactly 2 end-
points, it follows that any k-tree of order n = k 42 contains at least 2 and at most
n —k endpoints.

In this paper we consider labeled, more exactly: point-labeled k-trees, i.e. such
k-trees of order n, the points of which are labeled by the numbers 1, 2, ..., n. It has
been shown (see [2] and [3]) that denoting by 7} (n) the total number of labeled k-trees
of order n, one has

"
(1) T,(n) = [k][k(n——k)+l]""""2 =12 o)
The aim of the present paper is to determine the number 7, (n, r) of labeled

k-trees of order n having r endpoints (2 = r = n—k). The corresponding problem
or l-trezs has bzzn solved in [5].
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§ 2. Exact formulae

We prove first the following recursion formula
2) T,(n+1,r)r = (n+D[(k(n—k —r+1)+1)T,(n, r — 1) +rkTi(n, r)]

where 2 =r=n+1—k, n = k+2.

To prove (2) let us mention that if we take any k-tree 7{* of order n having r
endpoints, and join a new point to one of the (kK — I)-cells of #{¥ containing an end-
point of 1, we get a k-tree ¥, of order n+1 with r endpoints, because one end-
point of #{* disappears and one new endpoint is created. On the other hand if we
take a k-tree 7{¥ of order n having r —1 endpoints and join a new point to one of
the (k —1)-cells not containing any of the endpoints of 7*), we get a k-tree ),
of order n+1 having r endpoints, because all the r—1 endpoints of 7’ will be
endpoints of 7{¥,, and the new point will also be an endpoint of 7¥),. If we do
this with all k-trees of order » labeled by the numbers 1, 2, ..., n+ 1 except j (where
j=12,...,n+1), we get all possible k-trees of order n+1 having r endpoints,
each exactly r times; taking into account that each endpoint of a k-tree of order
n = k+2 belongs to k of its k(n—k)+1 (k—1)-cells, (2) follows.

Let us put now

A3) t(n, s) = 12—
It follows that

4) t(in+1,s5) = [k(s—k)+1]-t,(n, s) + kst,(n,s—1) for k =s=n-—1,

where #(k+1,k) = 0.
Thus, putting

-+ oo

©) Gilhgi= 2 RO 2. (s=akE4l )
n=s+2

we obtain

© Gz, 5) = porbE i)

| —z[k(s—k)+1]"
As however Ty (n,n—k) = (Z) if n = k42, we have

_, 1

(M Gk(Z,k)-_—l__;-
Thus it follows from (6) that

sl
(8) Gk(25 S) = s—k

k! ]_]0 (1 —z(jk+1))
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It follows in particular for k=1 that

) G,(z,5) = — igL =
]] (1 —hz)
h=1
Now it is known (see [5]) that for k =1
(10) T,(n,n—s) = S(n—2, s)sv[ ]

where S(m, s) are the Stirling numbers of the second type, defined by

(11) — =Z' (m,s)y(y—1)...(y—s+1).

From (10) we can deduce (9) directly as follows.
It follows from (11) that
o S(m, s)z™ e—1)
(12) > N dns

i, m! sl

and thus for [z| < %

1) Ssemarm= 32V [ ymemrgy = [ gy,
m=s - . 0 0 .

(14) SS(m, 5)z" = S I

i. e.

< '
(15) Gz, 8) =3l ZS(m, $)ZH T = .

fa ] 0 —=hz)
h=1

in accordance with (9).
To get an explicit expression for 7, (n, r) we need the following identity

1 = (= D"=i(jk + )™
(16) . = — Z[ ] o
[ 11— =Gk -+ 1) 'k el - 1=l

j=0

which can be proved e.g. by elementary function theory.
It follows from (8) and (16)

<o [s—k| (=1 *I(k+1)"*
(17 Sears []Z[ ] T—zGk+1)
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and thus

s—k
(]8) fk(n’s) = M = [S] Z (S—k] (—])s—k_j(_fk'1- ])n—k—z.
n k)i=o\ J
!
Thus we obtain finally

s—k
(19) Tk(n, n—S) — [Z] [I‘:] 2 [sjk] (._1)3_1\_"(]1\'%‘ ])n—k—Z.

