UNIFORM FLOWS IN CASCADE GRAPHS

Alfred Rényi

§ 1. Cascade graphs

We shall call a directed graph G, having a finite or denumerably

infinite number of points, a cascade graph, if it has the following

properties:
a) There is in G a point 30—-ca11ed the source--such that for

any other point a of G there is in G a directed path from a; to a.

b) For any point a of G each directed path from a;, to/ a has
the same length r(a)--called the rank of a .

c¢) The number of points of G having rank k is finite for
every k > 1 .

We shall denote the set of all points of G by V and the set of
all points of G having rank k by Vk (k=0,1,2,...) . The source
has clearly the rank 0 and it is the only point with this property:

Thus V0 is a one-element set containing the element ag only, i.e.,

Vo = {20} . As the supposition b) has to hold for a = a; also, it
follows that there is no directed cycle in G containing a; . It
follows further that if there is in G an edge from the point a to
the point b then r(b) - r (a) = 1, i.e. every edge starting from a
point in Vy leads to a point in Vy .4 (k=0,1,...). Let us denote by

d(a) the number of edges of G ending at the point a, i.e. the indegree
of a, and by D(a) the number of edges of G starting from a, i.e. the

outdegree of a. Clearly both d(a) and D(a) are finite for every a ¢ V.
We call a point a ¢ V an endpointof G if D(a) = 0. We shall denote

the set of endpoints of G by E and the set of endpoints of rank

k of G by Ei. For any finite set A let |A| denote the number of

elements of A. We put Ny = |V, | and M, = |V - Ey| , i.e. Ny
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denotes the total number of boints of rank k, and M, the number of
those points of rank k, which are not endpoints. We shall denote
further by R the maximum of r(a) for a € V if V is finite and put
R = +o if V is infinite. Clearly if My = 0 for some value of k
then Nm = 0 for m > k and R is finite, and conversely,

Let us consider now some examples of cascade graphs.

Example 1. If G is a rooted directed tree in which all edges are
directed away from the root, and D(a) is finite for every point a of
G, then G is a cascade graph, its source being the root of the tree.
Conversely if in a cascade graph G, d(a) = 1 for all points a
different from a, (for which of course d(go) = 0) then G is a rooted

directed tree in which all edges are directed away from the root.

Example 2. Let S be a finite set. Let the points of the graph G be

all subsets of S and connect a ¢ S with b € S by an edge (directed from
a to b) if and only if b is obtained from a by omitting one of its

elements. The graph G thus obtained is a cascade graph and for every

ac S one has r(a) = |S| - |a]

Example 3. Let S be a finite set and let the points of the graph G be

all non-negative integral valued functions defined on S. If f and g

are two such functions, draw an edge from f to g if and only if

g(x) 2 £(x) for all x € S and XZ (g(x)-f(x)) = 1. 1In this way we

get a cascade graph and the ranisof a function f is r(f) = xgsf(x).
Let us call a cascade graph simple, if it does not contain any

infinite directed path. In a simple cascade graph to every point a

there corresponds a nonempty set T(a) consisting of those endpoints of

the graph which can be reached from a by a directed path., We call

T(a) the target-set of the point a. If there is a directed path from

aeVto b e V then T(b) € T(a).

A subset A of the vertices of a cascade graph G is called an



antichain, if for any two points a € A and b € A there does not exist
in G a directed path from a to b. An antichain is called saturated,
if it is not a proper subset of another antichain. An antichain is

called a blocking antichain, if any directed path from the source to

an endpoint, and every infinite directed path starting at the source,
passes through a (unique) point of the antichain. C(Clearly every
blocking antichain is saturated but a saturated antichain is not

necessarily blocking. For instance in Example 2, let S be the set

S = {1, 2 ...n} where n > 3, and let the antichain A consist of the
two sets {1} and {2, 3, ...n}. Then A is saturated, as every subset of
S not containing the set {1} is a subset of the set {2, 3, ...,n} but

it is not blocking. If the cascade graph G is a rooted tree (see
Example 1) then a saturated antichain is always blocking if G is finite,

but not necessarily if G is infinite. (See the following Example.)

Example 4. Let the points of the graph G be all finite sequences,
each term of which is one of the numbers 0, 1, ..., q-1 where q > 2;
the empty sequence is also a point of G. Let there be in G an edge
from the point a to the point b if the sequence b is obtained from the
sequence a by adding to the end of the sequence a one more digit, i.e.
one of the numbers 0, 1, ..., q-1. In this way we obtain a cascade
graph, which is a tree, and has no endpoints. Let us take q = 2 and
let the antichain A consist of the sequences 0, 10, 110, 1110, ...
A is clearly a saturated antichain, but it is not blocking as it does
not block the infinite path from the source (this being the empty
sequence) leading through the points 1, 11, 111, ... .

In a simple cascade graph the set of all endpoints is a blocking
antichain. In any cascade graph the set Vk is an antichain and if
there are no endpoints of rank < k, then Vk is a blocking antichain.

Let us write, for any two pointa a and b of a cascade graph,



a < b if there is a directed path from a to b. G is a partially
ordered set* with respect to the order relation < , but not neces-
sarily a lattice. The following example shows that cascade graphs

which are lattices have remarkable properties.

Example 5. Let (G be a finite combinatorial geometry (see H. Crapo

and G. C. Rota [1]). Let G be the graph, the points of which are the
flats of G and there is an edge in G from the flat a to the flat b

if and only if b covers a. Then G is a cascade graph, which is a
lattice, and the rank of any flat a in G is the same as in 4. Let

us remove from the cascade graph G its unique element with maximal
rank: We obtain again a cascade graph, the endpoints of which are

the copoints of G . This cascade graph has among others the following
remarkable property: The target sets corresponding to different points
are different, and the target sets of points having the same rank form

a Sperner-system (i.e. none of them contains any other as a subset.)

If a is any point of the cascade graph G we denote by Ta the set
of all endpoints of edges starting at a. If A is any set of points
of A we denote by T'A the set of those points which are the endpoints
of at least one edge starting at a point in A, i.e. we put TA =ag£a
If b is any point of G we denote by P-lh the set of those points

a for which b € ra.

§ 2. Random walks on a cascade graph

Let us assign to each edge ab (from a to b) of a cascade graph G

a non-negative number w(a, b) such that

*What we call a cascade graph is, considered as a partially
ordered set, a graded partially ordered sets: See Birkhoff [2] and
Klarner [3], where the graded partially ordered sets with a given
maximal rank and given number of points are counted.
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(2.1.) £ w(a, b)
beI‘g 1

for all vertices a of G which are not endpoints. Such a function

w(a, b) defines a (Markovian) random walk on the edges of G as

follows: The random walk starts always from the source 30 and proceeds
to a point a of rank 1 with probability w(go, a); after arriving to

the point a, the walk continues with probability w(a, b) to a point b,
etc. Thus the random walk proceeds always along a directed path of G,
until it reaches an endpoint, while if the path is infinite, the walk
continues indefinitely. Such a random walk defines uniquely a
probability measure P on the power set of the set of all paths starting

from the source (this set being finite or denumerable). Let B denote
a

the event that the random walk arrives eventually to the point a.
(In other words let Ba denote the set of all paths containing the

point a.) Let us put

(2.2:) w(a) = P(B ).
a

Let A be any antichain, then by definition the events Ba (a e A)

are mutually éxclusive. Thus we have for every antichain A
(2.3.) I w(a) 2 1

acA
If A is a blocking antichain, then the events Ba (a € A) form a
complete set of events (i.e. the sets Ba of patEs are disjoint and
their union is the set of all paths), a;d thus we have
(2.4.) T w(a) =1

aeA

§ 3. Normal cascade graphs

We shall call a cascade graph G normal if the transition-
probabilities w(a, b) can be chosen in such a way that w(a) depends

only on the rank r(a) of a, i.e.



(3.1.) w(a) = £(r(a))

where f(x) is a function defined on the set of non-negative integers.

Let B denote the event that the random walk does not stop before
k

arriving to a point of rank k, and let Ck denote the event that the
random walk does not stop at an endpoint of rank k. Then we have

evidently*
(3.2.) P(Bk+1) = P(Bk)P(Ck|Bk);.