By adding the values of 7,(n,n—s) for s = k,k+1,....n—2 we must of
course get the known formula (1) (see [2], [3]) for the total number T (n) of k-trees
of order n. As a matter of fact we get from (19)

n—2

(20) T = Zk T (n,n—s) =

h i n—k : n—k—2 s n—k—j
=15 ;:Z(’) iUk DT =k —j = D (=1

Taking into account that

n—k—2

[”J‘."] Gk+ 12—k —j—1) =

0

J

= % [(k(n—k_ ])+ I)H("—k—l)(O)_H(Il—k—l)(o)]
where

H(X) == e-\'[(ekx_ l)n—k+(n__k)ek(m—k—l)x_ek(,,_k)x]
and we have

H®k=200) = m—k)[k(n—k—=1)+1]"*2—[k(n—k)+1]""*-2
and .

HO-k=1(0) = (n—k)[k(n—k— 1)+ 1]"~*~1 —[k(n — k) + 1]~*~1

and thus
% [(k(n—k—1) + YH"=*=D(0) - H"*=D(0)] = [k(n—k)+1]"7*2

it follows that (1) holds.
Thus as a by-product we obtained another proof of the formula (1). Notice
that for k=1 (1) reduces to CAYLEY’s celebrated formula 7', (n) =n"~2 for the total

number of ordinary (one-dimensional) trees of order n. (For other proofs of this
formula see [6] and [7].)
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§ 3. The moments of the distribution of the number of endpoints

Let us first consider the mean value and the variance of the number of end-
points of a k-tree of order n. For the mean value

n—k

T & T )

we get from the recursion formula (2) immediately

(21) M, (n) =

nTk(rl—l)
22 M,(n) = ——— k(n—k—1)+1
(22) k(1) T.() [k ( J+1]
and thus

n—k

(23) e e

[l+ k(n—k—1)+]1
Thus we have
(24) fig 2 L e pennd...

n—+te n e

Similarly we get from (2) for the variance

n—k
(25) Di(n) = O] :22’ [r— M, (DT, (n, )
(26) Di(n) = (n—k=D(=K)[(n—k—=2k+1]""*"3

k(n—k)+1]""*-2
(n=k)k(r—k—1)+17"*3 1=k [k(r—k—1)+1]>"~2-6

[k(n—k)+ 1" %2 [k(n—k)+ 1]2n—2k—4
and thus
2
2.7) jiig 208 l[1—3] k=12,..).
nete N e e

It is remarkable that the asymptotic formulae for M,(n) and D7 (n) do not depend
on k, i.e. are the same as those obtained in [5] for k=1.

In [5] we have proved that if we choose at random one of the n"~2 labeled trees
of order n, so that any one of these is chosen with the same probability, then denot-
ing by v, the number of endpoints of this random tree, the distribution of the random
w—M o Jaain, I
‘"D ("')(L) tends for n— + < to the standard normal distribution. By

1
considering moments of every order one can prove that the same holds for every
k, i.e. if we choose at random, with uniform distribution one of the 7,(n) labeled
k-trees of order n, and denote the number of its endpoints by v{¥), then the distribu-

; v — M, (n)
tion of e
Dy (n)

variable

tends for n — + == to the standard normal distribution.

Studia Scientiarum Mathematicarum Hungarica 5 (1970)



10 A. RENYI: ON THE NUMBER OF ENDPOINTS OF A k-TREE

REFERENCES

[1] HARARY, F. and PALMER, E. M.: On Acyclic simplicial complexes, Mathematika 15 (1968) 115—
122.

[2] BeiNekg, L. W. and Prepert, R. E.: The number of labeled k-dimensional trees, Journal of
Combinatorial Theory 6 (1969) 200—205.

[3] Moon, J. W.: The number of labeled k-trees, Journal of Combinatorial Theory 6 (1969) 196—199.

[4] PALMER, E. M.: On the number of labeled 2-trees, Journal of Combinatorial Theory 4 (1969)

206—207.
[5] RENYI, A.: Some remarks on the theory of trees, Publ. Math. Inst. Hung. Acad. Sci. 4 (1959)
73—85.

[6] MooN, J. W.: Various proofs of Cayley’s formula for counting trees, Seminar on Graph Theory,
ed. by F. Harary.

[71 RENYL, A.: On Cayley’s polynomials for counting trees, Proc. of the Calgary Int. Conference on
Combinatorial Structures and their Applications (in print).

Mathematical Institute of the Hungarian Academy of Sciences, Budapest

( Received August 1, 1969.)

Studia Scientiarum Mathematicarum Hungarica 5 (1970)