Now let G be a normal cascade graph, and suppose that the transition
probabilities have been chosen so that (3.1) holds: In this case we

call the random walk a uniform flow. In case we have a uniform flow on

G, clearly
(3.3.) s P(Bk) = Nkf(k)
and
Mk
4. B LR
(3.4.) P(C,|B) -
k
It follows
Mk
(3.5.) f(k+1) = f(Kg—
k+1
and thus, as £(0) = 1, we get
1 o
(3.6.) , f(k) = N kﬁ for k > 1

where an empty product is by definition equal to 1. Especially if the
cascade graph is finite and it has no endpoits of less than maximal

rank, (i.e. for every endpoint e one has r(e) = R ), or if the

# P(Ck|Bk) denotes the conditional probability of Cx under condition
B
k-




cascade graph is infinite and it does not contain any endpoints, then

we have Mj = N, for j < R and thus
J

(3.7.) f(k) = %__ .

The following theorem is an immediate consequence of (2.3)

and (3.6):

THEOREM 1. Let G be a normal cascade graph. Let Nk denote

the total number of points of rank k of G and Mk the number of those

points of rank k which are not endpoints. Let A be an antichain in

G and let n, denote the number of points of rank k in A. Then the

inegualitz
R n M,
(3.8.) y X 3 & 4
N, j<k N.
k=0 'k 7 j

holds; if A is a blocking antichain there is equality in (3.8.).

COROLLARY: If Mk = Nk for k < R, where R is the maximal

rank of points of G, then for every antichain A we have

(3.9.)

™M

?T‘zl W:j
A
[

k=0

with equality standing in (3.9.) if A is a blocking antichain.

Remark: Notice that(3.9.) can be written also in the equivalent

form

A
-

(3.10. z
! acA Nr(a)

We shall refer to Theorem 1. as the uniform flow theorem. In the next

$ we shall give a necessary and sufficient condition for the normality

of a cascade graph.



§ 4. A necessary and sufficient condition for the

normality of a cascade graph

THEOREM 2. A cascade graph G is normal if and only if it satisfies

the following condition: For every k > 1 and for every subset A

of the set V; - Ek of points of rank k which are not endpoits,

one has
(4.1.) MkII‘A| L [A|
where Nk+l is the number of points of rank k+1, and Mk the number

of points of rank k which are not endpoints.

Proof* of Theorem 2. Clearly for every random walk (i.e. probability

flow) on G and for every set of points A € V-E one has

(4.2.) I w(a) & z w(b)
aeA beTA

Thus if Ac Vk = Ek and the flow is uniform then (4.1) holds, i.e.

the condition is necessary. Let us prove now its sufficiency, i.e.
that if (4.1) holds, one can choose the transition probabilities
w(a, b) so that the flow should be uniform. We shall prove the
existence of such transition probabilities w(a, b) step by step, i.e.
by induction on the rank k of a. Clearly if we put for every point b
of rank 1,w(§0, b) = i_ , then we have w(b) = %— for every point b of
N1 1

rank 1. Let us suppose that we have already determined w(a, b) for
all points a of rank < k so that (3.1) holds for all a € Vk'
We have to show that one can choose the values of w(a, b) for all
ae Vk so that (3.1) holds with k + 1 instead of k too.

In other words, we have to choose the transition probabilities

w(a, b) for a € Vk - Ek in such a way that they should be non-negative

* The proof given here is due to Dr. G. Katona.



and should satisfy the following two sets of equations:

(4.3.) r w(a, b) = 1 for all a e Vk - E

beTla k

and

4.4, b M

( ) -1 w(a, b) = N k for all b e V
ael’ b k+1 ks1

Let ays 8y, o B and bl, bZ’ ey Iy denote the elements

k k+1

of the sets Vk - Ek and Vk+1 respectively. We consider the auxiliary

graph G* defined as follows: G* has ZMka+1 points which we denote by

ai,j (1 < i <My L¢3 = Nk+1) and bu,v
(1 2u

We connect the points a; and bu

= Nk+1 » s 5

in G* if and only if there is in G an edge from a; to bu‘
Thus G* is a bipartite graph with the two classes of points

A= {ai,j} and § = {b,  } . Let for any subset A* of the set A, T'*A*

denote the subset of those bu v which are connected by at least one

’

a. . in G*. Let A denote the set of those a. € V., - E, for which
i,j i k k

a; j is for at least one j contained in A¥*. Then we have

’

4.5, A¥| < N A

(4.5.) A%] < N 1Al

and

(4.6.) |T*Ax| = Mk|FA| .

Thus (4.1) implies

|A%

(4.7.) |T*A%| Mkll‘AI |A]

v

= Nk+1

But (4.7) means that the conditions of the marriage-theorem (see e.g.
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Harper, L. and Rota, G. C. [{] for the existence of a one-to one

matching between the sets A and B so that each a, . is matched
b

with such a bu v with which it is connected in G*, are fulfilled, and

thus such a matching exists. Let us take such a matching and let

s(i, u) denote the number of a; j

a bu - (1 < v <MJ). Then we have evidently

>

(1=<3z Ni41) which are matched to

N
(4.8.) Bl
I s(i, u) =N for 1 < i < Mk
u=1
and
M
k
i el g £ s(i, u) =M
k
i=1
Further s(i, u) = 0 if a; and bu are not connected in G. Thus putting
< sS(i, u 5
(4.10.) W(ai, bu) Nk+1 (1 21z My bu e Pai)

the equations (4.3) and (4.4) hold. Thus Theorem 2 is proved.

From Theorem 2 one can easily deduce the following:

COROLLARY: If in a cascade graph G the outdegree D(a) of a point

a, which is not an endpoint, depends only on the rank r(a) of a, and

the indegree d(b) of any point b depends only on the rank r(b) of b

then G is normal.

Proof: Let us denote the outdegree of a point of rank k which is not
an endpoint by Dk’ and the indegree of a point of rank k by dj‘ As
the total number of edges starting from some point of rank k is equal
to the total number of edges leading to a point of rank k + 1, we

have

(4.11.) M . D =N . d .
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Now let A be any subset of Vk = Ek. As the number of edges going out
from one of the points in A cannot be larger than the number of edges

arriving to a point in TA, we have

(4.12.) [TA] 2 Dy |A]

dk+1

Multiplying both sides of (4.12) by Ny,1, and using (4.11) we get

that (4.1) holds, i.e. that G is normal.

Remark. Instead of deducing the above corollary from Theorem 2
one can prove its statement by constructing effectively the uniform
flow on the cascade graph. As a matter of fact, if for every a which
is not an endpoint we put w(a, b) = |Ta|_1, then we get a uniform flow
on the cascade graph G satisfying the conditions of the corollary.

The cascade graphs satisfying the conditions of the above

Corollary of Theorem 4.1 are called semiregular cascade graphs. As

by the Corollary every semiregular cascade graph is normal, it follows
that the statement of Theorem 1 holds for every antichain of a semi-
regular cascade graph; this special case of Theorem 1 is due to Kirby
A. Baker [5], who has formulated this result in a slightly different
terminology, but the result expressed in our terminology is just the

statement of Theorem 1 for semiregular cascade graphs.

§ 5. Kraft's inequality and Sperner's theorem as special

cases of the uniform flow theorem

In spite of the extreme simplicity of its proof, Theorem 1 is a
common source of several known results, thus for example Kraft's
inequality (see e.g. Feinstein [b] and Sperner's theorem (see e.g.
Lubell [Z] . In this § we shall deduce these theorems and some of

their generalizations as special instances of the uniform flow theorem.¥*

B e ; :
I want to mention that I obtained the uniform flow theorem by analys-
ing Lubell's elegant proof of Sperner's theorem [7].
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Let us deal first with the Kraft inequality. Let us consider the
cascade graph described in Example 4: Let the points of G be all
finite sequences which can be formed from the digits 0, 1, ..., q-1
(q > 2) and let us draw a directed edge from the sequence a to the
sequence b if and only if b is obtained by adding one more digit
to the end of a. Let the source be the empty sequence. It is easy to
see that the cascade graph thus obtained is a tree, moreover a regular
search tree in which there are q edges going out from every point and
" no endpoints. Let A be an antichain in G; thus A is a finite or
denumerable family of finite sequences formed from the digits 0, 1,

.., q-1 such that no sequence in A is an initial segment (prefix) of
another sequence in A. Such families of sequences are called in

information theory q-ary prefix codes, and its elements codewords.

Evidently G is a normal cascade graph; to show this we do not need

Theorem 2, because it is easy to see that putting w(a, b) = q-1 for

-r(a)
every edge a b of G we get w(a) = q r(a , i.e. a uniform flow.
Applying Theorem 1 we obtain the following result,called Kraft's
inequality:

If A is a q-ary prefix code (q 2 2) and n, denotes the number

of codewords of length k in the code, then the inequality

n

™ 8

(5.1.)

A
[y

X
k
k=0 q

holds; if A has the property that every infinite sequence consisting

of the digits 0, 1, ..., q-1 contains one of the codewords from A

as an initial segment, then there is equality in (5.1).

Clearly (5.1) can be formulated dlso in another form, speaking
about trees instead of codes. It is natural to ask in general which

rooted trees, considered as cascade graphs, are normal. The answer is
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very simple: A rooted tree is a normal cascade graph if and only if it
is semiregular, i.e. the outdegree of any point which is not an end-
point depends only on the rank of the point. If D(a) = 4y for all

ae Vk - Ek then Nk+1 = Mk - Ay and thus we get from the uniform flow
theorem the following result, which reduces to the Kraft inequality in

the special case when qp = q for all k.

If A is an antichain in a semiregular rooted tree such that

D(a)

q if a e Vk . Ek and if ny denotes the number of elements

of the antichain A having rank r, then the inequality

b n
(5:2.) I k
k=0 d19,- -« -q

A
-

holds.
Of course Kraft's inequality (as well as its generalization) can
be proved quite easily directly, but it is instructive to consider
this inequality as a particular instance of the uniform flow theorem.
Now let us consider how Sperner's theorem is obtained from
Theorem 1. Let G be the cascade graph of Example 2 of § 1. Let the
points of G be all subsets of an n-element set S, and let there be an
edge in G from the set a € S to the set b €S if and only if b is
obtained from a by omitting one of its elements. To show that the

cascade graph G is normal it is sufficient to point out that if we put
(5.3.) w(a, b) = 1 for every a with r(a) < n

(notice that r(a) = n only if a is the empty set and this is the
(unique) endpoint of G), then we get, taking into account that there
are (n-k)! paths from the source to a point a for which r(a) = n - k

i.e. to set a having k elements, it follows that



(5.4.) w(a) = ___%__ for all points a,

kr(a))
i.e. there exists a uniform flow in G. (This follows also from the
corollary of Theorem 2. It is easy to see further that a subset A
of the points of G, i.e. a family of subsets of S in an antichain if
for any two different sets a € S and b € S belonging to A, a is not a

subset of b, i.e. if A is a Sperner-system of subsets S. Thus the

-1 iform flow theorem yields the following result:

If A is a Sperner system of subsets of an n-element set,

and A contains n, sets having k elements (k=0,1,...) then the

inequality

n nk
(5.5.) z . <1

k=0 (k)
holds.

As
n n

(5.6.) max (k) =

k nql?
C3]
we obtain from (5.6) the usual (though slightly weaker) form of

Sperner's theorem:
n

(5.7.) |A] < [%] ;

Before going further let us add a remark. Comparing the two
special cases just discussed, it turns out that the property of a
system of sets being a Sperner-system plays the same role in
Sperner's theorem as the prefix property of a code in Kraft's
inequality. As a matter of fact, there is a real connection between

these two concepts, not only a superficial analogy.
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As mentioned earlier the prefix property of a code implies that if
the codewords of such a code are written one after the other, without
indicating where one codeword ends and the next begins, and if the
code has the prefix property, the sequence of symbols can be uniquely
decoded, i.e. the codewords can be unambiguously separated from
another. Now let us impose on the code the auxiliary restriction that
a sequence of codewords should be uniquely decodable even in the case
when the letters within each codeword are arbitrarily rearranged, i.e.
if the codewords are unordered sets of letters, and not ordered sets
as usual. If we require further that the same letter should not occur
more than once in any codeword, then such a code is uniquely decodable
if the codewords (considered as unordered sets of letters) form a
Sperner-system. Expressed in the language of search theory*, a
Sperner-system corresponds to such a strategy of search in which the
values of the test functions are obtained simultaneously and one does
not know which value comes from which test function.

For example let us consider the 19 numbers

0,1,2,3,4,5,6,7,8,12,13,14,16,17,18,19,23,24,29,

These numbers can be uniquely characterized by their residues mod 2,
mod 3, mod 5, even if these three residues are given in a random
order. For instance if we are told that the three residues are 0, 0,
and 2, it is easy to see that among the 19 numbers enlisted above only
20 has these residues, namely it is congruent to 0 mod 2 and mod 5 and
to 2 mod 3.

As a further application of the uniform flow theorem, we prove

the following generalization of Sperner's theorem:

THEOREM 3. Let A be a family of ordered r-tuples (r > 1)

* As regards the connection of the results of this paper with search
theory, see (8]
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of disjoint subsets of an n-element set S, such that if

(A

1° Az, ey Ar) and (Bl, BZ’

then the relations Aj c Bj (j=1,1,...,r) camothold simultaneously.

.+» B) both belong to the family A

Then the number of elements of the family A satisfies the inequality

r(n+l)]

(5.8.) T+l

Al < (E
r(n+1)

D)

which is best possible, i.e. equality is possible in (5.8) by a

suitable choice of ‘the class A.

Proof of Theorem 3. Let us construct a cascade graph G as follows:

The points of G are all possible (r + l)n ordered r-tuples

(Al, AZ, «++,AL) of disjoint subsets of S. The source of G is the
r-tuple each element of which is the empty set. The rank of an
r-tuple a = (A;, A,, ..., A) is r(a) = jéllAj| and there is an edge
from a = (Al, AZ’ o s gy Ar) tob = (Bl, BZ’ &g Br) if and only if the
following conditions are satisfied: Aj c Bj for j=1,2,...,r and
r(b) = r(a) + 1; in other words there is in G an edge from a to b
if Aj = Bj for all but one value of j (1 < j < r)--say except for

i --and Bi is obtained from Ai by adding one more element of S to Aj.
Clearly the conditions of Theorem 3 mean that A should be an
antichain in G. Thus if we show that G is normal, we can apply

Theorem 1.

We shall prove the normality of G by verifying that the conditions

of the corollary to Theorem 1 are fulfilled. Let a = (Al, AZ’ ""Ar)
be any point in G which is not an endpoint; then we have r(a) < n
because the endpoints of G are the points with r(a) = n. Thus there

are r -r(a) elements of S which can be added to one of the sets
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A1 to get a point b to which there leads an edge from a: The number
of possible choices is thus r-(n-r(a)) Thus D(a) = r (n-r(a))

depends only on the rank of a € V - E. Let now b be any point of G.
By a similar argument we get that d(b) = r(b). Thus all conditions of
the Corollary of Theorem 1 are satisfied, and therefore G is normal.
Thus we can apply Theorem 1 to the antichain A and we get, in view

= k n = 1
of Nk T (k) and Mk Nk if k < n, that

(5:.9:)

n

1 K
ol -

n
k=0 r (k)

A
[
-

where n, denotes the number of elements of 4 having rank k.

As however

(n+1)r

[ T+l J "

n
[Egilgr] , and kzonk = Al

(5.10) Max rk(i) =
0$k<n

it follows that (5.8) holds.

Clearly for r = 1 Theorem 3 is nothing else than Sperner's
theorem. To show that the inequality (5.8) is best possible take for
A the family of all r-tuples (Al, AZ’ T Ar) of disjoint subsets of

T
S such that I !Ajl =[L%%%l£] (i.e. all points of rank

1

J
[%%}%%I] of G); A clearly satisfies the requirements of the

Theorem 3 and |Ad| is equal to the right hand side of (5.8).
Other generalizations of Sperner's theorem can also be obtained

from Theorem 3. We intend to return to these elsewhere.

June 18, 1969
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